
-
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Ring register simulation module
R. C. Daley, D. M. Ritchie

Purpose

SECTION BG.3.05 PAGE 1

Pub 1 i shed: 05 /25 /67

Currently the ring mechanism for protection of the supervisor
(see BD.9) is implemented by using a different descriptor
segment for each ring. At some future date the 645 may
include a ring register and additional hardware to interpret
an access bracket field within each SOW of a single descriptor
segment. This section describes certain procedures which
aid in fostering the illusion that the ring hardware is
on the present 645, and which thus minimize the software
changes necessary when a ring register is actually available.

Introduction

On an as yet hypothetical 645 with a ring register, the
contents of this register are stored with the SCU data
obtained at the time of a fault or interrupt, and also
by means of a "store ring register" instruction. Conversely,
an RCU instruction given at the conclusion of the treatment
of a fault or interrupt loads the ring register with a
possibly new ring number, as does a "load ring registeru
instruction.

Thus if a ring register is to be simulated the fault and
interrupt interceptors must be able to determine what
ring the process was operating in at the time of the fault
or interrupt so as to be able to simulate the ring number
portion of the SCU data; conversely, when the return to
the faulting or interrupted procedure takes place, the
interceptors must be able to call for a change of rings
depending on the simulated ring register stored with the
SCU data.

The routine described below provide for these needs.

Procedures

The procedures ring$store and ring$1oad described below
are callable only in master mode from the fault and interrupt
interceptors. They are EPLBSA coded master mode procedures.

.,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG .. 3.05 PAGE 2

The procedure setup ring is an £PL procedure called only
by the ring-crossin~ fault handler and by the process
load module routine 1oadproc2.

1 •

2.

3.

ring$1oad

The statement

call ring$1oad (ringno, error);

executes the LDBR instruction that causes the process
to switch to ring number ringno. It thus simulates
a "load ring register" instruction. Then the SOW for
the processor stack belonging to the processor being
used is copied from the old descriptor segment to the
new descriptor segment.

The descriptor segment for the desired ring must have
its first page in wired-down core. The second argument
error is set to non-zero if this is not the case. If
the change was successful, error is set to zero.

ring$store

The statement

call ring$store (ringno);

places in ringno the number of the current ring. It
thus simulates a "store ring register" instruction.

setup ring

The statement

call setup_ring (ringno);

causes a descriptor segment for ring number ringno
to be constructed and its first page placed in wired-down
core.

In any loaded process 1 the hardcore ring descriptor segment
always has its first page wired down .. In addition,
there is at most one other wired-down descriptor segment.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.05 PAGE 3

Therefore, if setup ring is called with a ring number
whose descriptor segment is not wired down, and if
there is another non-hardcore descriptor segment whose
first page is wired down, setup_ring will release the
latter segment from its wired down state before wiring
down the first page of the new descriptor segment.

•.

This strategy means that control may pass from an
outer ring to the hardcore ring and back without
the need for creating any new descriptor segments,
and thus without calling setup_ring. Only when the
hardcore supervisor desires to switch control to a
ring other than the one from which it was entered is
the use of set_up ring necessary; in fact for a
loaded process, the latter situation occurs only
during the treatment of a ring-crossing fault. The
remaining occasion when setup_ring is used occurs
during the loading of a process (see BG.3.03).

Imp~mentation Notes

Information regarding the status of rings is kept in the
Process Data Segment (see BJ.1.03). The following variables
are involved.

,. hardcore_ring and hardcore_dbr

These are the number of and the DBR value for the
~ardcore ring and its descriptor segment. hsrdcore dpr
1s changed only by the Process Load Module routine
loadproc (BG.3.03).

2. cur _ring

This variable always contains the ring in which the
process is currently operating. It is modified
only by load$ring.

3. wired_ring and wired_dbr

If the first page of a descriptor segment for any
non-hardcore ring is wired down, wired ring contains
the number of this ring and wired abr contains the
corresponding DBR value. If w1red rlng equals
hardcore ring, then the descrlptor segment for the
hardcore ring alone is wired down, and wired dbr is
meaningless. Wired ring and wired dbr are changed
only by setup_rTng. =

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.O5 PAGE 4

Thus, if setup ring is called with argument ringno +
hardcore ring,-then if ringno equals wired rin9, do
no~hing. But if ringno does not equal wired ring,
create a descriptor segment for ring rinsno. Then
if wired ring is not equal to hardcore ring. unwire
wired ring. In any case set wired ring equal to ringno.

