
1·1ultics Technical Bulletin MTB-054

To: Distribution

From: t3ernard S. Greenberg

..> u b j e c t : P r o po s a l f o r ill u l t i cs Ca ch e So f t w a r e

Date : r·1 a r ch 2 1, l 9 7 4

This MTB describes a proposal for the implementation of
software for use of the 6100 Cache Store System with Multics.
The Cache and the advantages to be gained by its use are
described. The problems associated with its use on Multics are
described, and solutions proposed.

~HAT I~ THE CACHE, AND WHY SHOULD WE USE IT?

Ttie 6lu0 Cache Store System is a fast, random-access buffer
1.1e111ory, added to a tiOOO-series processor, at its port lor,ic. It
is significantly faster than main memory (50 ns. basic access
ti1ne, as opposed to 1.2 us), and is a physical part of the
processor, as opposed to the m~nory hierarchy. It attempts to
keep copies of recently used data from in itself, in much the
same way that Multics attempts to keep copies of recently used
pages in main 1neinory. Thus, if the processor's various subunits
request some data from memory which has a copy in the cache, the
request will be satisfied by the cache unit, and no request to
main memory will be made. This saves a :;reat deal of time.

The cache thus forms the fastest level of a multilevel
memory hierarchy. Core, paging device (bulk store), and disk
would be the next levels in a Multics system with the cache. The
successful use of a cace depends on the patterns in which
programs reference data, and those features (spatial locality of
reference) which facilitate this use are common to most programs.
Simulation studies by Honeywell predict that the use of the 6100
Cache ~tore System on a model 6070 (No EIS, no segmentation,
paging, or ring hardware), with four-way interlace and
half-microsecond core, would reduce the CPU time required by a
GCLJ~ CuduL compilation by 40%, as opposed to the sa1ne system
without the cache. As there is no reason to suspect that typical

1•lultics Project internal working documentation. Mot to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-054

~ultics programs are that radical_ly different from GCOS programs,
in their memory reference patterns, some comparable performance
improvement wou 1 d not be unreasonab 1 e •.

HOW IS THE CACHE ORGANIZED AND HOW QOES IT WORK?

The cilOO Cache Store System consists of 2048 36-bit words on
HAM bi po 1-ar · chips. These words are organized in to 512 b 1 ocks of
four words each. Each block can contain four consecutive words,
from a mod-4 boundary, from main storage. These blocks are
further organized into 128 'columns', each containing four
blocks. The blocks in any single column can hold only certain
blocks from main storage. Thus, column 0 can hold block 0, block
ll8 block 25ti, block J84, etc. of main store. In gener~l, column
n can hold any block n+l2a*m, for any m. This in effect divides
1aain m~nory into 128 equivalence classes of four-Word blocks
competing_ for cache blocks in the same column. The cache works
by absolute address it determines which address is being
referenced in main 1~emory from the 24-bit final address presented
to the port logic by the Appending Unit. Thus, association of
contents with addresses is oblivious to seRmentation. Associated
with the blocks of cache memory is a directory of 512 entries, ~
each entry describing the contents of .a corresponding cache
memory block. A single bit (FULL/EMPTY) describes if the
corresponding block contains val id inforMation. A fifteen-bit
address field contains the upper 15 bits of the twenty-four bit
absolute address of the words in main ~emory to which the words
in the corresponding cache block correspqnd. The next seven b-its
of this address are Implicit, as they define the column in which
this block appears. The remaining two bits (24=15+7+2) select a
particular word of the four word block.

The cache is interposed between the Appending Unit, which in
a Hultics processor mediates memory requests, and the port logic
of the processor, which is responsible for direc~ing a memory
re~uest (fetch, store, set a mask, etc.) and an· absolute address
out of some processor port, based on the upper bits of the
absolute address, and either receiving data from-or sending data
to the selected controller. ~nong the functions of this logic is
the sending of a request for service to the selected controller,
and receiving a reply when the request has been granted. The
processor module which initiates the request suspends its
operations until this acknowledgement is received.

The cache unit intercepts all of these memory requests. If
the request is a simple read (NOT a lock-type 'read and clear',
as wo u 1 d be used by t he s t a c , s t a c q , 1 d a c , ans a , e t c • , ~
instructions) the cache inspects the directory entries for that
column of cache which would contain the words being requeste.d.
This·means that four comparisons of the four 15-bit address

_

Page 3

fields are done in parallel. The cache unit does not let the
request for service go to the memory controller until it verifies
tnat none of the four addresses compare. CA FULL bit being off
µrevents a successful comparison as well.) If a match is found,
the c~che retrieves the stored words from the cache block whose
directory entry matches the requested address, and notifies the
Appending Unit that the data is available. Not only does this
retrieve the data with great rapidity, but enhances multiplexing
of the memory controller. If no match is found, the request
proceeds to the m~nory controller as usual. However, the cache
replaces the contents of some block in the appropriate column
with the two words which are returned from the memory controller.
i·lhat is more, the cache unit makes a second request on the port
logic to fetch the other two words to be stored in the cache
block. The acknowledgement is then given to the Appending Unit.
The block to be replaced is selected on a first-in-first-out
(FIFO) basis. This ·is implemented by a two-bit counter
associated with each column of the cache directory.

Write-type requests go directly to main storage. Hence, the
cache never fetches words when a store-type instruction is
issued. rlowever, a compare is made with each of the directory
entry address fields in the appropriate column, and if a match is
fuund, the cache unit updates its contents with the data being
v-1r i t ten.

Locking-type fetches (read-and-clear) also go directly to
1nain me111ory. The cache also purges the contents of a matching
i.>lock, if any, by turning off the FULL/EfVIPTY bit.

Ttie cacne can be turned on and off by a bit in the CPU mode
regiiter, which is loaded by the LCPR instruction. Certain
faults also cause the cache to turn off. A special register
exists for controlling the modes of operation of the cache,
controllable by another variant of the LCPR instruction. Every
time the cache is turned on, it clears all of its FULL/EMPTY bits
to EMPTY, as it has no way of knowing what was stored in main
1~1emory while it was off, and it should never contend that any
data that it might return are valid.

Two features have been added to the cache specifically for
1~ultics. An SDW bit has been defined, which, when off, tells the
Appending Unit to inhibit the cache from making any successful
address comparison. This has the effect of allowing some
segments to have words sorted in the cache and others not. Also,
a special variant of the CAMP (clear associative memory of PTWs)
instruction has been defined which clears the FULL/EMPTY bit of
any block in any column whose address in its directory entry
1natches an address given as part of the instruction. This allows
clearing of an entire page ou~ of the cache in two instructions.
As each one of these instructions must cycle through 128 columns,
Joing tnc four-way compare with each, 25 microseconds is reQuired
for this operation.

Page 4 MTB-054

A special version of the CAMS (Clear associative memory of
SDWs) instruction has also been def~ned.~hi~h turns off all of
the FULL/EMPTY bits at once, invalidating the entire contents of
the cache at one.

WHAT ARE THE PtWBL EMS "rl I TH THE USE OF THE CACHE vJI TH MULTI CS?

The cache is an integral part of the processor - it is a
buffer between the processor's component units and main memory.
In Hultics, many active modules (processors, !OM, Bulk store
unit, etc.) are connected to main memory. Any of these active
111odules may inspect or change the contents of amin memory.
rience, the cache unit in a processor may hold copies of words of
111a in memory which have been changed there by the I OM or another
processor since they were loaded into the cache.

Thus, system activity v1hich involves more than one active
1ilodule having access to any given word of core must be
reconsidered in light of the cache. Since write-type requests by
a processor go through the cache, directly to main storage, a
word of cache storage never contains a word whose contents are
1nore recent than the corresponding word of main storage.
Difficulty arises only when a processor cache holds a word less
recent than a copy in main storage. This can only happen for
main memory words which are either 1) capable of being written
into by a non-processor active module, or 2) accessible to two
processors, at least one of which can write them. The use of
segmentation .allows the grouping of data v/ith various access
attributes into segments (e.g., only those segments known as '1/0
buffers' contain words which are subject to b.eing w.ritten by
another active device than a processor leaving the issue of
paging 1/0 aside for a moment). The identity of segments which
can be written by one processor ~nd seen ·by another (assuming for
.the moment that the processors are to stay in the same· processes)
is also an issue which can be hand·led · easily. Hence,
segmentation provides a simple means of identifying words \-.Jhich
should be treated in different ways with respect to the cache.
Thus, the bit 11 sdv1.cache 11 has been defined, whose absence in an
.5D~J forces al 1 requests for data from the corresponding segment
to go directly to main memory~ and prevents the cache from
loading_ data from this segment into itself. Such
"non-encacheab 1 e segments" are. transparent to the cache, .that is,
tne cache may never contain words from them and hence may never
have a copy more recent than the copy in main storage.

The remaining issues are the determination of which segments
are encacheable, and ~hen the cache must be cleared.

1,\To- 054 Page 5

TrlE ENCA~HEAi:$1LITY OE SEGMENTS

From the considerations stated above, it should be clear
that I /u buffer segments (e.g., t ty_buf, tape_data) are not
encacheaole. Thus, any SD~~ made for these segments should
prevent words from these segments from entering any processor's
cache, as teletypes and tape controllers (via the Datanet and the
I (11-1) 1nay update words in main storage which the cache could not
observe.

Similarly, lt is clear that data bas€s which are accessible
to only one processor, i.e., the prds's of processors, are always
encacheabl~. Even though prds's are created by some other
processor than the processor for which they are intended (for all
cases other than the boatload processor), there is never any
difficulty in the intended processor not seeing a change made by
the other processor, as the former has not started to run by the
~ime the latter is finished with its prds.

Pure procedure segments are always encacheable. Again
putting off the issue of how these segments were written,
initially, no module may write in these segments, and hence, a
cache copy can never be less recent than the legitimate contents
of the segment.

In order to handle all other cases, the concept of
'per-processor' can be mapped into that of 'per-process'. As
long as the process-processor pairing remains unchanged, the
se~~ents which are non-encacheable Cother than those already
1nentioned) are those which· are writeable by one process and
readable by another. ·Hence, stacks, linkage sections, pds's,
Kst's, and programs are all encacheable. Initializer and
answering service data bases are encacheable. Inter-user data
oases in outer rings, and data bases such as the SST, tc_data,
and descriptor s~~nents themselves are not encacheable. Any data
base which is written only at system initialization (by the
boatload processor) and read thereafter can never be changed
after a non-boatload processor can fet~h its words into its
cache; hence these segments (e.g., sys_info) are encacheable.

. .
, .

'·)•1AKfNG THE ABOVE ST.RATEGY VIORK, ANO THE CLEARING OF THE CACHE

Although the above strategy provides a
·heavily-used segments are encacheable~ it
least one unreasonable assumption,
considerations.

scenario whereby most
is founded upon at
and two unstated

. . Tl1c pro.cess-processor pairing can not e.ie assumed
· ;., : cor1s.tant. A processor rnay pass th rough many

to remain
processes . . ,

Page 6 MTB-<>54

5irnilarly, a process may be viewed as possibly passing through
several processors. It is this latter view which provides the
key for making the process-processor pairing ~"ork for the cache.
If a process never changes processors, the Hords of its
per-process encacheable segments (writeable data bases) will
never appear in the caches of other processors, as we have stated
that these segments are not readable by any other process.
Similarly, no other processor may modify the words of this
segment (assu1'1ing no read permission implies no write 1·
premission). Hence, the copies of words of this ser;ment in the
cache of the processor which has been running this process can
never be less than up to date. If this process now switches
processors, however, the new processor will acquire copies of
these words in its cache. Still, there is no problem. Should
the process switch back to the original processor, however,
copies of words of the segment of interest are still in the
original processor's cache, and are less recent than possible
i11odifications made to the copies in main memory by the other
processor. The solution is simple: Every time a process switches
processors (easily determined from data kept In the APT), the new
processor should invalidate the contents of its cache.

The first unstated consideration is the determination of
which segments are writeable to one process and readable to
another. Scanning ACLs is one solution. A more reasonable ~
solution, which depends upon consideratidns stated in the ext
section, is to observe the creation of SDWs for a particular
segment. As long as only read or. read-execute-allowing SDW's are
created for a segment, the segment Is encacheable, and all of
these SDWs reflect this. Similarly, ts there ts but one SDW for
the segment (i.e., only one process ts currently using it) it is
encacheable, even if this SDW permits writing. If, at any time,
a segment in either of these states changes into· the
non-cacheabilitytate where one write-access and one read-access
SDW exist, ALL 3DW's must be changed to reflect the
non-cacheabiJ ity of the segment. Furthermore~ the caches of all
of the processors must be cleared, to remove copies of words of
this segment. This can be done via a modification of the current
connect-fault mechanism, setting special· flags so that a
processor receiving a connect f au 1 t wi 11 interpret the 1 at te r as
a signal to clear its cache.

SD~J's are modified or destroyed by three mechanisms other
than the creation mechanism of the segment fault, considered
aoove. Deactivation (resulting from reuse of AST entries or
~e~nent destruction) destroys all SDW's for a given segment. As
part of deactivation, all of the pages of a segment are forced
out of core. As explained in the next section, this will clear
the segment out of the system's caches page by page. Access
changes cause an operation known as a 'setf au 1 ts' to be performed --.•
on all existent SD~'s of a segment. This causes late~ ·segment ~
faults which will recalculate each process' access to the
segment. The .encacheabi 1 i ty of the segment ~1i 1 l be recomputed at

MTB-054 Page 7

those times. However, at the time the set.faults ts done, the
segment's words must be driven out of the system's caches, if. it
is currently encacheable. This may be done via the same· connect
fault mecahnism as before. Termination of segments causes SDW's
to be destroyed. While this can never make an encacheable
se~nent non-encacheable, It may do the reverse, granting
encacheabil ity at the time the last write-access SDW of a segment
is destroyed. This could prove to be an important consideration
in the case of a 1 ibrary procedure being updated by library
1naintenance personnel. If cacheabll ity were not granted at the
time the library maintenance personnel terminated the segment,
ordinary users would not use the cache for this segment.

Information concerning the nature of SDW's of a given
segment is best kept in the AST entry for that segment, and In a
per-SOW data base known as the 'system trailer', each of which
have. enough free bits to record the necessary information for
dynamic encacheabil ity computation.

The encacheability of hardcore segment? is best determined
from an SLT attribute, which comes from a system header
attribute, defining the encacheability of hardcore· segments at
system generation time.

The modification of SDW's by bounds faults is not of
interest, as it changes neither the mapping of segments into nor
access to seg~ents.

The second unstated consideration is paging .

. PAGING

The r~na1n1ng important issue is reflecting changes in the
contents of main memory due to paging to the system's caches.
The proposed solution relies on ·the fact that no program other
than page control references a page frame of main memory between
the time that access to the page frame is turned off and the time
that access to the page frame is opened with the contents of some
other page of the virtual memory in this frc(3me. This turning off
of access occurs at the time that page control decides to replace
a page, due to either lack of recency of use, or deactivation.
Between the closing of access and the new opening of access, data
1nay be read into this page frame from the paging device or disks,
and page control may inspect or modify the contenti of this page

.frame. Thi~ modification and inspection are done with special
non-encacheable segments know as 1 abs-segs', which are
essentially segments defined to be whatever it is desfred to look
at or modify at the time that it is desired to do such. Hence,
page control will always see the correct contents of the page.
At the time that access is closed to a page, all of the

?age 8 MTB-054

processors in the syst~n are notified to use the special verison
of the 'CAMP' Instruction described above, to clear all words of
this page out of their caches. Hence, by the time access is
op•ned to the new page in that page fram~, there will be no words
~f the old cont~nts in any processor's cache.

OTHER CONS!QEBAT!ONS

Directories are not encacheable. This Is because they are
inspected and modified at segment deactiva~ion time via the use
of a dynamically created SOW (resulting from· the use of an
abs-seg). Jere the directory being referenced In this way
encacheable, copies of words in any cache would not see changes
1nade in this way. Alternatively, one could clear System caches
and redefine the directory's encacheability at this time, but
this seems a fairly expensive approach, especially In view of the
1 ikel ihood that directory referencing patterns do not warrant the
encacheabil ity of directories.

The cache is not turned on until processor initialization,
\'Jhich, for the boatload pro·cessor, i.s late in system
initialization. This avoids having to deal with several memory
1ilanagement policies used only during initial izatioh.

Ring-z~ro patching must clear all system cache~, for it
violates the encacheability rules for any read-only segment or
single-process segment that it patches.

Abs-segs in general are non-encacheable. These 'segments'
are used to extend a process' address space to encompas main
memory ~ages or segments (i.e., other processes' descriptor
segments) not accessible by other means. Wer~ abs-segs
encacheable, they might bring words into the cache of segments or
pages which have already been removed from the c~che of this.
processor, or established as not being . in the. cache of this
processor. Furthermore, abs~segs are frequently used to inspect
the result of 1/0 operations, which the c~che never sees.

The cache must be turned off by the BOS toehold, when BOS is
entered, or preferably before (to allow BOS to dump the cache as
it was at the time some system problem occurred). The swapping
of main memory images done by BOS necessitates that the cache be
either off when BOS is entered, or maintained by BOS. BOS should
not use the cache, as the performance of BOS was never an issue.
Also, the cache should be turned back on Cimpl icitly clearing it)
as processors are restarted from a ~ystem~trouble interrupt (the
return-to-BOS-or-halt mechanism).

There must be BOS software tb dump the cache, both to the
printer/tape and to the DUMP partltion. Similarly, the FOUMP

I ~

. i

!i··;· ,,-
t~< r >

Ii .
t

'' ; :

'
' ' t

MTB-054. Page 9

printing mechanism must be rewritten to dump this Information.

Multitasking plays havoc with many of the strategies
described ab6ve, starting right at the process-processor pairing
assumption. If multitasking ls ever implemented, some
user-controllable segment attribute describing inter-task sharing
1nust be defineJ (probably for other reasons as well), which would
then be used in determining encacheabil ity.

I c.JY !TAT I ON

Address all comments to:

~ernard Greenberg
CISL
575 Tech Square

