
MULTICS TECHNICAL BULLETIN MTB-065

To: Distribution

From: David P. Reed

Subject: A New Bound on the Performance of the Proposed New Storage System

·Date: 04/19/74

In MTB-060 Steve Webber makes an argument, the essence of which

is that because twice as many distinct directory pages are referenced

in a given directory or segment control operation, the increase in the

page fault rate on directory pages will be about doubled. In fact the

situation may become a lot worse, since the new pages will displace other

non-directory pages from core, reducing the effective paging pool. This

note describes a technique for obtaining an estimate which explicitly

accounts for this effect.

Consider the 'set D of directory pages, and for simplicity let us

assume that there is only one type of directory operation, which in the

present storage system implementation references n distinct pages in D.

Further assume that this directory operation takes a short time relative

to the time in between directory operations; this assumption allows us

to presume that permutations of the order of page references within the

span of the directory operation will not significantly affect the paging

behavior of the system. I also assume that the number of directory pages

in core at a particular instant is relatively constant over time. This

latter fact has been experimentally verified by me in experiments con

ducted over a several hour period on a full configuration Multics system ,

and described later in this document.

The page reference string of the current Multics will thus have a form

similar to:

sisjsk····· d s.dbdbs d •••• a i. w c
\ ~,,,,

directorv operation

~here da,db,dc e D, and si,sj,sk ••. e ~11 non-directory pages5

Multics Project internal working documentation. Not to be reproduced or
distributed outside the Multics Project.

Directory pages are only referenced during directory operations, although

non-directory pages are referenced both during directory operations and

outside of the scope of directory operations.

Because of our earlier assumption that permuting the order of page

references within a directory operation results in no significant change

in the page fault rate, we can easily produce a reference string for the

proposed new storage system from the previous reference string. The change

in reference pattern due to the new proposal can be approximated by assuming

that a directory operation will cause a reference to twice as many distinct

pages in the set D, which now has twice as many pages due to the use of

tuo pages in the new scheme to replace one page in the old. We can thus

model the new system reference string by replacing each reference to a

directory page, d , by a pair of references to two distinct pages in D,
a

d and d'. The new reference string corresponding to the previous a a
example will be:

d d's.dbdb'dbdb's d d' •••• sks 1s a a 1 w c c v
\....__ ,,,,,,, .

directory operation

Assuming core is managed by an I.RU stack page replacement algorithm,

the I.RU stack for all pages will differ due to this change in reference

string by replacing entries corresponding to a directory page by two ad

jacent entries in the list ~or the two new pages. The drawings below

show sample I.RU stacks for the current algorithm under a particular ref

erence string, and the analogous I.RU stack due to the transformed refer

ence string under the proposed new storage system. To keep the analogous

core boundary in both cases, I will temporarily hypothesize that the new

storage system is implemented on a system with larger primary memory size

M' , where M' = d + M, with d being the average number of directory pages

in core under the present storage system, and M being the present memory

size. In this new memory size the page fault rate can easily be determined,

due to the properties of the stack algorithm and the relationship of the

I.RU list to the I.RU list in the present storage system.

- 2 -

M core
resident

pages

-
sl

~
ds

s2

s3 ... - ---
d_l

s8

- S_g_

. . .

Under Present Storage
System

M' core.
resident
pages

.,
s..l.

L

d.L._
d' '4_

<ls

d'
5

s
2

s_l

d7

d'
7

s8

s9

.

Under Proposed
Storage System

How can we compute the page fault rate in memory of size M' for the

proposed algorithm? Let p(M) be the page fault rate of the system

under the present algorithms, p'(M~) be the page fault rate of the

system under the proposed algorithm in the larger memory M'.

We can see the page fault rate on non-directory pages in the new

scheme in the larger memory will be the same by the fact that

we are using a stack algorithm for page replacement, so let's

define pnd(M) to be the page fault rate on non-directory pages in

the present algorithm in memory M, and p~d(M') be the analogous rate

in the new system. Then,

Since we will bring in two directory pages under the new scheme where

one will have been brought in before, we can determine the paging rate

on directory pages in both systems, pd(M) and pd(M'), to be related by

a ratio af two:

- 3 -

We know that the system paging rate in both cases is the sum of the

appropriate directory paging rate and non-directory paging rate:

p(M) pd(M) + pnd(M)

p I (M') = p I (MI) + p I (MI)
d nd

So we can relate the paging rate in the new proposed system with M'

blocks of memory to the paging rate in the present system as follows:

or
p I (MI) = p (M) + pd (M) •

This result is very similar to Webber's supposition; the problem is that

we have obtained the paging rate in a larger memory. To scale down the

memory size, we must use some model which relates paging rate to memory

size. Saltzer's linear model seems appropriate since it has been shown

to fit for the memory sizes involved. According to Saltzer's model,

p I (MI) MI = p I (M) M,

or

p I (M) =

Bringing it all together,

M+d
p'(M) = ---M--- (p(M) + pd(M)).

In order not to have to worry about actual paging rates and memory sizes,

the previous result can be normalized to express the percentage change in

performance.
p I (M)
p(:M)-

If we let ~ be the proportion of page faults which are on directory pages

in the current system, ~nd y be the proportion of pages in core which are

directory pages in the current system, we get a very simple result:

- 4 -

'(M) _e _____ = c1 + y) c1 + ~>
p (M)

where
d

y = --M,

pd(M)
P = --p(M)- •

The point of all this is that the paging behavior is the product of

two terms, the first of which reflects the change in the size of the

paging pool, and the second of which reflects the extra paging references.

The percentage increase can be seen to be:· P + y + py. Thus for example,

if 20 percent of core is taken up by directory pages and 2 percent of the

paging rate is concerned with directory pages, there will be about a 22

percent change in paging rate.

both effects into account.

Thus it is obviously important to take

Application to the Actual Multics System Performance

Webber assumes that p is somewhere around 4 percent. I will assume this

since I cannot get any useful figures on this from the system. The actual

value of p might be significantly lower, but we will see that this does

not matter much.

I have measured y myself, by dumping consistent copies of the AST and

analyzing them with my own AST analysis program~ to see how many directory

pages are present in the paging pool in core. Over a 2 hour period I

obtained the result that out of about 210 pages in core available for

paging, 20 of those pages were directory pages at any particular instant.

This number did not vary significantly; on 45 samples I got a standard

deviation of about 7 pages. Consequently, y for that system is about

10 percent. Consequently, we can see that percentage increase in page faults

is about 14 percent, and a ball park estimate of the change in system

throughput in this case would be about 7 percent. This number is large

compared to Webber's 2 percent.

As a result of this measurement, it would be well worth while taking a

fresh look at the assumptions underlying the new storage system proposal.

- 5 -

