
~ULTICS TECHNICAL BULLETIN MTB-031 Pap;e 1

To: nistribution

From: P. Kelley

nate: December 28, 1973

Subject: The Multics Online Installation System

This document is an introduction to the program logic of the
µultics Online Installation System. Excluded from this
discussion are topics such as the submission of an installation,
and the preparation of an installation includin~ compilation,
testing, systems assurance tests anrl code auditing. The complete
installation procedure wi 11 be detailed in a future publication,
the "Library r.~aintenance Manual". The term "installation system"
throughout this document shall refer only to the actual updating
too 1.

Multics Online Installation Requirements

The primary goal of a Multics online inst~llation system is
that it must be capable of updating a group of logically related
system library segments while keeping the libraries 1n a
consistent state. This implies that:

1) segments which are to be removed from service may appear
in the address space of existinR processes, anrl hence may
not be deleted but must be preserved with all attributes
except names intact unti 1 all such processes have
terminated.

2) the unavoidable periods of inconsistency which occur
while installing modifications should be minimized;

3) the installation process should be reversible, to allow
removal of a bad (or inconsistent) modification;

4) the Installation process should be restartable across
system or process failures, to minimize the periorls of
library inconsistency which can occur after these
failures;

5) the installation process should detect all errors which
occur while the libraries are being modified; it should
diagnose the cause of these errors, and it should recover
from these errors, leaving the libraries in a consistent
and usable state.

Other goals for the performance of the installation system are:

G) the installation procedure shoulcl provide 1;enPralizerl
facilities for manipulating the attributes of segments
being installed (e.g. names,-ArL's, ring brackets);

Multics Project internal working documentation. Not to be reproduced or
distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN ~1TR-031 Pap:e 2

7) the installation procedure should be short, simple to
understand, and easy to use;

8) the installation proce~ure should have a simple input
interface so that it can be invokPd quickly;

9) full and accurate automatic documentation should be
produced as oart o~ the installation process;

ln) the installation orocerlure shoulrl he table-driven to
facilitate modification or extension of the system's
functional capabi 11 ty.

I I Multics Online Installation System nefinitlon

Confronted with the installation systPm goals stated in
section I, the next step ls to design a system which will meet
these eoals. First, a definition of the terms "morlification" and
" i n s t a 1 1 a t i o n " i n t e rm s o ~ 1 i h r a r y rn a i n t e n a n c e • '\ mo rl i f i ca t i o n
is a group of segments wbich are related, either logically or
physically. A logical relatior.shir might bP composed of several
hound segments of the v2pll compiler, ~hlle a physical
relationship might be composed of~ bounrl segment, its source
components, object components, source archive, and object
archive. An Installation Is the ~ctual implementation of
changlnF, the system libr2rles. It can:

1) add the new seg~ents in a modification to the libraries;
2) replace existing library se~ments with segments in the

modification;
3) replace existing library segments with segments in the

modification while moving the replacement segments to
another library;

4) move existing library segments to another library; or
5) delete existing library segments.

The act of updatlne B se~ment can hP brnken down into a
series of ordered steps necessary to nerform the update. These
rlistinct steps, in the case of a rPplace operation, might
include: copying the new seement into the library; settin~ the
ring brackets of the newly created segment; setting thP acc~ss
of the newly created segment; freeing the names on the old
(existing) segment; adding n~~es to the newly created segment;
and, logging a description of the update In an installation lop,
file. The set of these ordererl steps ls called a~, and each
ordered step necessary to perform a task is called a subtask.
\1hich means, a modification ls a set of tasks, each composed of a
set of subtasks, which are implemented by an installation.
Therefore, an installation can be accomplished by creating a task
~ and executing each task in the list. A simple example of a
task list generated for the replacement of the two segments
segment_! and segment_2 as a morlificatlon mieht look like:

MULTI cs TECHN I rAL RULL ET IN r.1TB- 03:i Pap.:e 3

task 1: replace sep,rnent_l in SSS
subtask 1: copy the nP.w sPp.;ment_l into SSS
subtask 2: set access rin nP.wly created segment_!
subtask 3: free thP n;::imes on thP. old sep;mPnt_l
subtask 4: - adrl natTles to nf'wl y c:rPntPd sep;rnent_l
sub task 5 : 1 o g the 1 n s ta 1 1 a t i on of s P ;:rnP n t_ 1

task 2: replace segment_2 in SSS
subtask 1: copy the new SP.p;ment_2 into SSS
subtask 2: set access on nP\rJly crF>aterl segmF'nt_2
subtask 3: free the natTles on the old se~Ment_2
subtask 4: add names to nPwly crentPd se~ment_2
subtask 5: log the installation of segment_2

The execution of this task list results Tn the two sep;ments
being installed, hut does not attempt to minimize the time
between which the first segment Ts tnstallerl anrl the second
segment is Installed. (1) Note that after the sP.gment in task #1
is tnstal led, the segment in task #?. sti 11 has to be copied, have
its access set, have the names rernoverl from the old se~ment, anrl
have names added to it until it is also installed. Therefore,
the time interval of library inconsistency is a function of the
execution of these subtasks and the number of sep.:ments being
installed.

A solution to minimize the interval of librnry inconsistency
is to re-order the subtasks within the task list. If a sequence
number is assigned to each subtask of the original task list,
then a new task list is created containing the subtasks ordered
by sequence number, the result woulrl look like:

(task 1) subtask 1: copy the nP.w segment_ 1 into SSS
(task 2) subtask 1: cony the nP.W se.e;ment_ 2 into SSS
(task 1) subtask 2: set acCP.SS on newly created segmP.nt_ 1
(task 2) subtask 2 : set acCP.SS on newly crl'>ated SPp;mPnt_ 2
(task 1) subtask 3: free thP nf'!mes on the 01 cl seF:ment_ 1
(task 2) subtask 3: free the namP.s on the old se.e;mP.nt_ 2
(task 1) subtask 4: add names to nPwly created segment_ 1
(task 2) subtask !~ : add names to newly created segment_ 2
(task 1) subtask 5: log the installation of segment_ 1
(task 2) subtask 5: log the install;:)tion of segment_2

The interval of library inconsistency in this new task list
has heen diminished drastically by limiting the interval to be a
function of the number of segments heing installed and thP. size
of their respective name lists.

What other benefits can be rlerived from this "task list"
approach to installations? Normally, the task list is executed
by starting at the first subtask in the list and ending at thP
last. What would happen if the subtasks were executP.d in reverse
order, starting at the last subtask of thP list? If each subtask

(1) A segment is defined as "installed" whP.n its externnl names
have been added to it, thus enahling users to access it.

MULTICS TECPNIC,!.\L BULLETIN ~"TB-031 Pa.e;e 4

were designed such that i t
function when executed I n
execution of the task 11 st

(task 2) subtask 5:
(task 1) subtask 5:
(task 2) subtask 4:
(task 1) subtask 4:.
(task 2) subtask 3:
(task 1) subtask 3:
(task 2) subtask 2:
(task 1) subtask 2:
(task 2) subtask 1:
(task 1) subtask 1:

would nerform its logical inverse
"reverse" order, then a picture of the
i n 11 rev e r s e 11 wo u 1 rl 1 o o k 1 i k e :

log the de-installation of segment_2
log the de-installation of segment_!
remove names from new segment 2
remove names from new segment-I
restore the names to the old segment_2
restore the names to the old segment_l
remove access from new segment 2 (2)
remove access from new segment=!
delete the new segMent 2 from SSS (2)
delete the new sey,ment=l from SSS

The "reverse" executlon of this task list woulrl, in fact,
de-install the modification, restorin1! the libraries to their
original state.

A means of accessing thls task list in· a different process
from which it was created, would be to store this list in a
segment area. In this way, it could be exPcuted, either forward
or in reverse, in any process. Ry furthPr maintainin~ in this
segment area, a means of determining which subtask is being
executed at any given moment during an lnstallntlon, any
interruption of the execution of the installation (e.g. process
termination, system crash, etc.) can be restarted, or
de-installed, from where the installation w~s interrupterl.
(Provided that the Multics hierarchy remains intact.)

Similarly, if an installation error is detected durin~ the
course of execution, an automatic error recovery mechanism can be
invoked to reverse the direction of ~xecution, de-installing th~
modification.

Note that there Is a subtask to document each of the
segments being installed. This provl~es automatic documentation
of the modification at the time of installation (or conversely,
de-installation).

111 r·'ultics Online Installation System lnterfacf'

A. General Command Interface

One possible command interface to perform this online
installation scheme is to provide a procedure which anpends tasks
to a task list and then "installs" these tasks. For each segment
of the modification being updated, there would be a task in the
form of a segment request specifying what the task is to perform.
The segment request would contain information such ~s: the
pathname of the new segment to be installed; the pathname of the

(2) In actual Implementation, access Is .!l.Q.! removed from the
newly created segment, nor is the new segment deleted.

·- -

r1ULTICS TECHNICAL 13ULLETltJ MTB-031 Page 5

old (existing) segment being chan~ed; the pathname of the target
for this new segment (if different from the pathname of the old
segment); the ACL to be placed on the uprlated se~ment; and, thP
ring brackets to be placed on the updated segment.

~n advantage of this scheme ts that It is completely
independent of any library organization. ~ disanvantage Is that
this independence assumes that the installer has a priori
knowledge of the library organization and must continually
utilize this knowledge by specifying all the pathnames of the
library segments. Another disadvantage ts that the installer
must explicitly state, in the form of requests, each segment to
be updated, each ACL, and each ring bracket triplet associated
with every segment to be updated.

The laborious specification of ACL's and ring brackets can
be alleviated by making the following assumptions: in a replace
operation, the ACL's and rln~s to be placed on the new segment
can be derived from the old (pxfsting) segment; and, In the case
of an addition of a new segment, the installer may define default
ACL's and rings for the Installation, to be used for new
segments. Both assumptions may he explicitly overridden by the
installer at the time of issuing the request.

B. Simple Command Interface

To produce a simpler Installer interface, the organizational
independence of this system must be compromised. However, rather
than completely sacrifice the systP.m by coding library
organization into it, the creation of a driving t~ble containing
all library depP.ndenctes will maintain the Integrity of the
system, and, at the same time provide organizational
specifications necessary for a simple installer interface. This
table, called a library gescriptor segment, will provide
information such as: structure of the libraries; structure of
backup and source libraries; Initial A~l's for these libraries;
and, ring brackets to be placed on segments cre~t~d within these
libraries. To define a different library organization, it would
only be necessary to build a new library descriptor segment.

The formation of the installation task list may be
accomplished by one of several approaches. One is based upon the
concept of an "installa·tion directory". All new copies of
segments to be updated Into the libraries would reside in this
directory. The command interf~ce would sc~n this directory
creating a task list composed of tasks to uprlate each segment
loc~ted in the directory. Information such as ACL's, ring
brackets and backup libraries, would be dlscerned from the
library descriptor segment. This interface does not lend itself
to the existence of multiple libraries, nor does It facilitate
the necessity of installing special case segments such as gate
segments, which need non-standard ACL's and rings. However, for
applications such as the hardcore updater, it would render very
usefu 1.

/\n alternative Is to create a "source" SP.gment comprised of
a list of segments to be updated with keywords inrlicatinp; the

MULTICS TECHNICAL BULLETIN t1TR-031 Page 6

library and action (i.e. add, replace, delete, or move), perhaps
also residing in an "installation directory", in which ACL's and
ring brackets, if not to be rleriverl from the library descriptor,
may be explicitly stated. The installation procedure would
"compile" this list into a task list which, when executed, would
update each segment accordingly. This approach maintains the
flexibility of the updating tool while providing a simp~e
installer interface.

IV The Multics Online Installation System (MIS)

Sections I through I 11 of this document have attempted to
state: the goals of an online installation system; the design to
implement these goals; and, possible command interfaces for this
implementation. This section briefly defines the current Multics
Online Installation System, its limitations with regarrl to the
previous sections, and its future development.

The Multics Online lnstallation ~ystem (MIS) follows the
design stated in section I I. It supplies a means of installing
segments which is restartable, reversible, recovers automatically
from errors, minimizes the period of library inconsistency, and
provides the facility of automatic documentation. The current
command interface to ~~IS is the pror;e.dure update_seg. Its level
of development is as described in section I I I.A of this document.
Although being an extremely flexible tool, the major deficiency
of the current MIS Is its lack of simplicity. The following
outline define areas of rlevelnpment helng pursued at this time,
in their order of importance.

A. Full and accurate documentation of library modifications.

The documentation currently produced by MIS is a list of
segment modifications to the libraries. This list is
published weekly as an tv'IB ("Online Installation
Chr:inges"). The help fl le news. info ts manually uprlaterl
after an installation. The proposal for documentation
(MCR #l8q) will also apnenrl a brief reason for the library
modification in both the installation log file and
news.Info during the installation process. Formatted
documentation for Info anrl include files will also he
produced along with th~ timP of actual installation.

B. SPS documentation for MIS.

1. Submit SPS documentation for the update_seg command
interface.

2. nraft an MTR describing the proposal for documentating
MIS as a separate section of the SPS entitled "Library
~~alntenance Manual". This supplement would Include a
section on library maintenance, prograrri logic
descriptions of MIS, and SPS-type module documentation. ~

MULTICS TEC1rn1rAL BULLETIN MTB- 031 Page 7

C. Increase the size of online installations.

MIS is currently limited in the number of segments which
can be updated in a single modification. The prorosal
(MCR #188) will increase the number of segments which MIS
can handle so that modifications the size of the V2PL1
compiler may be installed with a single installation.

O. Initial ACL's and safety switches.

Incorporate the concept of Initial ArL's for segments
being added to the libraries. Currently ACL's are
determined explicitly by the installer. ~lso incorporate
the "safety switch" facility into MIS.

E. Simplify the installer's interface to MIS.

1. By splitting the update_seg procedure Into its two
logical sections (i.e. argument processing and function
execution), the capabilities of MIS will be made
available for alternative forms of command interfaces.

2. Once update_seg ls split then the concept of a library
descriptor segment can be implemented by creating an
appropriate command interface as described ln section
111.B.

