
MULTICS TECHNICAL BULLETIN MTB - 150

To: Distribution

From: R F Mabee

Date: 11/26/74

Subject: A Proposal for Processes to be Used in the Supervisor

Symmary

This memo proposes that a facility to provide special
processes for use within the hardcore supervisor be made part of
the standard Multics system.

The Introduction shows why a special class of processes
should be available to the supervisor, and how these processes
must differ from the standard processes. The next section
describes the actual Implementation at a moderate level of
detail. The last section presents a scheme for using such a
process for the TTY Interrupt handler.

A glossary of jargon terms Is provided, as Appendix V.

This facility has been Implemented and tested in an
experimental version of the Multics system. Work ts underway by
several people to make use of these processes to simplify certafn
areas of the hardcore supervf sor.

lntrodyctlon

Multics currently makes no use whatever of multipro~ranmlng
within the supervisor. This results In hlghly convoluted codf ng
In many parts of the system \'/here a modu 1 e running f n any one
process tries to multiplex Itself so part of its algortthn seems
to be executed asynchronously. For example, the TTY Device
Control Module (DCM) simulates a process for each terminal, with
its o\"m scheduler and undocumented synchronization facility. In
many other cases, something ts done in-line that doesn't really
need to be done synchronously. For example, in the page fault
path the faulting process currently checks the paging device to
see if ft is getting too full, and if so moves some pages to
disk. This causes an unnecessary delay for the faulting process,
and requires the page-moving algorithm to execute In a severely

Multics Project Internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

- 1 -

1 i1.1 i ted env i ronrnent (fau 1 t-s i de, interrupts masked, can't wait
for 1/0 or locks). For another exanple, some 1/0 Interrupt
handlers currently execute long prograns (taking up to two CPU
seconds) in the same severely 1 imited environment, requiring
complicated CundocuMented) conventions for co-operation with the
processes that requested the 1/0.

One can view the page-moving program or lnt~rrupt handler as
a special kind of process that has absolute priority Cit always
runs to completion) but must run in a limtted environment. By
locks or hy masking, the programs ensure a single ~equential flow
of control, as by:

check_paglnp,_device: procedure ();
set 1oca1 1 ock;
if should_run then run;
unlock local lock;
return;
end;

A program 1 Ike this can be made into a real process. The
preceding fragment might become:

paging_device_process: procedure C);
while true do;

end;

wait for wakeup;
if should_run then run;
end;

and a ca 11 to check_pag I ng_dev ice \-Jou 1 d become a ca 11 to send a
Hakeup.

In summary, there are three reasons why a program may neerl
one or more dedicated processes: first, the algorithm may require
a process per device, as in the TTY DCM; second, lt nay he
inconvenient to perform some complex operation in the ltnited
environnent in which one happens to discover that it needs to he
done; and third, it may be inefficient to perforn the operatinn
in the critical path In which one happens to discover that it
needs to be done. The last point is meant to include the case of
a prograri that requires more CPU time than one process can get,
in order to scale up its performance in a very large system.

These problens are shared by programs In all rings, both
user programs and system programs; hmrnver, I shal 1 attempt a
solution only for the hardcore supervisor Cring zero). Let us
assune that processes are readily available In rlng zero for any
purpose, and examine some likely applicatinns to get a feel for
the properties such processes must have. This choice of exaMples
dues affect the resulting design.

The handler for any external Interrupt could run In a

- 2 -

process of its own, and the Interrupt woulrl merely cause a
Vl/akeup. Uhere interrupts are multlplexerl (as by the IOM) e~ch
channel's handler could have a process. Such a prncess woulrl he
started when the 1/0 device (or whatever) vrns attached, and \\lould
destroy itself when the device was detached. Its prop,ram sho11lrl
be specified \'>/hen it is created; if the pro~ram is shared (e.g.
printer driver shared by all printer processes) then an cirgurnent
to the program should specify which device to run. This leads to
the primitive

FORK (procedure, argument)

which creates a new process that starts with the call

procedure (argument)

and the primitive

DESTROY_ME ()

which stops and obliterates the process which calls It. Clearly
the handler needs to block while awaiting the next Interrupt, so
a full set of IPC primitives should be available to it. The
program should be allowed to use the virtual memory (take page
faults) so it can run in a more normal environment, and avoirl the
expense of wired code and data. The scheduler should provide as
fast response as the 1/0 device may require.

Another application Is In resource managers to remove pages
from core or from the paging device, to remove segments from the
AST, to remove processes from the eligible list or fron the APT,
etc. Such processes must be created very early in
initialization, when the function they help implement is not yet
usable by FORK. Thus page faults are not allowed in creatinp,,
scheduling, or running a page control process.

These examples show processes that still run in a somewhat
limited environment: they must not use the facility that they are
implementing, and must be trusted by the supervisor because they
must execute entirely in ring zero. Finally, using processes In
any application has to be competitive in "cost" so that no
programmer has to choose between readability and efficiency.

An ordinary process of the sort currently created for each
user could meet most of these requirements, with suitable changes
to keep it in ring zero. However, it Is cunbersome, and has
features which cannot even be initialized by the creating process
unti 1 system initialization is nearly coMplete -- for exariple, it
has a per-process directory (PDIR) whlch. clearly cannot he
created until page control, segment control, and the file system
are al 1 in operation. A siMpler type of process ri1Jst be
introduced for use inside the supervisor. Let us duh the new
type H-process and the old (ordinary) type M-process, for this

- 3 -

discussion. As a design goal, I choose to make the H-process as
simple as Is consistent with providing a normal program-execution
environment. This should also minimize the "cost" of the
H-process. The approach taken is to str Ip av.Jay all costly
features that don't seem to be needed by all processes. By and
large, the H-process could regain a feature by explicitly
i n i ti a 1 i z i ng i t •

First, an H-process can run only in ring zero; thus we can
elininate the stack array used by the ring-crossing hardware.
The programs it can run are totally pre-linked; the linker Is
unused and may he disabled. The address space could only be
extended for data segrients and only by expltcit calls. Here is a
very definite <feslgn choice: I choose to disallow this extension
of the address space, in consequence of which I discard the KST.
This means that the process can never take a segment fau 1 t; it
can't use the file system; lt can address non-hardcore seg~ents
only through explicit calls on segment control. Now the PDIR
can't be touched, so discard it; It normally contains a segment
called PIT by which the system passes initial arguMents to a
M-process -- discard this too, using a few words in the PDS for
the (greatly reduced) Initial conditions. At t~ls point, only
two per-process sep;ments are 1 eft1 PDS and DSEG, without wh l ch
the H-process could not run at all. We have reduced the cost of
the H-process to four pages+ two ASTE's; Appendii II describes a
way to reduce the cost to one page + one ASTE.

tlot Ice that I have removed features by renov i ng data bases.
The features ·that are 1 eft, such as· I nter-·process
synchronization, paged memory, etc. seem to have very little
incremental (per-process) cost, perhaps because the Ir data bases
and code are global.

;\n H-process can take page faults, service interrupts, and
compete with M-processes in the schedu 1 er' s queues. The
restrictions on it are less severe than those on fault-side or
interrupt side prograMs which It mlRht replace. It can totally
avoid taking pa~e faults (e.g. for a page control process) by
executinF. only In wired-down code, and can therefore be used as
deep In hardcore as required. However, it is poorly suiterl to
the outer layers of the supervisor since It can't readily use the
file system, and therefore can't interface to user processes.
M-processes should be made available for outer-level applications
in the supervisor (including ring one), and for user
applications, but that is outside the scope of this project.

- 4 -

Detaj ls of proposed imolernentation

Multiprogramming is provided by pxss, using tc_data as the
principal data base. It must be turnerf on by exec11tion of
tc_init before it will function normally; however, nxss~walt and
related entries are simulated during initial lzatlon by loopinR in
wlred_fim. tc_init is currently Invoked very late in
Initialization, so that page control (as a test case) cannot use
multiprogramming. I propose to call tc_init early in Collection
One, before page control is initialized. In this environment,
all segments are unpaged and in core. This state Is called the
high-\/ater mark because the core requirement ls at its naxlriurri.

tc_inlt contains two steps: first, Initialize all the
threaded lists and other data in tc_data; second, create the
initializer process and all idle processes. The first step does
not involve any references to data or procedures not present in
Collection One, and therefore causes no problems. The second
step starts any extra CPU's, and creates a PROS for each such
CPU, as Hel 1 as a POS and DSEG for each idle process. Let us
assune that the extra CPU's are not started until late in
initialization (to avoid two-cpu bugs); the remaining problem is
the creation of two new segments for the single idle process.
Any additional processes which may be created (e.g. for page
control) will also require two new segments. The initial Izer
process gets to keep the original PDS and OSEG.

Other conditions to be met in order for pxss to perform
properly: those faults and interrupts used by pxss must be set
up; a number of routines and data segments must be moved into
Collection One; FOHK and OESTROY_ME subroutines must be provirlect.
However, the only probleris worth further discussion arise from
the requirement for a segment-creating primitive available to
process creation, which must be able to work even before pagin~
Ts available.

Segments (for PDS or OSEG) could be created unpaged
initially, like segments read in during Collection One; however,
update_sst_pll, which makes segments paged later on, would have
difficulty finding the new segments. Any time after init_sst is
run (which is very early) a paged segment can be created, taking
a free ASTE and free page frames from appropriate lists.
Existing page control entries could be used to create and wire
pages; this approach was taken in the first experiments.
Hovrnver, these entries (e.g. \·lire_wait) ought not to be invoked
when page control is not yet initialized -- if, for example, no
free page existed, they might reference the FSDCT before it is
addressable.

A new subroutine, GETSEG, will he written, to be used during
both Initialization and nornal operation. It will get an
unthreaded ASTE and Ctf during initialization) will assign page
frames. It \·Jill not wire the pages; that remains the caller's

- 5 -

responsibility.

It is essential that there be sufficient core left when
Multics is at the high-water mark for several tasks to be
created. This requirement is about four pages per task. The
hlgh-\;1ater Mark is already very close to the 128K miniMtlM size of
Multics naln nemory, but testing can proceed using a 256K systeM.
Appendix I describes one way to reduce the high-water nark, by
removing segMents from Collection One.

Of course, 1tli rt ng down more pages of core \'Ji 11 of necessity
degrade systeM performance. Most PDS's and DSEG's can be
unloaded by traffic_control, but at least some hardcore tasks
\von't allov1 that. It is useful to reduce the l'Tlemory req11ireMents
of H-processes to reduce the impact on systeM performance and on
the high-water mark; Appendix II describes a scheme for
shrinking the per-process segments. Each H-process also costs
two small ASTE's for its private segments, and one APTE,
amounting to 64 words of core. Since the AST and APT can readily
be made larger, this cost is important only for applications
requiring hundreds of H-processes.

So~e increase in overhead of traffic control should be
expected, due to more frequent interactions by H-processes. This
loss of throughput can be countered by a better implementation of
the process-switcher. The only other performance degradation to
be expected is an increase in response time when Interrupt-side
programs are moved into supervisor tasks, and th.ls would probably
not affect systcM throughput. On the other hand, systeM
throu~hput May be improved by moving certain housekeeping
functions out of critical paths and by making use of multiple
CPU's in bottleneck areas.

An II-process nay demand very fast response, which should be
controlled by a priority attribute used by pxss. Such an
improvement is not part of this proposal, since acceptable
perforrnance can be achieved by using a different WAIT entry that
guarantees fast response. Nevertheless, it has to be done
sometime. Some scheduling requirements may not be adequately
expressable by static priorities. This ts an example of a
1 fmi tat ion In pxss that may prevent optimum performance; such
probl~~s become more complex as more processes co-operate on
particular coMputations.

- n -

Maying TTY DIM interruot side processing into an H-orocess

Currently the Oatanet-355 front-end processor returns status
events by sendtn~ Multics a particular tnterruot. The hanriler
for this interrupt, dn355~interrnnt, exariines a riatlhnx at
location 1400 to find the status \\lord, perforP'ling an involved
inter-conputer ritual. For each status \'mrrl it calls ttv_lnter.
Every three seconds pxss calls tty_inter~onll, in case therP
aren't enouRh interrupts to drive the prnRr~m. There is an
interlock between tty_inter and tty_inter~nnll so hoth arP not
active at once.

It is possible to restructure this as follows: The hanrller
for the 355 interrupt, tty_\'Ji red~interrupt, merely senrls a
\'lakeup. A dedicated H-process, executing dn355~tty_process,
receives the wakeup, then performs the inter-computer ritual and
calls tty_inter as required. Every three seconds oxss calls
tty_\\li red$pol 1, which sends the same \rJakeup and sets a flap.;. If
dn355$tty_process finds the flag set, it calls tty_inter~pnll.
dn355$tty_process goes blocked when it runs out of work to rlo.

This
and two
core. lfo
strategy
a 11 owed.
they no
takes up
assip;ned

scheme permits dn355, tty_tnter, their utility riorlules,
data bases to be unwired, rel eas I nP. abo11t ten nn~es of
further change ts required except to fix a lockin~
that only works v.Jhen i nterrt1J')ts and page fattl ts nrP. .!1Q..t.
All other interrupt handlers get better response since
longer have to '"alt \·1hile tty_tnter runs. (tty_inter

to t\10 seconds; to make matters \rJorse, the ")55 is
the highest priority interrupt cell.)

On the other hand, each 355 interrupt might pa~e in all ten
of the pa.~es '"e just unwirerl, !)lus two pages of stack. Thp extr~
core is really available only when 355 traffic is light.
Furthermore, the TTY ntM will respond more slowly to interrunts,
since the scheduler imposes a consirlerable delay. Thi~ is ~
serious problem since the TTY ntM is nntimized fnr 1~5~-tyne
terminals that require prograM intervention to ~o from writinp; to
reading; the proRram ignores characters tyoerl in before it
changes its internal state from writing to readin~ even if no
external act ion \\las requ I red. The user wt th a non- lock i np;
keyboard may begin typing before the TTY DIM begins listenin~,
even in the current system.

This problem can be solved without delvin~ lntn the 35S
code: the write OCH list created by tty_inter could chain into
the read DC\J list instead of terminatinp;. This \'/Ollld resr1lt in a
noticeable improvement even over the current system and nake TTY
process response relatively uniMportant.

The restructuring (but not the OCll list chaining) has ~een
done and tested in an experimental system, using the iMnroved
\JAIT' (see Appendix 111). Response time v1as found to aver<lge
.2_±..2 seconds worse than that of the standard system. The

- 7 -

experiment should he performed again to refine this measure~ent.

- 3 -

J\ppendix I
Reduction of the high-water mark

Currently, Collection One would nearly fill a l~RK system,
leaving Insufficient room to create an H-process. Fortunately,
there Is an abundance of code and data that is not neederl In
Collection One, but is loaded at that time for historical
reasons. The following table indicates which segments can be
easily noved into Collection Two, at some cost In par.:e hreaka.l'!;e
for those which are current 1 y kent unpa ~ed. Of course,
sep.;ment_loader would be modifiec1 to implement the 111\llreri"
attribute for Collection Two.

dn355_data
dn355
dn355_util
dn355 init
ttY_ctl
tty_free
tty_inter
gioc_stat
prlnter_status
tdcm_status
1 mp_status_vli red
pl !_operators
disk_traffic_data
temp_copyseg_l
get_disk_meters
restart_fault
return_to_ring_zero_
DST

total words

filll Problems if moved to Collection Two

1050
2136

16
422

269 li
640

3604
174
26li
446

26
2714
1024
1024

2li6
202

48
762

174qz

scs_init copies address of ~inter.

Called too early by init_collections.

pxss calls ~poll.

pxss cal ls $pol 1.

Fixed in standard system.
Touched by devfce_control~init.

Stored into by lnitialize_faults.
Stored into hy initlalize_faults.
pxss uses DST to find end of ITT!

For the immediate future my core needs can be met hy these
siMple chan~es. If it should become necessary, I can remove
another llK of wired 1/0 buffers that are loaded with Collection
One in order to remain unpagerl. These coulrl be loaded later if
either unpaged segMents could be loaded in Collection Two or
0Ct1's v1ere modified to allm\I discontip.;uous buffers. Another 8K
is redundant, since the combined and uncombined linkage segments
both sit in core \I/hen at the hip;h-water mark. In all, up to 3nK
can be recovered as needed, with varying effort. This allows
modest proliferation of hardcore tasks without undue difficulty.
Since the currently available development system has 256K of main
nemory, the high-water mark is not an obstacle to develonMent.

- 9 -

Appendix II
Reduction of neMory requirements for H-processes

The additional menory for each H-process is req11irerl for the
per-process segments PDS (about three pages) and nSEG (one pa~e).
The PDS contains 11~00 vmrds of fixed-format data, most of v1hich
is of no use to an H-process, plus the execution stack which may
be less than a page for a slmpl~-enough task. The bulk of this
data can be moved to a new per-process segment, process_info,
\w'h i ch need not even exist for an H-proces s. Of course, this
costs one snall ASTE per M-process, reducing the paging oool by
one page in all. The PDS will contain a minimum of fixerl data
(about 200 words), leaving enough roon in the first page for a
minimal execution stack. The fol lowing table lists the itens nf
the current PDS that an H-process will keep in its stack.
(Another 30 words will be adderl for new features.)

Item name Length

stack header 48
last_sp 2
nrocessid (process_irl) 1
lock_id 1
nrocess_gr0up_lrJ R
val irJation_level 1
ant_otr 2
ar.";1, arg?., arg3, argl~ R
time_l, tine_2, tine_v_temp 6
post_purgerl, pc_call, v1akeup_fla~ 3
delayed_sto11, delayed_timer 2
pre_empt_pending 1
interaction_switcn 1
virtual_time_at_ell~ibllity 2
quota_inhlb 1
bas e_ad dr _reg, pl l_mach I ne 2
fim_data, 11age_fault_data 96
vi rtua l_del ta, cpu_tl me Ii

nur:iber_of_nages_in_use 1
page_v1a its, pd_page_f au 1 ts 2
dstep 1
ips_pending 1
ips_mask 8
auto_mask 8
alarm ring 1
ring_alarm_val 8
trace (truncated) ln

total 235

Currently, references to the
therefore corresponding data items
location in the rns in each process.

- 1 () -

PD~ are orelinked, anrl
must appear in the san~

It Is sufficient for 011r

goals to continue using this fixed data layout for the PnS and
PROCESS-INFO, but it may later prove too inflexible. An
Ii-process should be able to grow by adding to Itself some of the
features ·normally associated only with an M-process. In order to
avoid reserving large blocks of data in all processes' stacks for
features that only some use, we could reserve a relatively small
block of pointers, accessed by name, that would point to the data
iteras allocated in whatever segment is most appropriate. The
Network software already uses such a scheme -- its only cell in
the POS contains an index into a system-wide table.

The DSEG is currently a paged segment of which only about
256 words are used for hardcore segments. Clearly it can he Made
an unpaged segment if core control ts made able to handle such;
alternatively, page size could he rerlucerl to ?.5G. But closer
examination of the OSEG suggests an even more fascinatin~
solution: the only SOW's for which our hardcore DSE~ differs
from the template are those for the PDS, PROS, the nSEG itself,
and several abs-segs. This su~gests that we can save core (at
the expense of simplicity) by fabricating the nSEG whenever the
process Is to be run. The SOW for the POS can be saved in the
APTE; the PnDs SOW Is already being patched every time an LOB~ ts
done; the DSEG SOW would not be changed since It would always
point to the scratch DSEG It lies in; and the abs-seg snW's can
be saved tn the PDS. This can be thought of as sharing the
current Idle process DSEG with other H-processes.

Combining these tricks can reduce the per-process memory
requirenents by almost 75% for the hardcore-only tasks.

Bo th of these changes have been made and test erl In an
exoerinental system.

- 11 -

I\ p pend i x I I I
Miscellaneous changes required hy this system

I\. Descriptor segment creation.

A DSEG is normally created by plm$hc, which tn the current
sys tern copies the hardcore-segmen t-nurnber portion of \'Jha t ever
DSEG It is running with. Cternplate_dseg is still heln~
initialized but Is never used.) plm has to be rnovP.d into
Collection One, modified to run before oa~lng Is available, and
modified to use the SLT to determine which SDW's to copy.

If plm$hc ts invoked early In Collection One, it prorluces a
DSEG wl th the segments unpaged. A rout I ne, set_sdw_I n_al l_dsees,
has to be provided, to be called by update_sst_pll \\lhenever it
changes an SDW In the lnitla1lzer's DSEG with the intentton that
it affect all address spaces. segrnent_loader, lnltlallze_dlms,
and delete_segs can use set_sdw_ln_all_dsegs too.

One field in a DBR value contains a segment number for an
array of stack .segments, for use In automatic ring cro·ssings.
Fortunately an H-process doesn't need this field. Its value is
not determined until all segments are loaded, at which time
init_sys_var fills It In for the Initializer; intt_sys_var has to
be changed to set it In the APTE and In the register.

These changes have been made and testerl.

B. P!1S creation.

build_template_pds copies a stack header and a stack fra!"'le
Into terriplate_pds; In so doinp, It messes un the Initializer's
stack. This module Is eliminated, since the hearler can be merged
w 1th the template by those programs that create new POS •· s.
build_teniplate_pds ·very cutely initializes the stack such that a
"return" will transfer control to lnit_proc, the normal M-process
starting point. However, pxss has to observe that. It ts running
a process for the first time in order to do the proper return.
The requirement that an H-process start in an arhltrary procedure
forces a change: pxss executes "cal 1 stack_O~f i rst_proc
(stack_OSfirst_arg)" In the special case instead of "return". It
turns out that init_processor receives control In this \•Jay v1hen
it starts the boatload CPIJ, since to pxss the fnitfallzer process
looks 1 i ke it has never run before.

bootstrap2 can't Initialize the pointer to slgnnl_ in the
stack header (al thour,h the comment says it rloes) so
lnitialize_faults$fault_lnlt_two does It later. By movfnp.;
signal_ into Collection One, this can be cleanerl up.

These chan~es have been made and tested.

- 12 -

C. Cont r o 1 f 1 a gs •

Assorted flags have to be added to the APTE:
• hardcore_process, .use_hardcore_dse~, and .alv1ays_loaded. If
.use_hardcore_dsee then the .dbr cell is really an SDW for the
PDS. Other flags have to be added tn wired_hardcore_data:
$page_faul t_works, $segment_faul t_\,.,,orks, and $ i ni t_segs_gone.

D. Certain deficiencies in the scheduler.

One little known property of the current scheduler is that n
process cannot lose Its absolute priority (eligibility) unless it
either takes a timer-runout/pre-eMpt Interrupt while running in
an outer ring or explicitly calls BLOCK. Since part of BLOCK is
outside of ring zero and therefore not available to an H-process,
and since interrupts are masked while running in ring zero, an
H-process \'dll keep its eligibility even if it uses ~~AIT, the
normal ring-zero synchronization method, and will attain the
highest possible priority. (If .fill1 process loops in ring zero,
it vii 11 tie up the CPU forever.)

Allowing loss of eligibility by pre-emption in rin~ zero has
other implications, requiring that eligibility be given up by
\·JAIT because of assumptions emberlded In all hardcore locking
strategies, etc. I performed some experiments in this direction,
concluding that even if I could find all the ramifications of
such a change, including re-tuning the systeM, the chan~e woLrld
have to be made and defended separately. This area remains open
to anyone wth a particular interest in performance effects.

For the H-proces s running the TTY DCM, \-/A IT \\las an
unsatisfactory synchronization primitive, as it left the process
loaded and eligible indefinitely. I could have introduced a
slightly different version, HAIT_and_do_\,.,,hat_l_want, but instead
I adapted a different fundamental mechanism originated by Davirl
Reed, that has been advocated as a primitive capable of
implementing both HAIT and BLOCK. Reed will soon publish an RFC
describing his model, so I shall merely describe the
J mp 1 emen tat ion.

A shared memory cell ls used to pass the information as tn
whether or not an event has occurred. This cell is provirled by
the caller of WAIT' or NOTIFY', which Ts not inconvenient when a
shared data base exists anyway, and which avoids the allocation
problems of WAIT and BLOCK. The cell chan~es to a new state (in
fact it is incremented) every time the event occurs (every time
tJOTIFY' is called). hlAIT' is p;iven both the cell and the state
it had when the cal 1 er first dee i derl to wait; it returns \rJhenever
the cell contains some newer state. A list of processes w~itin~
In this \\lay is needed, so NOTIFY' can awaken them. l.n !J1Y
implementation, the cell must be wired (since it is examined
under the APT lock) and at the same address in every nrncess

- 13 -

usin~ it (since the address is used as a readfly .. available 1Jni<ltte
identifer).

MOTIFY' always awards hir.;h r>riorfty to an a\,1akenerl nrocess
to improve response to interactions. Since the avera~e rlelay fnr
the process to becone eligible in the normal way is three seconrls
(unless system loarl ts very light), I had to r.iake NOTIFY' a\'n'lrrl
eligibility as well. The process will run as soon as the
lowest-priority running process leaves ring zero and gets
pre-empted.

For best ~esponse, the pre-empt should be allowerl even in
ring zero. Most of the problerris \'Jith pre-emption in ring zero
can be avoided if the pre-empt doesn't take a\'1ay eligibility, hut
merely causes the highest-priority process to rer;ain the CP!!.
This scheme should be tried as it should make TTY nrocess
response adequate for emulation of interrupt-side hehavinr.

The response tine should be determined by a priority
parameter assoc I ated wt th the process rather than hy \•Jh I ch 1··/A IT
the process calls. Future applications of H-prncesses will Make
st1ch a feature in nxss t""lnre r:lesirahle.

The \//\IT' nrinitives have been tester:! in an experimental
sys ten.

Appendix I 'I
Calling sequences of new routines

A. FORK

Usage:

<leclrire create_supervisor_task entry (char(*), entrv <nointer),
r>ointer, hit (3C), bit (~G));

call create_supervisor_task (gro11p_irl, F, arr;_nointer,

1) ,P;roup_i d

2) F

3) a r .LPO Inter

4) return_proc_id

5) re tu r n_cod e

ret u r n_proc_ i rl, ret 11 r n_cnr1 e);

is process group nrif'Tle nf new process.
(Input)

ts start! ng procerl11re of ne1·J process.
(Input)

Is passed to Fin the ne1·1 nrocess. (lnn11t)

Tdentlfies the ne\\I process. (Outp11t)

is zero If no error nccurrerl. (011tp11t)

This interface is tntended to reMain chan~eahle so that
additional features can be put in, such as an indication that the
tricks described in Appendix II are to be used.

This entry creates an H-process anrl starts it rtinn i n.P;. The
cal 1 to F in the ne1:1 process is equivalent to:

ca 1 l F (a r g_po i n t er) ;

F Must not be an internal procedure. The ~ata pointed to by
ar,g_pointer must not lie in a 11er-process se~f'Tlent (such ;:is the
stack).

En trv: ere at e_s•JPerv i so r _ tas k~ria ke_nrnces s

declare create_supervlsor_task~Make_prncess entry (1 llkf' sd•.'1,
char(*), bit (3G), nointer, bit (3G));

cal 1 create_supervi sor _task4ir<1nke_process (prls_srl•·1, c;rotip_i rl,
return_proc_i rl, ret11rn_ant_otr, return_cnde);

1) pd s S(h·J is an SO\'J describing the rns to be used hy
the nm'' process. (Input)

2) group_id as above. (Input)

3) return_proc_id as above, except right half Must be set hy
caller. (Input/Output)

- 15 -

4) return_apt_ptr

5) return_code

points to the newly created APT entry.
(Output)

as above. (Output)

This entry provides a process In the stopped state.
used in creating the idle process.

It is

B. OE STROY _ME

This entry does not yet exist as it Is not needed.

C. GETSEG

Usage:

declare get_segr.ient entry (pointer, fixed binary,
1 like sdw aligned, bit (3f'));

cal 1 get_segment (template, length, return_srl\"1, return-'corie);

1) temp 1 ate

2) length

3) return_sdw

Id return_code

is a pointer containing a segnent nunber
which can be used to look up segment
attributes In the SLT. (Input)

is the number of words which must 'be create~.
(Input)

is an SOW which describes this segment.
(Output)

is zero lff the operation succeerferl.
(01.1tp11t)

For example, a PDS for a new process may he createrl hy:

call get_segment (addr (pds$), prlsScopy_lennth, pds_srlw, corle);

D. HAIT' and NOTIFY'

Entry: pxss$wa it_on_counter

declare pxss$wait_on_counter entry (fixed binary, fixed binary,
fixed binary (71));

call pxssSwait_on_counter (event_cell, last state, timeout);

1) event_cell is the shared state cel 1. (Input)

2) last_state is a saved copy of the event ce11. (Input)

- lG -

-

3) timeout ts an upper bound on \\lait time. (Input)

Notes

timeout is not presently implerienterl; it is a placeholder.
This entry is normally used as follows:

L: last_state = event_cell;
if should_run then run;
else call pxss$wait_on_counter Cevent_cell, last_state,

~ef1);
goto L;

Entry: pxss$step_counter

declare pxss$step_counter entry (fixed binary);
call pxss$step_counter Cevent_cell);

1) event_cel 1 as above. (Input/Output)

This entry is used to record the occurn~nce of an P.vent.

- 17 -

Appendix V
Jargon explained

POS stands for Process Data Segment. It contains data
blocks that once were Jn three distinct per-process segments
(pds, pdf, and process_info). Some of the data must remain in
core, so the first page ts wired as long as the process is
eligible. The data items are referenced through links (e.g.
declare pds$apt_pt~ external;) so they must have the same virtual
address in all processes, although the data is per-process. This
is accomplished by using the same segment number in each process
for the per-process segment, and by having the same data layout
within each segment. The PDS also serves as execution stack for
ring zero for both call-side and fault-side programs. So that
the ring-crossing hardware will work, the PDS is also reachable
by another segment number whic~ is the first in a group of eight
reserved for stacks.

PROS stands for Processor Data Segment. There is one
for each CPU In th~ system. It contains a fairly small
block and an execution stack for those faults and Interrupts
nust not cause further faults, e.g. page faults and
interrupts. The entire PRDS is wired down.

PROS
data
that

110

DSEG stands for Descriptor Segment. This is used by the
hard\vare to map segment numbers into segments; It defines the
address space. It may be thought of as a set of hn rdwa re
registers. The first page of the OSEG ts temn-wired whenever the
process is loaded.

The riachtne instruction LDBR ts used to switch the CPU to a
new DSEG descrihed by a given DBR (Descriptor Base Register)
va 1 ue.

SOW stands for Segment Descriptor Word. ~ach entry in the
DSEG is an SOW for one segment. The SOW merely points to the
page table for the segment, or specifies that a segment fault is
to be caused.

An abs-seg is a reserved hardcore segment number for which a
nu 11 $01'/ is present most of the time. Supervisor prograris
fabricate an SOW, stick it in the DSEG, reference the segment for
a while, then clear the DSEG slot. This is useful tn getting
around such problems as addressing directories not known in this
address space.

ASTE stands for Active Segment Table Entry. The primary
content of the ASTE is a page table. The AST ts therefore the
data block containing all page tables, and is part of the wired
segment sst.

APTE stands for Active Process Table Entry.
forty-eight words long, and contains al 1 the

- 18 -

The
data

APTF. is
about a

particular process needed by traff lc control. The APT is
therefore the data block containing an APTE for each process, and
is allocated in the wired segment tc_data.

pxss stands for Process Exchange Switch Stack, combining the
names of two older traffic control modules. Currently pxss
contains the bulk of traffic control.

Eligible processes are those to which enough core has been
committed for them to run. Eligibility can be revoked after one
cpu second if the process is running outside ring zero; otherwise
i t ca n on 1 y be 1 o s t by an exp 1 I c i t ca 1 1 to BLOC K • E 1i g I b i 1 I t Y
entitles the holder to absolute pre-emptive priority over any
process which subsequently becomes eligible.

To load a process, the first pages of PDS and DSEG are read
Into core and temp-wired. A process will be loaded (by pxss) as
soon as possible after it Is awarded eligibility, and unloarle<f
when it loses eligibility.

KST stands for Known Segment Table. It is primarily used at
segment-fault time to find a segment that must be riade active.
Hardcore segments are not In the KST as they are always active.

PDIR stands for Process Directory. This is
directory in which an M-process may create
segments.

a per-process
Its teMporary

PIT stands for Process Initialization Table. It is not used
by hardcore. The outer ring programs of an M-process can find
their process-creation parameters In this segnent.

DST stands for Device Signal Table. This is a data block
used by some 1/0 Interfaces, and Is currently al located in
tc_data Immediately after the ITT, although it has nothinp; to do
with traffic control.

ITT stands for Interprocess Transmission Table. It is a
message queue used to pass information with interprocess wakeuns.
It is currently allocated in tc_data between the APT and the DST.

M-process is a new term, from MPM process. It designates
the type of proce~s Multics has traditionally supplied for each
user: cumbersome and expensive, but able to use all of the
features of the Multics environment. An M-process always has an
unshared address space, implemented with an unshare<f KST and
DSEG. It always has a distinct PDIR in which to store its many
per-process segrients.

H-process is a new term, from hardcore-only process. It
designates a process which can reference only hardcore segments,
using a mostly-shared address space. Since even M-processes
already have identical address spaces for most ring zero

- 19 -

segments, and the system is coded to take advanta~e of this, the
H-process does not create any unusual programming restrictions.

An idle process is a fiction of traffic control. There is
one per CPU, and it is run v1henever there is nothing useful for
that CPU to do. It is not supposed to take page faults because
that might cause It to become unrunnahle. An idle process has an
unshared PDS and DSEG, and in the current implementBtion may be
considered an H-process.

- 20 -

- ' ..

