
MULTICS TECHNICAL BULLETIN HTB- 134

Toi DlstrJ.butlon

From: Gary C. Dixon

Date: November b, 197£+

Sub)ect: New library Tools: Design Principles

For the past several years, efforts have been unaerway to r~wrltc
ana generally clean up the coae in the tools which are us~a to
maintain the Hultlcs System libraries. A maJor phase of the
effo,..t ended with the installation of the upiJate_seg commanc,
which installs segments in the Online libraries. Now a second
maJor phase ls coming to fruition. This MTS s~mmarizes the work
whlch was oone as part of thls second phase.

Since the work was begun before MTBs or the MCR board came into
oelng, it has been proceecilng without having an approvea MCR. It
ls ~Y intention now to hold a Design Revlew of the basic designs
summarized below, and then to submit several MCRs r~Questing the
installation of the new or modlfleco library toots.

Phase Two of the clean up campaign aaaresses <at least) 7
different tools which are used in library maintenance. These
are: msJ_lnfo; msl_global_format; msl_short_format;
get_llbrary_source; cleanup; lcref; and c~oss_reference.

Respectively, these tools& printea brief Information aoout
entries in the library on the user•s terminal; generated
detailed library status information in a segment; generated
brief library status informatlon ln a segment; extractea source
segments from the llbrary; actually delete from tha Online
llbrar·1es those segments which were replaced as part of an
instal latlon, but whlch could not be oeletea at installation time
because they might have betn ln use ln someone•s process;
cross-reference the use of include segments by library entries;
cross-reference the use of library entries Dy other llorary
entries. <1>

--------------·--~-

(1) ,ast tense ls usea ln some of the aescrlptlons above to
inaicate a change in the operation of certain tools. For
exa~ple, we no longer have MSLs (M~ltlcs Segment Lists), so the
msl programs have been replaced by three new programs which
perform the same function in a different way. These programs are
oescrlbea in a forthcoming MT~. When the Online Libraries were

Multics Pro)ect internal working documentation. Not to be
reproauced or distributed outside the Hultlcs ProJect.

MULTICS TECHNICAL BULLETIN MTB- 134

Each of these tools has one or both of the fol lowing deslgn
f I aws:

•

either the tool usea a special library data oase which
was invariably out-of-sync wlth the actual library
contents (the MSL data base>; or
both the Joglcal ana physlcaJ organization of the
Multics System Llbrarles ls coaed into the tool and
therefore the tool has to be modlf ied whenever the
logical or physical organization changes ln any way.

Therefore, the goals of the clean up campaign are to:

++ eliminate the information from the MSLs which ls
oupllcatec elsewhere in the libraries (e.g., status
information for library entries, name of bound segment
containing a component, language type of a component)
ana to store the remaining information in a oata base
which . .i:s simpler to maintain, easier to check for
consistency, and which does not interact with the
I ibrary listal latlon tools; ana

++ store the organization of the Hui tics System Libraries
(the directory structure, naming conventio,s, and
knowleage of the types of segments ln particular
olrectorles> in a single data base which can be used by
each toot, and which can be centrally updated when
reorganizations occur.

It h3S been fairly easy to meet the first goat stated above,
because the only MSL information not containeo elsewhere ln the
Jibr3rles (either as segment status information or as archive
comp~nent header information> is the ID of the particular systEm
ln w"ich a Hardcore or Salvager library entry was fast modified.
Howe~er, there ls a alrect relationship between the aate on which
a library entry was last modified, and the date on which a
particular system was installed ln the libraries. Therefore, we
can replace the MSL data bases with a much simpler data base
consisting of a list of system IDs for Hardcore and Salvager
systems, ano the oate on which those systems were installea in
th~ libraries. Then, by comparing the aate modified of each
Hardcore or Salvager Library entry with this I 1st, we can
oetermine ln which system the ~ntry was last moolf led.

The list of system ID~ is implemented as an array of system IO
oate pairs, sortea by oate (and therefore by system IO too). New

re-organized, get_library_source was extended to al low extraction
of obJect segments from the Onf lne Llbrarles ana was therefore
renamed get_llbrary_segment.

- 2 -

MULTICS TECHNICAL BULLETIN MTB- 134

commanas add an entry to the bottom of the list each time a
Hardcore or Salvdger system is updated Into the libraries, an~

replace or delete ~ntrles which are in error. When given a aate
last modifi~d for a library entry, a new subroutine retu~ns th~

appropriate system ID.

Note that the list is easy to maintain and to check for
consistency, ana that lt does not interQct with the Hardcore
upaater, but is i..pcatea insteaa <via comman") by the installer at
the end of the Hardcore or Salvager installation process.

Having rep•aced the MSL with the system IO list, it has also been
necessary to replace the msl tools which reportea on the
information stored in the HSLs. msl_info will o~ replaced by
library_lnfo <coclng is in progress), ano msl_short_format anj
msl_global_format have been replaced by librarv_map. These new
tools will be described in a forthcoming MTB.

One of the biggest problems confronting the library maintenance
tool5 is the organization of the libraries themselves. For
various reasons, the system is divided into different logical
libraries, ana these libraries are in turn dlvioea into
sub-libraries <or directories). Thus, we have the stanaarJ
tlbrary, unbundled library, tools library, author-maintained
tlbrary, lnstallation-malntaineo library, network library, ••••
And we have, within each tlbrary, source directories, obJect
directories, bind list directories, execution airectorles <those
seen by the user>, bouna component ~irectories, info directories,
inclJ~e alrectories, ••••

Even more of a problem than the ever proliferating number of
logical libraries ls the mapping of these logical entities onto
the ohysical directories of the Multics Storage Syst~m. Ada to
thes~ the different naming conventlons used ln alfferent
llbr3ries, the differing search procedures, the restrictions on
the types of entries placed ln libraries, etc and you have an
afmost unmanageable set of rules for maintaining ana accessing
entries in the libraries. Implementing reasonably efficient
search procedures which can treat al I of the libraries in a
falrly uniform manner ls an extremely difficult task.
Implemsnting such procedures in ~a.kb of the many library
maintenance tools woulo be impossible.

The evidence in the paragraph above lej directly to the
conclusions: that the libraries must have the simplest
organization po SS lb I e while providing reasonable storage an1
access e ff i ci ency; that a 11 I ibraries should have the same
orgaiization, if possible; aniJ that the proceaures for
maintaining ano accessing entries in thE:: libraries should be

- 3 -

MULTICS TECHNICAL BULLETIN HTB- 134

common to all library maintenance toots, and shoula oe centrally
locatea In a single external moaule which can be easily modlfleo.

Acting on these conclusions, In 1971 we began the process of
reorganizing the libraries, starting wlth the Online Libraries
(the largest). The new library organization was chosen for its
ef flcient storage of entries, its ease and efficiency of access
to e!'ltries, and its simplicity. (2)

It ls our goal <though a distant one> to promulgate this new
organization throughout al I of the Multics System Libraries. The
biggest barrier to a uniform library organization are the
Harucore ana Salvager Libraries, which are currently organizea in
a manner to optimize the installation of large groups of
modifications <r.ew systems) at one time, rather than to promote
ease ana efficiency of access to entries ana simplicity of
orgaiization.

Thus, there are currently two different organizations useJ in the
~Jltics System Libraries, and we are likely to retain these two
organizations for the foreseeable future.

Havi~g ueciaed to centralize the knowle~ge of llbrarv
orga,ization Into a single module, w~ first had to decide what
knowledg~ was needed. The list below outlinas the information
whic~ ls currently being storec, or is known to be nee~ec in the
near future for proposed extensions to library mai,tenance
comm3nds.

A. the logical structure of the librarles, lncluaing
library names, directory names, ana the relationship
between the various airectories of a given library.

B. the mapping of this logical structure onto the physical
directories of the Multics Storage System.

c. the conventions for separating the various types of
library entries among the directories of a given
library <e.g., source segments go in the source
alrectory, info segments go in the Info alrectory of a
I lbrary, etc).

o. the conventions for storing the various types of
library entries in the library ~irectories, and for
naming those stored entries (e.g., the source for bound
segments ls stored in a source archive, the archive is
nameo bouno_seg_name_.s.archlve, ano has adaltional

<2, The new library organization is described in HSB-87, "Plan
for Multics System Library Conv~rslon ano for Shifting Library
Maintenance to the &160".

- t+ -

MULTICS TECHNICAL BULLETIN t1 TB- 134

names for each of the source components it contains>.
E. the conventions for accessing library ~ntries in

libraries with differing organizations.
F. the attributes of new entries ptacea in a library

(e.g., AGL, ring brackets, AIM controls, etc>.
G. the typ~ of information which should be returned, by

aefault, for the entries of Vdrlous libraries (e.g., in
the Online Libraries, ring brackets are important;
they are not in the Hdrdcore Libraries).

H. the conventions for moalfylng ana deleting library
en t r i e s as par t o f t h e n or ma I i n s t a I t a t l on pro c e s s •

The next step was to decl~e in what form to store this highly
variaa set of information. While some of the information is
simple ln nature and can easily be tabularized in some data
structure, much of the information ls too complex to be JescribeJ
by a~y data base generation language, or even to be stored in a
g~neral data base structure. Therefore, the information was
spilt into two Perts& that which could be tabularizeJ in a aata
base; and that which had to be encoded into a program. A new
data base and program were then created, along with a simple
comp! ler for the aata base. The data base is known as the
lior3ry oescriptor, and the program ls called the library search
program.

Currently, the library aescrlptor contains&

1. a definition of the roots of the library, the oarts of
the library which remain constant across modifications
made to the library, and from which a searcn can oegin
for library entries.

2. the names by which each liorary root can be referencea.
3. the relationship between a libra~y and its

sub-libraries, as expressed by common name components
(e.g., the llbraries stanaara.source, standard.oblect,
and standard.lists share a name component, and are
therefore related; similarly, standard.source,
unbunaleo.source, tools.source, ana a~th_malnt.source
share a name component and are relateo).

4. the path name of the physical directory (J) which is
the r~alizatlon of the logical library root in the
Multics Storage System.

(3) An archive may also be a library root, with its components
bei~g the library entries. For ex~mple, the blnd_maps.archive of
the Haracore ano Salvager libraries ls a library root which
contains, as archive components, the blnd listings for the
Hardcore Library bound segments.

- 5 -

HJLTICS TECHNICAL BULLETIN HTB- 134

?. an tntry variable which oef ines 1he entry point in th~
I ibrary search program to be cal led to s.aarch for
entries ln the library root.

FuturE: plans cal I for associating the
information wlth each I ibrary root:

fol lowinJ adoitional

6. the AGL, ring brackets, and AIM controls which are usei
by default when instat ling new i:ntries in the library
root.

7 • a Ii st of suffixes which defln.a, through naminJ
conventions, thE typE:S of entries which may be
instal leo in the I iorary root (e.g.' a source liorary
root can contain only ••.s.arct-iive, p 11, :t.atm,
•.tortran, +.bcpl, •.ec, .•.).

8. an entry variable which aeflnes the entry oolnt in a
I lbrary .i."'lstal lat ion program to be cal led to instal I an
entry in The I iorary root.

l"'I 3~oition, the library aescriptor aefines the default library
names ana search names which are to be usea with each of the
library maintenance commands. These oefault values mu~t be
soEcified in the library descriptor, because they deoenj upon the
names of the librarlcls defined in the descriptor, and on the
naming conventions useL for entr1es in the !iDr~ry. For each
libr3ry maintenance command which uses the library a~scriptor,

the following information is storea:

Y. a switch lnoicatlng whether or not tha command is
supportea by the I ibrary descriptor and I lbrary search
program.

lG. an array of default I ibrary namEs (whlcn may be empty).
11· an array of aefault search names <names used to search

for library entries; this array may also be empty).

A simple cata base language was developed to define the contents
of c I iorary aescriotor. Definitions written in this language
a-~ stor~c in I i~rdry Jescriptor source segments, which have a
nJ~~ suffix of • 10; they are compiled into an AL~ data segment
oy the llbrdry_aescrlptor_compiler (Ide), a
r<0du: t .i.on_compl I Er-yeneratea compiler.

Al I ref.:crences to I ibrdry descriptors c.re maoe through . .:i
subroutine cal lea lib_descriptor_, wnich is respon~iDIE for
maintaining a constant user interface to the information acros~

chan,;ies ln the ir.ternal structure of the aata.

- b -

•

,..

MULTICS TECHNICAL BULLETIN MT B- 134

The library search program conta1ns on~ antry point for each
class of library root. Library roots are classified 3ccoraing to
the followlng criteria:

a. the kind of entries stored in the library root (e.g.,
source ~ntries, or info entries, or executable entries,
etc> •

o. the typ~ of entries stored In the library root <e.g.,
llnks, segments, alrectorles, archives, MSFs>.

c. the naming convention usea in the library root, and the
associated procedure for searching for library entries.

'-i. the way ir. which moaificatlons are installed into the
root, and the mechanism for flagging obsolete entries
awaiting aeletlon.

e. the typ~ of status lnformatlon which sh~ula be returned
by aefault for the various types of library entrl~s in
the root.

1. the aepth in the library hl~rarchy (of jirectorles,
archlVts ana MSFs> at which searching for a library
entry below the root should be aiscontlnuad.

E3ch entry point in the llbrary s~arch program p~rforms the
sear:hing functions for the various liorary maintenance commands
accor~ing to the criteria appropriate to on€ library root class.
The searching criteria are coaea in normal PL/I code.

The result of the search is an information tree contal~lng the
stat..1s of all found library entries, pius thi:: status of th~
par~~t, grandparent, ••• of each found llbrary entry uo to and
inclJaing status for the library root containing the founa entry.
The tree represents the physica I <as opposeo to I ogical) I i.brary
stru:;ture conte:rinlng the fouria library entries. The status
information aellneates each noce of the tree as a link, segment,
airectory, archive, archive component, MSF, or MSF component, anj
inclJaes enough other status information to perform tha
appropriate library maintenance function on fauna entries without
further information.

E~try polnts are provided In the lib_descrlotor_ subroutine to
perform the type of searching appropriate to the particular
library maintenance function being performea. Thls maintenance
fJnctlon information ls passea to the library search program,
~hie~ must tailor its searching criteria according to the llorary
malnttnance function.

By using the library aescrlptor an~ llbrdry search program, we
have not only centralize~ the library organization into a single

- 7 -

MULTICS TECHNICAL BULLETIN MTB- 134

mo~ule, but have also enablea a sub-system malntalner to replace
tnis module with one describing his sub-system libraries. He
then has a compl~te set of library mdlntenance tools which wll I
oo~r3te on his sub-system library in the same way as on the
Multics System Librarles. This generalization of th~ library
tools beyond the Multics System Llbraries ls a pleasant sloe
effect of centralizing the llbrary-aependent information.

- 8 -

