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Symmary 

This memo proposes that a facility to provide special 
processes for use within the hardcore supervisor be made part of 
the standard Multics system. 

The Introduction shows why a special class of processes 
should be available to the supervisor, and how these processes 
must differ from the standard processes. The next section 
describes the actual Implementation at a moderate level of 
detail. The last section presents a scheme for using such a 
process for the TTY Interrupt handler. 

A glossary of jargon terms Is provided, as Appendix V. 

This facility has been Implemented and tested in an 
experimental version of the Multics system. Work ts underway by 
several people to make use of these processes to simplify certafn 
areas of the hardcore supervf sor. 

lntrodyctlon 

Multics currently makes no use whatever of multipro~ranmlng 
within the supervisor. This results In hlghly convoluted codf ng 
In many parts of the system \'/here a modu 1 e running f n any one 
process tries to multiplex Itself so part of its algortthn seems 
to be executed asynchronously. For example, the TTY Device 
Control Module (DCM) simulates a process for each terminal, with 
its o\"m scheduler and undocumented synchronization facility. In 
many other cases, something ts done in-line that doesn't really 
need to be done synchronously. For example, in the page fault 
path the faulting process currently checks the paging device to 
see if ft is getting too full, and if so moves some pages to 
disk. This causes an unnecessary delay for the faulting process, 
and requires the page-moving algorithm to execute In a severely 
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1 i1.1 i ted env i ronrnent ( fau 1 t-s i de, interrupts masked, can't wait 
for 1/0 or locks). For another exanple, some 1/0 Interrupt 
handlers currently execute long prograns (taking up to two CPU 
seconds) in the same severely 1 imited environment, requiring 
complicated CundocuMented) conventions for co-operation with the 
processes that requested the 1/0. 

One can view the page-moving program or lnt~rrupt handler as 
a special kind of process that has absolute priority Cit always 
runs to completion) but must run in a limtted environment. By 
locks or hy masking, the programs ensure a single ~equential flow 
of control, as by: 

check_paglnp,_device: procedure (); 
set 1oca1 1 ock; 
if should_run then run; 
unlock local lock; 
return; 
end; 

A program 1 Ike this can be made into a real process. The 
preceding fragment might become: 

paging_device_process: procedure C); 
while true do; 

end; 

wait for wakeup; 
if should_run then run; 
end; 

and a ca 11 to check_pag I ng_dev ice \-Jou 1 d become a ca 11 to send a 
Hakeup. 

In summary, there are three reasons why a program may neerl 
one or more dedicated processes: first, the algorithm may require 
a process per device, as in the TTY DCM; second, lt nay he 
inconvenient to perform some complex operation in the ltnited 
environnent in which one happens to discover that it needs to he 
done; and third, it may be inefficient to perforn the operatinn 
in the critical path In which one happens to discover that it 
needs to be done. The last point is meant to include the case of 
a prograri that requires more CPU time than one process can get, 
in order to scale up its performance in a very large system. 

These problens are shared by programs In all rings, both 
user programs and system programs; hmrnver, I shal 1 attempt a 
solution only for the hardcore supervisor Cring zero). Let us 
assune that processes are readily available In rlng zero for any 
purpose, and examine some likely applicatinns to get a feel for 
the properties such processes must have. This choice of exaMples 
dues affect the resulting design. 

The handler for any external Interrupt could run In a 
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process of its own, and the Interrupt woulrl merely cause a 
Vl/akeup. Uhere interrupts are multlplexerl (as by the IOM) e~ch 
channel's handler could have a process. Such a prncess woulrl he 
started when the 1/0 device (or whatever) vrns attached, and \\lould 
destroy itself when the device was detached. Its prop,ram sho11lrl 
be specified \'>/hen it is created; if the pro~ram is shared (e.g. 
printer driver shared by all printer processes) then an cirgurnent 
to the program should specify which device to run. This leads to 
the primitive 

FORK (procedure, argument) 

which creates a new process that starts with the call 

procedure (argument) 

and the primitive 

DESTROY_ME () 

which stops and obliterates the process which calls It. Clearly 
the handler needs to block while awaiting the next Interrupt, so 
a full set of IPC primitives should be available to it. The 
program should be allowed to use the virtual memory (take page 
faults) so it can run in a more normal environment, and avoirl the 
expense of wired code and data. The scheduler should provide as 
fast response as the 1/0 device may require. 

Another application Is In resource managers to remove pages 
from core or from the paging device, to remove segments from the 
AST, to remove processes from the eligible list or fron the APT, 
etc. Such processes must be created very early in 
initialization, when the function they help implement is not yet 
usable by FORK. Thus page faults are not allowed in creatinp,, 
scheduling, or running a page control process. 

These examples show processes that still run in a somewhat 
limited environment: they must not use the facility that they are 
implementing, and must be trusted by the supervisor because they 
must execute entirely in ring zero. Finally, using processes In 
any application has to be competitive in "cost" so that no 
programmer has to choose between readability and efficiency. 

An ordinary process of the sort currently created for each 
user could meet most of these requirements, with suitable changes 
to keep it in ring zero. However, it Is cunbersome, and has 
features which cannot even be initialized by the creating process 
unti 1 system initialization is nearly coMplete -- for exariple, it 
has a per-process directory (PDIR) whlch. clearly cannot he 
created until page control, segment control, and the file system 
are al 1 in operation. A siMpler type of process ri1Jst be 
introduced for use inside the supervisor. Let us duh the new 
type H-process and the old (ordinary) type M-process, for this 

- 3 -



discussion. As a design goal, I choose to make the H-process as 
simple as Is consistent with providing a normal program-execution 
environment. This should also minimize the "cost" of the 
H-process. The approach taken is to str Ip av.Jay all costly 
features that don't seem to be needed by all processes. By and 
large, the H-process could regain a feature by explicitly 
i n i ti a 1 i z i ng i t • 

First, an H-process can run only in ring zero; thus we can 
elininate the stack array used by the ring-crossing hardware. 
The programs it can run are totally pre-linked; the linker Is 
unused and may he disabled. The address space could only be 
extended for data segrients and only by expltcit calls. Here is a 
very definite <feslgn choice: I choose to disallow this extension 
of the address space, in consequence of which I discard the KST. 
This means that the process can never take a segment fau 1 t; it 
can't use the file system; lt can address non-hardcore seg~ents 
only through explicit calls on segment control. Now the PDIR 
can't be touched, so discard it; It normally contains a segment 
called PIT by which the system passes initial arguMents to a 
M-process -- discard this too, using a few words in the PDS for 
the (greatly reduced) Initial conditions. At t~ls point, only 
two per-process sep;ments are 1 eft1 PDS and DSEG, without wh l ch 
the H-process could not run at all. We have reduced the cost of 
the H-process to four pages+ two ASTE's; Appendii II describes a 
way to reduce the cost to one page + one ASTE. 

tlot Ice that I have removed features by renov i ng data bases. 
The features ·that are 1 eft, such as· I nter-·process 
synchronization, paged memory, etc. seem to have very little 
incremental (per-process) cost, perhaps because the Ir data bases 
and code are global. 

;\n H-process can take page faults, service interrupts, and 
compete with M-processes in the schedu 1 er' s queues. The 
restrictions on it are less severe than those on fault-side or 
interrupt side prograMs which It mlRht replace. It can totally 
avoid taking pa~e faults (e.g. for a page control process) by 
executinF. only In wired-down code, and can therefore be used as 
deep In hardcore as required. However, it is poorly suiterl to 
the outer layers of the supervisor since It can't readily use the 
file system, and therefore can't interface to user processes. 
M-processes should be made available for outer-level applications 
in the supervisor (including ring one), and for user 
applications, but that is outside the scope of this project. 
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Detaj ls of proposed imolernentation 

Multiprogramming is provided by pxss, using tc_data as the 
principal data base. It must be turnerf on by exec11tion of 
tc_init before it will function normally; however, nxss~walt and 
related entries are simulated during initial lzatlon by loopinR in 
wlred_fim. tc_init is currently Invoked very late in 
Initialization, so that page control (as a test case) cannot use 
multiprogramming. I propose to call tc_init early in Collection 
One, before page control is initialized. In this environment, 
all segments are unpaged and in core. This state Is called the 
high-\/ater mark because the core requirement ls at its naxlriurri. 

tc_inlt contains two steps: first, Initialize all the 
threaded lists and other data in tc_data; second, create the 
initializer process and all idle processes. The first step does 
not involve any references to data or procedures not present in 
Collection One, and therefore causes no problems. The second 
step starts any extra CPU's, and creates a PROS for each such 
CPU, as Hel 1 as a POS and DSEG for each idle process. Let us 
assune that the extra CPU's are not started until late in 
initialization (to avoid two-cpu bugs); the remaining problem is 
the creation of two new segments for the single idle process. 
Any additional processes which may be created (e.g. for page 
control) will also require two new segments. The initial Izer 
process gets to keep the original PDS and OSEG. 

Other conditions to be met in order for pxss to perform 
properly: those faults and interrupts used by pxss must be set 
up; a number of routines and data segments must be moved into 
Collection One; FOHK and OESTROY_ME subroutines must be provirlect. 
However, the only probleris worth further discussion arise from 
the requirement for a segment-creating primitive available to 
process creation, which must be able to work even before pagin~ 
Ts available. 

Segments (for PDS or OSEG) could be created unpaged 
initially, like segments read in during Collection One; however, 
update_sst_pll, which makes segments paged later on, would have 
difficulty finding the new segments. Any time after init_sst is 
run (which is very early) a paged segment can be created, taking 
a free ASTE and free page frames from appropriate lists. 
Existing page control entries could be used to create and wire 
pages; this approach was taken in the first experiments. 
Hovrnver, these entries (e.g. \·lire_wait) ought not to be invoked 
when page control is not yet initialized -- if, for example, no 
free page existed, they might reference the FSDCT before it is 
addressable. 

A new subroutine, GETSEG, will he written, to be used during 
both Initialization and nornal operation. It will get an 
unthreaded ASTE and Ctf during initialization) will assign page 
frames. It \·Jill not wire the pages; that remains the caller's 
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responsibility. 

It is essential that there be sufficient core left when 
Multics is at the high-water mark for several tasks to be 
created. This requirement is about four pages per task. The 
hlgh-\;1ater Mark is already very close to the 128K miniMtlM size of 
Multics naln nemory, but testing can proceed using a 256K systeM. 
Appendix I describes one way to reduce the high-water nark, by 
removing segMents from Collection One. 

Of course, 1tli rt ng down more pages of core \'Ji 11 of necessity 
degrade systeM performance. Most PDS's and DSEG's can be 
unloaded by traffic_control, but at least some hardcore tasks 
\von't allov1 that. It is useful to reduce the l'Tlemory req11ireMents 
of H-processes to reduce the impact on systeM performance and on 
the high-water mark; Appendix II describes a scheme for 
shrinking the per-process segments. Each H-process also costs 
two small ASTE's for its private segments, and one APTE, 
amounting to 64 words of core. Since the AST and APT can readily 
be made larger, this cost is important only for applications 
requiring hundreds of H-processes. 

So~e increase in overhead of traffic control should be 
expected, due to more frequent interactions by H-processes. This 
loss of throughput can be countered by a better implementation of 
the process-switcher. The only other performance degradation to 
be expected is an increase in response time when Interrupt-side 
programs are moved into supervisor tasks, and th.ls would probably 
not affect systcM throughput. On the other hand, systeM 
throu~hput May be improved by moving certain housekeeping 
functions out of critical paths and by making use of multiple 
CPU's in bottleneck areas. 

An II-process nay demand very fast response, which should be 
controlled by a priority attribute used by pxss. Such an 
improvement is not part of this proposal, since acceptable 
perforrnance can be achieved by using a different WAIT entry that 
guarantees fast response. Nevertheless, it has to be done 
sometime. Some scheduling requirements may not be adequately 
expressable by static priorities. This ts an example of a 
1 fmi tat ion In pxss that may prevent optimum performance; such 
probl~~s become more complex as more processes co-operate on 
particular coMputations. 
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Maying TTY DIM interruot side processing into an H-orocess 

Currently the Oatanet-355 front-end processor returns status 
events by sendtn~ Multics a particular tnterruot. The hanriler 
for this interrupt, dn355~interrnnt, exariines a riatlhnx at 
location 1400 to find the status \\lord, perforP'ling an involved 
inter-conputer ritual. For each status \'mrrl it calls ttv_lnter. 
Every three seconds pxss calls tty_inter~onll, in case therP 
aren't enouRh interrupts to drive the prnRr~m. There is an 
interlock between tty_inter and tty_inter~nnll so hoth arP not 
active at once. 

It is possible to restructure this as follows: The hanrller 
for the 355 interrupt, tty_\'Ji red~interrupt, merely senrls a 
\'lakeup. A dedicated H-process, executing dn355~tty_process, 
receives the wakeup, then performs the inter-computer ritual and 
calls tty_inter as required. Every three seconds oxss calls 
tty_\\li red$pol 1, which sends the same \rJakeup and sets a flap.;. If 
dn355$tty_process finds the flag set, it calls tty_inter~pnll. 
dn355$tty_process goes blocked when it runs out of work to rlo. 

This 
and two 
core. lfo 
strategy 
a 11 owed. 
they no 
takes up 
assip;ned 

scheme permits dn355, tty_tnter, their utility riorlules, 
data bases to be unwired, rel eas I nP. abo11t ten nn~es of 
further change ts required except to fix a lockin~ 
that only works v.Jhen i nterrt1J')ts and page fattl ts nrP. .!1Q..t. 
All other interrupt handlers get better response since 
longer have to '"alt \·1hile tty_tnter runs. (tty_inter 

to t\10 seconds; to make matters \rJorse, the ")55 is 
the highest priority interrupt cell.) 

On the other hand, each 355 interrupt might pa~e in all ten 
of the pa.~es '"e just unwirerl, !)lus two pages of stack. Thp extr~ 
core is really available only when 355 traffic is light. 
Furthermore, the TTY ntM will respond more slowly to interrunts, 
since the scheduler imposes a consirlerable delay. Thi~ is ~ 
serious problem since the TTY ntM is nntimized fnr 1~5~-tyne 
terminals that require prograM intervention to ~o from writinp; to 
reading; the proRram ignores characters tyoerl in before it 
changes its internal state from writing to readin~ even if no 
external act ion \\las requ I red. The user wt th a non- lock i np; 
keyboard may begin typing before the TTY DIM begins listenin~, 
even in the current system. 

This problem can be solved without delvin~ lntn the 35S 
code: the write OCH list created by tty_inter could chain into 
the read DC\J list instead of terminatinp;. This \'/Ollld resr1lt in a 
noticeable improvement even over the current system and nake TTY 
process response relatively uniMportant. 

The restructuring (but not the OCll list chaining) has ~een 
done and tested in an experimental system, using the iMnroved 
\JAIT' (see Appendix 111). Response time v1as found to aver<lge 
.2_±..2 seconds worse than that of the standard system. The 
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experiment should he performed again to refine this measure~ent. 
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J\ppendix I 
Reduction of the high-water mark 

Currently, Collection One would nearly fill a l~RK system, 
leaving Insufficient room to create an H-process. Fortunately, 
there Is an abundance of code and data that is not neederl In 
Collection One, but is loaded at that time for historical 
reasons. The following table indicates which segments can be 
easily noved into Collection Two, at some cost In par.:e hreaka.l'!;e 
for those which are current 1 y kent unpa ~ed. Of course, 
sep.;ment_loader would be modifiec1 to implement the 111\llreri" 
attribute for Collection Two. 

dn355_data 
dn355 
dn355_util 
dn355 init 
ttY_ctl 
tty_free 
tty_inter 
gioc_stat 
prlnter_status 
tdcm_status 
1 mp_status_vli red 
pl !_operators 
disk_traffic_data 
temp_copyseg_l 
get_disk_meters 
restart_fault 
return_to_ring_zero_ 
DST 

total words 

filll Problems if moved to Collection Two 

1050 
2136 

16 
422 

269 li 
640 

3604 
174 
26li 
446 

26 
2714 
1024 
1024 

2li6 
202 

48 
762 

174qz 

scs_init copies address of ~inter. 

Called too early by init_collections. 

pxss calls ~poll. 

pxss cal ls $pol 1. 

Fixed in standard system. 
Touched by devfce_control~init. 

Stored into by lnitialize_faults. 
Stored into hy initlalize_faults. 
pxss uses DST to find end of ITT! 

For the immediate future my core needs can be met hy these 
siMple chan~es. If it should become necessary, I can remove 
another llK of wired 1/0 buffers that are loaded with Collection 
One in order to remain unpagerl. These coulrl be loaded later if 
either unpaged segMents could be loaded in Collection Two or 
0Ct1's v1ere modified to allm\I discontip.;uous buffers. Another 8K 
is redundant, since the combined and uncombined linkage segments 
both sit in core \I/hen at the hip;h-water mark. In all, up to 3nK 
can be recovered as needed, with varying effort. This allows 
modest proliferation of hardcore tasks without undue difficulty. 
Since the currently available development system has 256K of main 
nemory, the high-water mark is not an obstacle to develonMent. 
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Appendix II 
Reduction of neMory requirements for H-processes 

The additional menory for each H-process is req11irerl for the 
per-process segments PDS (about three pages) and nSEG (one pa~e). 
The PDS contains 11~00 vmrds of fixed-format data, most of v1hich 
is of no use to an H-process, plus the execution stack which may 
be less than a page for a slmpl~-enough task. The bulk of this 
data can be moved to a new per-process segment, process_info, 
\w'h i ch need not even exist for an H-proces s. Of course, this 
costs one snall ASTE per M-process, reducing the paging oool by 
one page in all. The PDS will contain a minimum of fixerl data 
(about 200 words), leaving enough roon in the first page for a 
minimal execution stack. The fol lowing table lists the itens nf 
the current PDS that an H-process will keep in its stack. 
(Another 30 words will be adderl for new features.) 

Item name Length 

stack header 48 
last_sp 2 
nrocessid (process_irl) 1 
lock_id 1 
nrocess_gr0up_lrJ R 
val irJation_level 1 
ant_otr 2 
ar.";1, arg?., arg3, argl~ R 
time_l, tine_2, tine_v_temp 6 
post_purgerl, pc_call, v1akeup_fla~ 3 
delayed_sto11, delayed_timer 2 
pre_empt_pending 1 
interaction_switcn 1 
virtual_time_at_ell~ibllity 2 
quota_inhlb 1 
bas e_ad dr _reg, pl l_mach I ne 2 
fim_data, 11age_fault_data 96 
vi rtua l_del ta, cpu_tl me Ii 

nur:iber_of_nages_in_use 1 
page_v1a its, pd_page_f au 1 ts 2 
dstep 1 
ips_pending 1 
ips_mask 8 
auto_mask 8 
alarm ring 1 
ring_alarm_val 8 
trace (truncated) ln 

total 235 

Currently, references to the 
therefore corresponding data items 
location in the rns in each process. 
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goals to continue using this fixed data layout for the PnS and 
PROCESS-INFO, but it may later prove too inflexible. An 
Ii-process should be able to grow by adding to Itself some of the 
features ·normally associated only with an M-process. In order to 
avoid reserving large blocks of data in all processes' stacks for 
features that only some use, we could reserve a relatively small 
block of pointers, accessed by name, that would point to the data 
iteras allocated in whatever segment is most appropriate. The 
Network software already uses such a scheme -- its only cell in 
the POS contains an index into a system-wide table. 

The DSEG is currently a paged segment of which only about 
256 words are used for hardcore segments. Clearly it can he Made 
an unpaged segment if core control ts made able to handle such; 
alternatively, page size could he rerlucerl to ?.5G. But closer 
examination of the OSEG suggests an even more fascinatin~ 
solution: the only SOW's for which our hardcore DSE~ differs 
from the template are those for the PDS, PROS, the nSEG itself, 
and several abs-segs. This su~gests that we can save core (at 
the expense of simplicity) by fabricating the nSEG whenever the 
process Is to be run. The SOW for the POS can be saved in the 
APTE; the PnDs SOW Is already being patched every time an LOB~ ts 
done; the DSEG SOW would not be changed since It would always 
point to the scratch DSEG It lies in; and the abs-seg snW's can 
be saved tn the PDS. This can be thought of as sharing the 
current Idle process DSEG with other H-processes. 

Combining these tricks can reduce the per-process memory 
requirenents by almost 75% for the hardcore-only tasks. 

Bo th of these changes have been made and test erl In an 
exoerinental system. 
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I\ p pend i x I I I 
Miscellaneous changes required hy this system 

I\. Descriptor segment creation. 

A DSEG is normally created by plm$hc, which tn the current 
sys tern copies the hardcore-segmen t-nurnber portion of \'Jha t ever 
DSEG It is running with. Cternplate_dseg is still heln~ 
initialized but Is never used.) plm has to be rnovP.d into 
Collection One, modified to run before oa~lng Is available, and 
modified to use the SLT to determine which SDW's to copy. 

If plm$hc ts invoked early In Collection One, it prorluces a 
DSEG wl th the segments unpaged. A rout I ne, set_sdw_I n_al l_dsees, 
has to be provided, to be called by update_sst_pll \\lhenever it 
changes an SDW In the lnitla1lzer's DSEG with the intentton that 
it affect all address spaces. segrnent_loader, lnltlallze_dlms, 
and delete_segs can use set_sdw_ln_all_dsegs too. 

One field in a DBR value contains a segment number for an 
array of stack .segments, for use In automatic ring cro·ssings. 
Fortunately an H-process doesn't need this field. Its value is 
not determined until all segments are loaded, at which time 
init_sys_var fills It In for the Initializer; intt_sys_var has to 
be changed to set it In the APTE and In the register. 

These changes have been made and testerl. 

B. P!1S creation. 

build_template_pds copies a stack header and a stack fra!"'le 
Into terriplate_pds; In so doinp, It messes un the Initializer's 
stack. This module Is eliminated, since the hearler can be merged 
w 1th the template by those programs that create new POS •· s. 
build_teniplate_pds ·very cutely initializes the stack such that a 
"return" will transfer control to lnit_proc, the normal M-process 
starting point. However, pxss has to observe that. It ts running 
a process for the first time in order to do the proper return. 
The requirement that an H-process start in an arhltrary procedure 
forces a change: pxss executes "cal 1 stack_O~f i rst_proc 
(stack_OSfirst_arg)" In the special case instead of "return". It 
turns out that init_processor receives control In this \•Jay v1hen 
it starts the boatload CPIJ, since to pxss the fnitfallzer process 
looks 1 i ke it has never run before. 

bootstrap2 can't Initialize the pointer to slgnnl_ in the 
stack header (al thour,h the comment says it rloes) so 
lnitialize_faults$fault_lnlt_two does It later. By movfnp.; 
signal_ into Collection One, this can be cleanerl up. 

These chan~es have been made and tested. 
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C. Cont r o 1 f 1 a gs • 

Assorted flags have to be added to the APTE: 
• hardcore_process, .use_hardcore_dse~, and .alv1ays_loaded. If 
.use_hardcore_dsee then the .dbr cell is really an SDW for the 
PDS. Other flags have to be added tn wired_hardcore_data: 
$page_faul t_works, $segment_faul t_\,.,,orks, and $ i ni t_segs_gone. 

D. Certain deficiencies in the scheduler. 

One little known property of the current scheduler is that n 
process cannot lose Its absolute priority (eligibility) unless it 
either takes a timer-runout/pre-eMpt Interrupt while running in 
an outer ring or explicitly calls BLOCK. Since part of BLOCK is 
outside of ring zero and therefore not available to an H-process, 
and since interrupts are masked while running in ring zero, an 
H-process \'dll keep its eligibility even if it uses ~~AIT, the 
normal ring-zero synchronization method, and will attain the 
highest possible priority. (If .fill1 process loops in ring zero, 
it vii 11 tie up the CPU forever.) 

Allowing loss of eligibility by pre-emption in rin~ zero has 
other implications, requiring that eligibility be given up by 
\·JAIT because of assumptions emberlded In all hardcore locking 
strategies, etc. I performed some experiments in this direction, 
concluding that even if I could find all the ramifications of 
such a change, including re-tuning the systeM, the chan~e woLrld 
have to be made and defended separately. This area remains open 
to anyone wth a particular interest in performance effects. 

For the H-proces s running the TTY DCM, \-/A IT \\las an 
unsatisfactory synchronization primitive, as it left the process 
loaded and eligible indefinitely. I could have introduced a 
slightly different version, HAIT_and_do_\,.,,hat_l_want, but instead 
I adapted a different fundamental mechanism originated by Davirl 
Reed, that has been advocated as a primitive capable of 
implementing both HAIT and BLOCK. Reed will soon publish an RFC 
describing his model, so I shall merely describe the 
J mp 1 emen tat ion. 

A shared memory cell ls used to pass the information as tn 
whether or not an event has occurred. This cell is provirled by 
the caller of WAIT' or NOTIFY', which Ts not inconvenient when a 
shared data base exists anyway, and which avoids the allocation 
problems of WAIT and BLOCK. The cell chan~es to a new state (in 
fact it is incremented) every time the event occurs (every time 
tJOTIFY' is called). hlAIT' is p;iven both the cell and the state 
it had when the cal 1 er first dee i derl to wait; it returns \rJhenever 
the cell contains some newer state. A list of processes w~itin~ 
In this \\lay is needed, so NOTIFY' can awaken them. l.n !J1Y 
implementation, the cell must be wired (since it is examined 
under the APT lock) and at the same address in every nrncess 
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usin~ it (since the address is used as a readfly .. available 1Jni<ltte 
identifer). 

MOTIFY' always awards hir.;h r>riorfty to an a\,1akenerl nrocess 
to improve response to interactions. Since the avera~e rlelay fnr 
the process to becone eligible in the normal way is three seconrls 
(unless system loarl ts very light), I had to r.iake NOTIFY' a\'n'lrrl 
eligibility as well. The process will run as soon as the 
lowest-priority running process leaves ring zero and gets 
pre-empted. 

For best ~esponse, the pre-empt should be allowerl even in 
ring zero. Most of the problerris \'Jith pre-emption in ring zero 
can be avoided if the pre-empt doesn't take a\'1ay eligibility, hut 
merely causes the highest-priority process to rer;ain the CP!!. 
This scheme should be tried as it should make TTY nrocess 
response adequate for emulation of interrupt-side hehavinr. 

The response tine should be determined by a priority 
parameter assoc I ated wt th the process rather than hy \•Jh I ch 1··/A IT 
the process calls. Future applications of H-prncesses will Make 
st1ch a feature in nxss t""lnre r:lesirahle. 

The \//\IT' nrinitives have been tester:! in an experimental 
sys ten. 



Appendix I 'I 
Calling sequences of new routines 

A. FORK 

Usage: 

<leclrire create_supervisor_task entry (char(*), entrv <nointer), 
r>ointer, hit (3C), bit (~G)); 

call create_supervisor_task (gro11p_irl, F, arr;_nointer, 

1) ,P;roup_i d 

2) F 

3) a r .LPO Inter 

4) return_proc_id 

5) re tu r n_cod e 

ret u r n_proc_ i rl, ret 11 r n_cnr1 e); 

is process group nrif'Tle nf new process. 
(Input) 

ts start! ng procerl11re of ne1·J process. 
(Input) 

Is passed to Fin the ne1·1 nrocess. (lnn11t) 

Tdentlfies the ne\\I process. (Outp11t) 

is zero If no error nccurrerl. (011tp11t) 

This interface is tntended to reMain chan~eahle so that 
additional features can be put in, such as an indication that the 
tricks described in Appendix II are to be used. 

This entry creates an H-process anrl starts it rtinn i n.P;. The 
cal 1 to F in the ne1:1 process is equivalent to: 

ca 1 l F (a r g_po i n t er) ; 

F Must not be an internal procedure. The ~ata pointed to by 
ar,g_pointer must not lie in a 11er-process se~f'Tlent (such ;:is the 
stack). 

En trv: ere at e_s•JPerv i so r _ tas k~ria ke_nrnces s 

declare create_supervlsor_task~Make_prncess entry (1 llkf' sd•.'1, 
char(*), bit (3G), nointer, bit (3G)); 

cal 1 create_supervi sor _task4ir<1nke_process ( prls_srl•·1, c;rotip_i rl, 
return_proc_i rl, ret11rn_ant_otr, return_cnde); 

1) pd s S(h·J is an SO\'J describing the rns to be used hy 
the nm'' process. (Input) 

2) group_id as above. (Input) 

3) return_proc_id as above, except right half Must be set hy 
caller. (Input/Output) 
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4) return_apt_ptr 

5) return_code 

points to the newly created APT entry. 
(Output) 

as above. (Output) 

This entry provides a process In the stopped state. 
used in creating the idle process. 

It is 

B. OE STROY _ME 

This entry does not yet exist as it Is not needed. 

C. GETSEG 

Usage: 

declare get_segr.ient entry (pointer, fixed binary, 
1 like sdw aligned, bit (3f')); 

cal 1 get_segment (template, length, return_srl\"1, return-'corie); 

1) temp 1 ate 

2) length 

3) return_sdw 

Id return_code 

is a pointer containing a segnent nunber 
which can be used to look up segment 
attributes In the SLT. (Input) 

is the number of words which must 'be create~. 
(Input) 

is an SOW which describes this segment. 
(Output) 

is zero lff the operation succeerferl. 
(01.1tp11t) 

For example, a PDS for a new process may he createrl hy: 

call get_segment (addr (pds$), prlsScopy_lennth, pds_srlw, corle); 

D. HAIT' and NOTIFY' 

Entry: pxss$wa it_on_counter 

declare pxss$wait_on_counter entry (fixed binary, fixed binary, 
fixed binary (71)); 

call pxssSwait_on_counter (event_cell, last state, timeout); 

1) event_cell is the shared state cel 1. (Input) 

2) last_state is a saved copy of the event ce11. (Input) 
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3) timeout ts an upper bound on \\lait time. (Input) 

Notes 

timeout is not presently implerienterl; it is a placeholder. 
This entry is normally used as follows: 

L: last_state = event_cell; 
if should_run then run; 
else call pxss$wait_on_counter Cevent_cell, last_state, 

~ef1); 
goto L; 

Entry: pxss$step_counter 

declare pxss$step_counter entry (fixed binary); 
call pxss$step_counter Cevent_cell); 

1) event_cel 1 as above. (Input/Output) 

This entry is used to record the occurn~nce of an P.vent. 
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Appendix V 
Jargon explained 

POS stands for Process Data Segment. It contains data 
blocks that once were Jn three distinct per-process segments 
(pds, pdf, and process_info). Some of the data must remain in 
core, so the first page ts wired as long as the process is 
eligible. The data items are referenced through links (e.g. 
declare pds$apt_pt~ external;) so they must have the same virtual 
address in all processes, although the data is per-process. This 
is accomplished by using the same segment number in each process 
for the per-process segment, and by having the same data layout 
within each segment. The PDS also serves as execution stack for 
ring zero for both call-side and fault-side programs. So that 
the ring-crossing hardware will work, the PDS is also reachable 
by another segment number whic~ is the first in a group of eight 
reserved for stacks. 

PROS stands for Processor Data Segment. There is one 
for each CPU In th~ system. It contains a fairly small 
block and an execution stack for those faults and Interrupts 
nust not cause further faults, e.g. page faults and 
interrupts. The entire PRDS is wired down. 

PROS 
data 
that 

110 

DSEG stands for Descriptor Segment. This is used by the 
hard\vare to map segment numbers into segments; It defines the 
address space. It may be thought of as a set of hn rdwa re 
registers. The first page of the OSEG ts temn-wired whenever the 
process is loaded. 

The riachtne instruction LDBR ts used to switch the CPU to a 
new DSEG descrihed by a given DBR (Descriptor Base Register) 
va 1 ue. 

SOW stands for Segment Descriptor Word. ~ach entry in the 
DSEG is an SOW for one segment. The SOW merely points to the 
page table for the segment, or specifies that a segment fault is 
to be caused. 

An abs-seg is a reserved hardcore segment number for which a 
nu 11 $01'/ is present most of the time. Supervisor prograris 
fabricate an SOW, stick it in the DSEG, reference the segment for 
a while, then clear the DSEG slot. This is useful tn getting 
around such problems as addressing directories not known in this 
address space. 

ASTE stands for Active Segment Table Entry. The primary 
content of the ASTE is a page table. The AST ts therefore the 
data block containing all page tables, and is part of the wired 
segment sst. 

APTE stands for Active Process Table Entry. 
forty-eight words long, and contains al 1 the 
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particular process needed by traff lc control. The APT is 
therefore the data block containing an APTE for each process, and 
is allocated in the wired segment tc_data. 

pxss stands for Process Exchange Switch Stack, combining the 
names of two older traffic control modules. Currently pxss 
contains the bulk of traffic control. 

Eligible processes are those to which enough core has been 
committed for them to run. Eligibility can be revoked after one 
cpu second if the process is running outside ring zero; otherwise 
i t ca n on 1 y be 1 o s t by an exp 1 I c i t ca 1 1 to BLOC K • E 1i g I b i 1 I t Y 
entitles the holder to absolute pre-emptive priority over any 
process which subsequently becomes eligible. 

To load a process, the first pages of PDS and DSEG are read 
Into core and temp-wired. A process will be loaded (by pxss) as 
soon as possible after it Is awarded eligibility, and unloarle<f 
when it loses eligibility. 

KST stands for Known Segment Table. It is primarily used at 
segment-fault time to find a segment that must be riade active. 
Hardcore segments are not In the KST as they are always active. 

PDIR stands for Process Directory. This is 
directory in which an M-process may create 
segments. 

a per-process 
Its teMporary 

PIT stands for Process Initialization Table. It is not used 
by hardcore. The outer ring programs of an M-process can find 
their process-creation parameters In this segnent. 

DST stands for Device Signal Table. This is a data block 
used by some 1/0 Interfaces, and Is currently al located in 
tc_data Immediately after the ITT, although it has nothinp; to do 
with traffic control. 

ITT stands for Interprocess Transmission Table. It is a 
message queue used to pass information with interprocess wakeuns. 
It is currently allocated in tc_data between the APT and the DST. 

M-process is a new term, from MPM process. It designates 
the type of proce~s Multics has traditionally supplied for each 
user: cumbersome and expensive, but able to use all of the 
features of the Multics environment. An M-process always has an 
unshared address space, implemented with an unshare<f KST and 
DSEG. It always has a distinct PDIR in which to store its many 
per-process segrients. 

H-process is a new term, from hardcore-only process. It 
designates a process which can reference only hardcore segments, 
using a mostly-shared address space. Since even M-processes 
already have identical address spaces for most ring zero 

- 19 -



segments, and the system is coded to take advanta~e of this, the 
H-process does not create any unusual programming restrictions. 

An idle process is a fiction of traffic control. There is 
one per CPU, and it is run v1henever there is nothing useful for 
that CPU to do. It is not supposed to take page faults because 
that might cause It to become unrunnahle. An idle process has an 
unshared PDS and DSEG, and in the current implementBtion may be 
considered an H-process. 
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