
Multics Technical Bulletin MTB-139

To: Distribution

From: Steve Herbst

Subject: Multi-Segment Files

Date: 11/15/74

REASONS FOR A HARDCORE IMPLEMENTATION

The ultimate goal is for a multi-segment file to be one
branch. Multiple VTOC entries in the branch tell where the
components are. The components are implicitly labeled O, ... ,n-1
but there are no names on them as such. Two broad advantaRes are
gained by this kind of implementation. First, nobody has to
worry about the consistency of redundant information. Second, it
is impossible to perform directory operati·ons on components.

Some of the problems caused by redundant information are:

1) The ACL and initial ACL of the MSF directory and the
ACL's of the components have to be updated
simultaneously. Modifying a component's ACL sometimes
requires temporarily forcing access on the MSF
directory.

In a hardcore implementation, an MSF has one ACL and no
initial ACL.

2) Every component has a current length, max length and
bit count. The max lengths have to be the same and all
but the last component have to be full. (File dims
perform .calculations based on these facts.) The bit
count of an MSF is an implicit number calculated when
needed from the bit counts of the components. The
current length of an MSF is an implicit number
calculated when needed from the lengths of the
components and the records used by the MSF directory. A
change in any component's bit count has to be reflected
in the bit count author of the MSF directory.

In a hardcore implementation, current length and bit
count of an MSF are stored in the branch. max length is
the max length of the whole MSF; a component max
length is also needed.

Multics Project. internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-139

3) date-time modified, date-time dumped and date-time used
of components have to be propagated up to the MSF
directory.

4) Rin~ brackets of components can
processes of validation level
component O or a segment (SSF)
creating components.

be different, unless
unequal to that of
are forbidden from

5) Safety switches on components have to be the same so
that deletion aff~cts an entire MSF.

Problems caused by components being segments:

6) MSF's can be made inconsistent by deleting, adding and
renaming components. None of these operations affects
the MSF directory's branch information. For example,
renaming component 11 2 11 of a six-component MSF can make
user programs think that only the first two components
exist.

7) To shrink an MSF to an SSF or grow an SSF to an MSF,
the user must have sma access to the containing
directory. Furthermore, these conversions change
author and unique ID.

No hardcore implementation of MSF's can be completely
transparent, ie. allow the user to treat an MSF like a segment.
Hardware limits the size of pointer offsets and thereby prevents
using a pointer to an MSF the way one can use a pointer to a
segment. msf_manager_ will still be needed to get pointers to
components. The internal workings may change, however. File
control blocks may prove unnecessary when the information they
presently contain is in the MSF branch.

Pro~rams differentiate an MSF directory from a non-MSF
directory by the fact that the bit count field (msf indicator) is
non-zero. They differentiate an MSF component from another
segment only by the fact that it is contained in an MSr
directory. The msf indicator can be changed easily and should
not be relied on. A hardcore implementation of MSF's assumes a
unique MSF branch type. This branch type is set in ring O by
programs that create an MSF from a segment and vice-versa. These
programs have to go inside the MSF branch and maintain multiple
file maps.

Our discussion of a fictitious hardcore implementation of
MSF's ends here. The necessary hardcore changes must wait until
resources are available and the new storage system is in place.
The new storage system should allow room for an MSF branch type.
When hardcore MSF's are implemented, the kind of user ring MSF
described in the next section can continue to exist. msf_manager_
and the file dims can be made to work interchangeably on both
kinds of MSF and differentiate between them by the branch type.

'

MTB-139 Page 3

USER RING IMPLEMENTATION

Most of the problems listed above can be faced in a .user
ring implementation by going to some extra trouble. The one that
can't is the vulnerability of MSF components to directory
operations. There is no way to make user commands and subroutines
such as set_acl and adjust_bit_count_ refuse to work on MSF
components. Nor can a user be prevented from creatin~ segments in
an MSF directory or building his own MSF's. Installed commands
and subroutines should work correctly on MSF's but the individual
user must be responsible for the results of any unorthodox
methods that he uses.

Answers to the problems listed in the previous section are:

1) The msf_manager_ entries acl_add, acl_delete, acl_list
and acl_replace handle MSF ACL's correctly. The ACL
commands (set_acl, etc.) call these entries for MSF's
and force necessary access on the MSF directory. Since
the MSF directory's initial ACL is the same as every
component's ACL, a newly created component has the
right ACL.

2) msf_manager_$adjust handles the bit counts and
bc_authors of components correctly. The
adjust_bit_count_ subroutine and therefore the abc
command calls msf_manager_$adjust for MSF's. truncate
and set_bit_count should be changed to call $adjust.

msf_manager_ derives the max length of a new
from the max length of component O or of a
is growing into an MSF. All components.must
have the same max length. Setting the max
the MSF directory is not allowed.

component
segment it
therefore
length of

The current length and bit count of an MSF have to be
calculated when they are needed by looking at all
components and the MSF directory.

3) date-time modified, date-time dumped and date-time used
are automatically reflected in the parent directory of
a segment. A component is only duMped when that
component changes.

4) msf_manager_ should check validation level when it
creates a component of an existing MSF. A new entry,
set_rin.g_brackets, should be added to msf_manager _.

5) delete_ on an MSF deletes components and any other
segments in the MSF directory by calling del_dir_tree_,
which forces all safety switches to zero. The only
safety switch that counts, therefore, is the one on the
MSF directory.

Page 4 MTB-13Q

There are no solutions to these:

6) Nothing prevents a
components. status

user from
should warn

mistreating MSF
of non-component

segments in an MSF.

7) The need for access on the containing directory to grow
or shrink an MSF is an instrinsic problem caused by the
discontinuity between SSF and MSF. A branch has to be
created in order to convert one to the other.

A DOUBLE STANDARD

Altering the insides of an MSF is not always destructive.
In many cases, it is advantageous to create by hand a special
kind of MSF that cannot be created by msf_manager_ or a file dim.
System programs should work for these MSF's whenever it is
reasonable for them to do so. A definition of what constitutes a
multi-segment file ought to be general enough to encompass these
deviations. Within the definition of MSF's respected by the
system we can enclose a "standard" definition of MSF's created by
the system.

The following set of rules is proposed:

1) The bit count (msf indicator) of an MSF
non-zero. System programs depend on
recognize an MSF.

directory is
this fact to

STANDARD: msf_manager_ keeps the msf indicator equal to
the number of components when creatin~ components or
adjusting bit counts. The status command reports an
inconsistent msf indicator.

2) Components are segments and links in the MSF directory.
Links are chased, except when deleting or copying. The
status and list commands and the file dims should be
made to chase links.

STANDARD: msf_manager_ does not create links.

3) Components are named O, ... ,n-1. These names are
that msf_manager_$get_ptr can find the

Additional names are allowed. If a
has the names. i<n and· j<n, the MSF
contains two copies of the component.

necessary so
components.
component
effectively

STANDARD: msf_manager_ does not put additional names on
components.

4) All components have the same max length and all but the ~
last are full. Targets of links are exceptions. --

MTB-139 Page 5

STANDARD: If the segment from which an MSF is ~rown has
max length equal to sys_info_$max_seg_size, as is true
for a segment created by msf_manager_, that is the max
length of every component. copy_seg_ causes the
created MSF to have the same component max length as
the original.

5) ACL's and ring brackets can be anything. Those of
targets of links, certainly, can be anything. Programs
that call rnsf_manager_$get_ptr should only stop looking
if the error code returned is error_table_$noentry.

STANDARD: Components created in the MSF directory take
their ACL's from the initial ACL of the MSF directory.
ACL entries in msf_manager_ maintain consistent ACL's,
and ACL commands call these entries.

