
Multics Technical Bulletin MTB-169

TO: Distribution

FROM: Steve Webber

DATE: 2/20/75

SUBJECT: Prelinking Overview

This MTB gives a description of the basic prelinking plan.
There are several other MTB's which also have a direct bearing on
prelinking: these are an upcoming MTB on the proposed changes to
the Standard Object Segment format, MTB-104 on the proposed
changes to the KST structure, and MTB-154 on the proposed changes
to the address space/name space managers in Multics. This MTB
differs from some of the previous MTB's as new ideas were
incorporated into the design and other problems were solved.

Multics Project internal working documentation. Not to be
reproduced or disttributed outside the Multics Project.

Multics Technical Bulletin

Nothing will ever be attempted if
possible objections must be first overcome.

all

S. Johnson

Introduction

MTB-169

This MTB describes a proposed prelinking mechanism that
would link many or all of the segments in the system libraries at
system initialization time thereby avoiding, for the vast
majority of cases, a great deal of. duplicate work currently done
by each process on the system. The changes to the system to
implement the prelinking scheme are simple but extensive and
include changes to: ·

1) the standard object.segment format,

2) the KST and address space/name space management,

3) system initialization,

4) the PL/I compiler and the ALM assembler, and

5) new hardcore primitives for address space/name space
functions.

All of these changes will be described in more detail below.

Note that within this MTB the mechanism of adding a segment
to the address space of a process, i.e., assigning a segment
number and filling in the KST entry, is called making a segment
known. The function of mapping a reference name to a particular
segment number is called initiating the name. Hence, segments
are made known and made unknown and reference names are initiated
and terminated. Initiating and terminating have nothing to do
with the KST and segment number assignment. That is, they are
entirely (user-ring) reference name table (RNT) functions.

The Basic Plan

The basic idea behind prelinking is to prelink as much as
possible at system initialization.time thereby avoiding duplicate
work in each process. In order for such a scheme to work all
processes that take advantage of the prelinking effort must
reference the prelinked segments (and the associated linkage

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-169

sections, etc.) with the same segment numbers much as all
processes today reference all hardcore segments with the same ~
segment numbers. As a means of convenience, this set of
prelinked segments and related data bases will be referred to as
softcore segments. The softcore segments, then, have permanent
segment numbers for the duration of a given bootload.

There are several data bases which are used to describe the
softcore segments in every process on the system. Some of the
more important data bases are:

1. KSTT

2. SRNT

3. TSS

(Known Segment Table Template). The KST is a
hardcore data base with ring brackets of (0, 0, 0)
used primarily by the segment fault handler and
maps the branch pointer and UID for each segment
to a particular segment number. This data base
has more or less the same structure as today's KST
with all name management removed. The prelinker
generates a template KST which contains
information for the softcore segments. This
template KST ~s merged with the template_pds at
prelinking time so that when a new process is
created it initially has all of the softcore
segments known.

(Softcore Reference Name Table). This data base
contains the name management information used by
the linker and name space manager (both removed
from ring 0). The ring brackets on this segment
are (1, 7, 7) and it is read-only after
initialization. The segment lists all the
reference names initiated for each softcore
segment. The name space manager uses the SRNT to
answer user-ring questions such as:

A. What are the reference names for the segment
whose number is <n>?

B. What is the segment number of the segment
whose reference name is <name>?

The format of the SRNT will be similar to that of
the URNT mentioned below.

(Template Stack Segment). This segment is a
template stack segment used during ring
initialization. It contains a good deal of
structure (all upward compatible with coday's
stacks) including:

A. a nearly completely initialized stack header,

B. an initialized lot,

MTB-169 Page 3

4. SCLS's

5. CSST's

C. an initialized isot,

D. an optional combined linkage region (CLR) for
the ring.

The possibility of having several TSS's is
being considered. This would allow different
rings or different subsystems to special case
their needs by placing the appropriate linkage
information in the stack and thereby avoid the
need for a seperate combined linkage segment
altogether.

(Softcore Combined Linkage Segments). These
segments contain the softcore linkage
information. They are shared by all users
(read-only with ring brackets (1, 7, 7)) and
are copied into a user's private address space
(process directory) when they can no longer be
shared. (See later)

(Combined Static Segment Templates). These
data bases contain the internal static data
for some of the softcore segments. They have
ring brackets of (1, 7, 7) and get copied into
a process's process directory when necessary.
(See later)

The set of softcore procedure segments is determined by the
administrators of each particular site. It would presumably
contain nearly all of the segments in the system libraries as
well as any special subsystems the site administrators might
think appropriate. The actual mechanism to define the set is
with online ASCII fi~es (called prelinker driving tables, PLDT's)
describing those segments to be included and the reference names
associated with them. The format of a PLDT is simple and it is
possible to control in which (softcore) combined linkage segments
the linkage for each softcore segment is to reside. (The ASCII
file is_ converted into a binary equivalent which is actually used
during initialization.)

The softcore segments, then, are defined by online, editable
files which can be altered, converted to binary and ''installed"
any time prior to the bootload in which they are to take effect.
The actual prelinking programs search a system directory
(probably >system_control_1) at initialization time for any
PLDT's and prelink any segments specified therein.

Note that the reference names in the PLDT's define which
names should be initiated for a softcore segment. There is no
need to have these names on the actual branches in the
directories. This relieves directory hash table space. Note
also that system library contents are defined by the PLDT's (if
so desired) and that it is therefore easy to make online
installation of multiple segment subsystems (like PL/I) in a

Page 4 MTB-169

consistent way. The new versions will not be (implicitly) used
by anyone until the next boatload.

There are several per-process and per-ring data bases that
parallel those described above. These are:

1. URNT

2. STACKS

3. UCLS's

4. uccs's

(User Reference Name Table). This is a per-ring
user-writeable data base managed by the name space
manager. It contains the same information about
segments made known by users as the SRNT contains
about softcore segments. In addition, the URNT
contains the search rules for the given ring as
well as the working directory for the ring. Note
that the URNT and the SRNT are logically combined
for a given ring to define the (reference) name
space for the ring.

Each ring (1-7) has a stack which is initialized
by copying in a template stack segment (TSS) and
setting any per-ring pointers appropriately.
Since the stack template defines a fairly complete
working environment, little more than this copy
need be done to provide a user with a ''new ring".

(User Combined Linkage Segments). Linkage
information specific to a given user's process
will be copied into the user s current combined
linkage . region (initially in the stack). As more
combined linkage regions are needed, UCLS's are
created in the process directory.

(User Combined Static Segments). These segments are
the image of the CSST segments created by the
prelinker. They are placed in the process
directory (automatically) when needed. (See later)

The search rules will be functionally equivalent to what we
have today, namely a list of absolute pathnames interspersed with
several keywords. Although libraries in the prelinked set may
appear as absolute pathnames in the search rules, the searching
of the actual directories need not be done each time a search is
performed. Details of the working of the search mechanism is
given later.

Advantages/Disadvantages

The advantages of prelinking fall into two basic classes:

1. less execution time required in a process,

2. fewer page faults required in a process.

The execution time gains are primarily in the realm of
linking where many fewer linkage faults will occur and those that
do occur will be resolved faster. Faster ring initialization

MTB-169 Page 5

will also make multiple ring functions more efficient
that much more attractive to use.

and hence

Paging gains come from several areas but are concentrated in
the increase in shared data available und~r the prelinking
scheme. Most of the combined linkage and name space management
segments of a process will be shared with all users. Second
order effects will also be great as fewer pages being actively
used will be displaced by directories and the like that would
have to be brought in if complete dynamic linking were required.

Other advantages of prelinking, which do not have a direct
bearing on performance, are:

1. ·all processes share more segment numbers thereby making
debugging and the like easier,

2. logins and new_procs will be faster, but likely
replaceable in many cases by new_ring and new_stack.

There are many disadvantages to undertaking the prelinking
project, but most of these are not related to the end product but
rather what must be done to get there. In pdrticular, the
following problems are only temporary and will not exist after
the conversion:

1. the standard object segment must be respecified (all
users of object_info_ must change),

2. the PL/I compiler must be changed,

3. the binder must be changed,

4. the ALM assembler must be changed,

5. much documentation must be (re)written including:

a. the MPM sections on standarrd object segments,

b. the PLM's describing the actual implementation,

c. user info segments describing any user-visible
changes,

d. the MPM sections on the PL/I compiler and ALM
assembler,

e. the MPM sections on all the new interfaces,

f. the MPM sections describing reference
searching, and the linker,

names,

g. MTB and MTR documentation as the project proceeds,
and

Page 6 MTB-169

h. SRB updates.

6. the system primitives for directory manipulating must
be redesigned and rewritten -- write-arounds must be
provided for the current versions,

7. new user-ring interfaces will need to be designed which
better interface the new hardcore primitives,

8. users and system programmers will have to modify their
idea of what the standard programming environment is
although it will not change functionally very much,·

9. there are many other changes being m~de to the system
which· will have to be coordinated with the prelinking
effort.

System Initialization

The changes to initialization to provide prelinking are
isolated in two areas, the making known of directories and
segments and the prelinking itself. The end result after
initialization would ideally be the creation and initialization
of the following data bases:

1. Template PDS including template KST
2. System RNT
3. Combined Linkage Segment(s) (CLS's)
4. Combined Static Segment(s) (CSS's)
5. Template Stack Segment(s) (TSS's)

The template KST and SRNT would include all prelinked
segments, the 5+ segments above, and all parent directories of
any prelinked segments. The only problem introduced here is that
the initializer or bootload process must make several directories
and segments known before prelinking can be undertaken. The plan
is to perform this in a non-standard, temporary fashion until
prelinking does it for real. Once prelinking is complete all
references to any of the directories or segments referenced
during initialization will be through the softcore segment number
mapping generated during prelinking. Note that we do not want to
initiate any reference names in ring 0 (other than those
prelinked) due to the upcoming changes to the address/name space
management routines.

The initialization will therefore work nearly as today until
we finish reading in collection 3 (the bulk of the contents of
>system_library_1)~ When these segments are all read in the
prelinker is called to do the following:

1. Stage 1 - locate all PLDT's and set up for scanning
them. Create all the segments to be initialized (SRNT,
SCLS 's, etc.) .

MTB-169 Page 7

2. PASS 1 - a first pass is made over all the PLDT's.
Each segment indicated is made known and the specified
reference names are initiated. The segment numbers
assigned are bound to the reference names for the life
of the bootload.

3.

4.

5.

PASS 2 - a second pass is done over all the segments
indicated in the PLDT's. This pass examines each link
pair in each linkage section and snaps each link it can
using the reference names initiated in the first pass.
The search rules used if more than one segment having
the same reference name are specified in one of the
PLDT's.

PASS 3 - this is an optimizing pass done to reorder the
SRNT to minimize paging on subsequent searches caused
by user linkage faults. This pass is unnecessary but
likely to be beneficial.

STAGE 5 - Cleanup the various data bases and perform
any further initialization (such as filling in IOCB's,
etc.) that is appropriate for nearly all processes.

Several side effects of the above work might well be noted
here. First, during PASS 2, when all definition sections are
searched, the SRNT entries are filled in so that the value of the
offset of any entry whose name is the same as a reference name on
the segment is saved with the reference name. This means that
any references of the form a$a can be satisfied completely with
the SRNT search. Since such references are by far the most
frequent many linkage faults will be satisfied that much faster.
Further, since nearly all commands fall into this class, we can
probably eliminate the command processor associative memory which
requires "back door" entries for clearing it when reference names
are terminated.

The dynamic linker will be changed to take advantage of this
mechanism thereby avoiding the definition searches as well as the
directory searches for a large number of linkage faults.

A second side effect of the prelinking phase is the ability
to provide limited metering of entries in the softcore set of
programs. The PLDT's could specify certain entries which are to
be metered. These entries will be invoked only after an "aos"
counter in an inner ring is updated. Since all softcore segments
will always be referenced by their softcore segment numbers and
since their entries will therefore remain "constant" we can know
that the meter reflects the actual number of calls to the entry
through the prelinked links. (See later description of "Entry
Meters".)

The Issue of the User-ring Linker

Most people agree and it has been accepted by Multics
designers that it would be best to remove the linker from the

Page 8 MTB-169

hardcore supervisor ring 0. Whether or not it is moved to the
user ring or only to ring 1 or 2 is an ongoing debate that
fortunately need not be answered in order to implement
pre linking. Th.e linker outside of ring O is indeed easier to
implement with prelinking in effect because:

1. the bootstrap problem is solved,

2. any performance problems are minimized because of the
drastic decrease in linkage faults and the increased
efficiency of the hcs_/real_hcs_ write around scheme,
it having been prelinked.

The reason the user-ring linker is mentioned in this
document is because of its interaction in the overall
installation plan. By the time it is installed, prelinking will
already have been installed and hence the new features will be
available. It will not be installed with the first stages of
prelinking so that we can isolate each stage in the overall
installation plan.

The Issue of the User-ring Name Space Manager

The user-ring name space manager is similar to the user-ring
linker in many respects having to do with installation plans.
It, too, will not be installed in its final form until after
prelinking has been~ However, a hardcore version of the new name
space manager will be installed with the first prelinking
installation. This will make removal of the mechanism to an
outer ring easier and give us time to begin reprogramming for the
new primitives the user-ring name space manager requires. The
eventual removal of the name space manager from ring 0 should
coincide with the removal of the linker from ring 0.

The shipment to other sites (than MIT) of the entire system
including prelinking, the user-ring linker and the user-ring name
space manager need not be done all at once.

In that prelinking will depend on the separation of the RNT
from the KST the final versions of both of these should be used
from the start.

Prelinker Driving Tables (PLDT's)

The PLDT's are the main driving tables for the prelinking
task. The tables describe exactly which segments should be made
known and exactly which reference names should be initiated for
each. In addition, they describe in which combined linkage
segments the linkage for a softcore segment is allocated as well
as in which combined static segments the static should be
allocated. The PLDT's also include search rules and metering
information to be used during the prelinking task.

If no PLDT's are found, the system works basically as today.

MTB-169 Page 9

The PLDT's are originally ASCII files in a format similar to
an MST header or a bind file. These ASCII files are "compiled"
into binary format (prior to the boatload which uses them) for
efficiency reasons.

The format of a PLDT is as follows:

1. There are 4 major keywords which are:

linkage,
directory,
segment, and
search_rules.

2. For the "segment" keyword there are 2 minor keywords
which are:

refname, and
meter.

(A "static" keyword is being considered. It would allow the PLDT
creator to specify where static storage which must be
preallocated is placed (see later).)

The "linkage'' keyword instructs the prelinker to place all
linkage sections of the segments following into the specified
segment(s). All linkage is placed in this set of segments until
another linkage keyword is encountered~ The format of the
linkage statement is as follows:

linkage: name[,size];

where name is the first component of the name of the combined
linkage segments created. A numeric suffix is appended to the
name as new SCLS's are created. The size field is a decimal
integer (default 64) which indicates the maximum size of any of
the SCLS's of this class. For example, if there are 20 records
of linkage information and the line

linkage: sss_linkage, 16;

appeared, two segments named

sss_linkage.O
sss_linkage.1

(16K)
(4K)

would probably be created. If the name
"stack", the linkage is placed in a
consistent with the segment being a stack,
several TSS's being created.

includes the string
segment in a format
i.e., one of possibly

The "directory" keyword
the given directory for any
subsequent "segment" keyword.
will cause a new directory to be

instructs the prelinker
segments encountered

to search
with a

keyword
of the

A subsequent "directory"
searched. The format

Page 10 MTB-169

directory statement is:

direc.tory: dirname[,dirnamei] ... [,-all];

where dirname is the name of the directory to search and dirnamei
are synonyms of the directory (used in setting up search rules)~

If the "-all" option is specified, the prelinker and name
space manager can assume that all reference names associated with
segments in the directory have been specified in the PLDT's. This
means that the directory itself need never be searched during
normal running of a process. Such a directory is said to be
completely prelinked.

The "segment" keyword must be preceded at some time by a
"directory" keyword and specifies the name of a segment to
prelink or, if the segment is not an object segment, a segment
that can at least be linked to. The format of the segment
statement is:

segment: segname;

end;

After the "segment" line and before the "end" line must
appear at least one "refname" line and can appear several "meter"
lines. The refname lines are struct~red as follows:

refname: name[,namei] ... ;

where name and namei are reference names applied to the given
segment.

The "meter" keyword is used as follows:

meter: entrypoint[,entrypointi] ... ;

and specifies those entrypoints to be metered.

The format of the "search_rules" statement is:

search_rules;
path 1;
path2;

pathn;
end;

and specifies the order in which directories are searched during ~
prelinking. If no "search_rules" statement is encountered in any
PLDT the default search rules are simply the order in which

MTB-169 Page 11

"directory" statements are encountered. If there are more than
one "search_rules" statements, the last encountered is used.
Prelinking search rules are only appropriate if duplicate
reference names are encountered. Note further that a
"referencing_dir'' search rule is always the implicit first search
rule during prelinking.

The structure of the PLDT's has been given in detail because
it is the most important externally visible administrative
interface to the prelinking mechanism.

PROBLEMS WITH PRELINKING

The prelinking design had to overcome many problems to reach
a workable, useful structure. Some of these problems require
widespread changes to the system for solution but none of them
appear to have any unrealistic requirements. These problems and
the proposed solutions are given in the following sections.

The Problem of Static Storage

One of the goals of prelinking is to share much more of the
system thereby minimizing working sets for all processes. The
prime target of sharing is, as might be expected, the data bases
of the linker and the linker's output the linkage sections.
Unfortunately, internal static storage is currently allocated in
the linkage section. This mixes shareable data, the snapped
links, with unshareable data, the per-process (and per-ring)
static storage. To solve this, it is proposed that internal
static storage not necessarily be placed in the linkage section
but rather in a section of its own. This has widespread
implications throughout the system. First, it means the standard
object segment format must change to provide for another section
(resulting in text, defs, links, static, symbol, and map).
Second, it means that translators like the PL/I compiler and ALM
assembler must use different accessing code when referencing
static. Third, it means that all users of object_info_ and the
like must be changed to expect potentially new object segment
information. Fourth, it means changing the binder and friends to
handle the new cases. None of these requirements is prohibitive
especially since all can be done without "flag days".

Removing the static from the linkage for a segment only
solves some of the problems, however. Another problem arises
when we want to snap a link to a location in static at prelinking
time. It was the original intent to allocate storage in the
combined linkage for a ring (not the shared SCLS's) for static
and copy the static from the object segment into the allocated
storage, both of these happening at first reference to the static
in a ring. This, however, makes it impossible for the prelinker
to resolve a link pointing into a segment's static because
neither the segment number nor the offset within the segment of
the static region can be known. To solve this problem the
following action is taken:

Page 12 MTB-169

A. If an obj~ct.segme~t h~s definitions into its static,
that static is copied into a (softcore) combined static
segment at prelinking time.

B. If there are no definitions into an object segment's
static, the static is not copied at prelinking time and
only copied later on if reference is made to the static
(by the procedure itself).

Note that the static for an object segment
allocated in the linkage section as is the case
Hence, in this case, when we say the static is
in a combined static segment the 1£nkage is
there as well.

may be
today.
placed
placed

This scheme allows us to snap links to static data areas at
prelinking time since we know the segment number and offset of
any static region that has definitions pointing into it. It does
mean, however, that since we want to conserve segment numbers
wherever possible, it would be more convenient to allocate all
such static regions in as few segments as possible and that a
user forced to use these segments would therefore get in his
process (ring) a copy of an entire combined static segment.
Although in some cases this may increase the working set of the
process, these cases are few and the working set would only be
marginally increased (it depends on breakage of preallocated
static regions).

So we see the prelinker has the task of preallocating some
static regions as well as all the linkage sections.

It should probably be noted here that currently there is
much more internal static storage being used than need be. This
is usually because internal static is a convenient place to store
named constants which are not part of the PL/I language. If
named constants were placed in the text section and did not have
to be copied when passed as procedure arguments it is estimated
that more than half of the internal static in the system
libraries could be eliminated. This means that much more data
can be shared and the working sets would be that much smaller.
This is currently being considered as an extension (optimization)
of our PL/I compiler.

In general, the system would run better if large regions of
internal static storage that were not initialized were allocated
explicitly so that the actual object segments and copied static
regions for bound segments would be smaller. (It has been an
unfortunate consequence of our current binding strategy that
referencing one component of a bound segment brought in the
entire static for the bound segment including often large regions
never used by the process but that added to the process's working
set.)

A different kind of problem arises with the use of external
static storage. In particular, type 6 links (create if not

MTB-169 Page 13

found) pose a problem to the prelinker. The prelinker could
create softcore segments for any such links and thereby resolve
the links. Rather than do this, however, it is proposed that the
use of such links causing implicit segment creation, etc., be
forbidden for system programs as it may interact with a user's
process in strange, unpredictable ways. This includes external
static placed in stat_, the default target for external static
variables. Similarly, the technique of renaming stat should
also be prohibited. The equivalent can be achieved through more
direct means with more efficiency. It is thus proposed that a
certain class of segments be unacceptable candidates for
prelinking and that the prelinker refuse to create any segments
as a result of a type 6 link. (If such segments did get placed
in the prelinked set, things would still work but the linkage
segment created by the prelinker would contain unsnapped links.
To snap these links the entire linkage segment would have to be
copied -- see later.)

The prelinker will generate a listing of all errors and
links it could not snap as these can be an unexpected cause of a
decrease in system performance (when linkage segments get copied
-- see later).

Unsnapping Links

Besides static storage, the prime reason a linkage section
is modified today (other than by the linker) is to unsnap links.
This means replacing the snapped link (an ITS pair) with its
original fault tag 2 and data for the linker. The difficulty
this poses with respect to prelinking is that most links
including some that may want to be unsnapped are in the
system-wide, shared, read only combined linkage segments.

The proposed solution to this problem can actually be used
to solve several other similar problems with softcore segments.
The solution is a new feature in the system acting primarily on
(but not necessarily limited to) softcore segments. It is a
''copy-on-write" mechanism for the entire segment. That is, any
attempted modification of a read only segment is intercepted and,
if appropriate, a copy of the segment is placed in the process
directory. In addition, the new copy is made known with the same
segment number that the original had. By applying this technique
to the combined linkage segments the first attempt to reset a
snapped link will cause a copy of the entire segment (into the
process directory). From then on the user has full freedom to
modify the copy. Although the user has now lost the protection
of a read-only linkage segment and the benefits of a shared
linkage segment he has retained the advantage of having most of
the links in the copy still snapped. He has also potentially
increased his working set to larger than it is today (by having
linkage sections that he normally wouldn't have in his combined
linkage). But the user who wants to make system segments unknown
must pay the price. He has surely gained in the long run.

Page 14 MTB-169

This copy-on-write feature 'could also be used for the
combined static segments as well. This avoids copying until the
static is actually modified. Similarly the segments free_ and
tree_ which currently achieve the same end via the copy switch
could use this alternate scheme. Indeed, it ha~ been proposed
that copy-on-write replace the copy switch. Instead of this, I
propose we use the copy switch to tell us when copy-on-write is
allowed.

The manner that copy-on-write would then be implemented is
as follows:

A. if a no_write_permission fault occurs,
segment has the copy switch ON. If
"no_write_permission".

see if the
not, signal

B. if the copy switch is ON, create a copy of the segment
in the process directory, make the original segment
unknown, and make the copy known with the original
segment number. The access on the copy will be set to
"rew". Note that all of these actions are on the KST
not the RNT. All reference names that were originally
there remain. Note further that this entire mechanism
can be implemented in the user ring although some
optimization provided by the supervisor may be
valuable.

There are currently several problems with the use of the
copy switch. In particular the definition of what it does may
not be the most appropriate. Do we want a copy each time we
explicitly make a segment known even if the segment is known or
is a segment which is a copy of another ... The copy-on-write
replacement seems to clarify these issues as well as providing
the interface that is apparently desired. Each attempt to modify
the original will get a new copy -- attempts to modify a copy
will only get a new copy if the access to the copy has been set
(back) to prevent modification and the copy switch has been set
ON for the copy. Note that if the original segment allows
modification no copy will be created even if the copy switch is
ON. This may lead to difficulty, but the setcopysw command could
issue a warning if a non-SysDaemon user has write permission to
the segment. Similarly the set_acl command could issue a warning
if write permission is being given to a segment with the copy
switch ON.

Another interesting feature of the copy-on-write mechanism
is illustrated in the following scenario. Suppose a user makes a
potentially copiable segment known and saves the pointer to it to
be used later in order to delete the segment. If subsequently an
attempt to write into the segment is made a copy will be created.
The attempt to delete the original via the saved pointer will
instead delete the copy. Users making use of the copy-on-write ,
and copy switch mechanisms had better understand what they are ,
doing.

MTB-169 Page 15

For added consistency, it is proposed that the segment
truncation and deletion primitives of the system be modified as
follows:

1. An attempt to delete a segment with the copy switch ON
will fail in the same way a segment to be deleted with
the safety switch ON fails.

2. An attempt to truncate a segment with the copy
ON will cause the copy-on-write mechanism
invoked. The copy created is then truncated.

These two changes need not be
intended to be protection
copy-on-write feature.

implemented in ring 0
against unexpected use

switch
to be

and
of

are
the

It is now clear why several combined linkage segments can be
created by the prelinker. By using several segments, it may not
be necessary to copy as many pages if some links are unsnapped
thus preserving as much sharing as possible. It is also now
clear how we can recover from unsnapped links in the prelinked
combined linkage segments. When the links are finally snapped
(if ever) a copy of the combined linkage segment is created
automatically. The (user-ring) linker need know nothing about
it.

Search Rules and Reference Names

One by-product of prelinking is a completely initialized
SRNT giving the mapping between segment numbers and reference
names for softcore segments. When a new ring is initialized
these reference names are not initiated. Instead, the initiation
of these softcore names occurs on first reference (i.e. as a
result of something invoking the search rules and locating
softcore segments) except for any inter-softcore seg references
which have, of course, already been resolved using the mapping in
the SRNT. The basic change from todpy is that the entire system
has effectively been bound together as a unit instead of the
smaller entities of today, bound segments. It is not possible
today to remove the internal bindings the binder has generated
nor is it reasonable for a user to assume knowledge of which
system segments are bound with which. For these reasons, it is
not considered an undue hardship that the ·internal bindings
generated by the prelinker are in effect at the start of
execution within a ring. An example might clarify the change
that the prelinking scheme will cause. Consider a process today
that references a private version of the print command before the
system version is referenced. This will cause the reference name
"print" to be·associated with the private command and hence any
system code not bound in with the system print command will
invoke the user's version (assuming somewhat standard search
rules). With the prelinking system all system code will
reference the system version of print unless that binding is
explicitly removed (say, with the tmsr command). This is true
even if the first reference to print in the ring was not to the

Page 16 MTB-169

system version. This is an incompatible change and, although few
users would notice and even fewer would care, it may be a hard
issue of which to convince other users.

Assuming this change is acceptable, the rest of the
reference name structure will be described. At prelinking time
each reference name initiated is assigned a unique integer. This
integer, the reference name index (rnx), is used as an index into
a per-ring bit table describing which of the system reference
names have actually been initiated in the given ring. - Initially
this table indicates that no names are initiated. Whenever the
ring finds a softcore segment by name (as a result of searching),
the associated bit in the reference name bit array is set. This
effectively initiates the reference name in this ring. To
terminate a system reference name, this bit is turned OFF (if it
is ON) and any references to the segment associated with the
name, in the system as well as the per-ring linkage s~ctions, are
removed.

Note that terminating a softcore reference name should
probably unsnap the links to it therefore causing copies of
linkage segments to be created. In fact, there should probably
be two seperate primitives for terminating reference names of
softcore segments. The first should unsnap all links while the
second, and probably more frequently used, should merely turn off
the bit in the per-ring bit table.

The search mechanism usually works as follows: first, the
SRNT is searched for the name, then the per-ring bit table is
examined to determine if the name has been initiated. If so the
search terminates. If not, the work of the lookup in the SRNT is
remembered and the URNT is searched. Again, if the search is
successful the search terminates. If the name has not yet been
initiated in the ring, the other directories specified in the
search rules are searched. If the name is found in one of the
system directories specified in the user's search rules, the
corresponding bit is turned ON in the bit array and the
earlier-saved information is returned as the result of the
search.

Note that no system directories are ever actually searched
(if they have been completely prelinked) and the system reference
name table is searched only once.

The users will specify search rules exactly as today. Any
pathnames encountered that represent completely prelinked
directories will be encoded in the actual data base representing
the search rules so that the correspondence can eas~ly be
determined at search time. In particular, if a directory is
prelinked that is not specified in a user's search rules, the
reference names of segments in that directory will not be
considered during the search.

It is currently planned to place the bit array describing
which system reference names have been initiated in the URNT (a

MTB-169 Page 17

per-ring data base).

It is considered legal for several prelinked segments in
seperate directories to have the same reference name (although
this will be rare). When this happens, the user's search rules
will select the appropriate one.

Pathnames as Reference Names

In the current system the hardcore uses reference names in a
strange and erroneous way. In particular when a directory is
made known, its pathname is placed in the KST as a reference name
so that the routine find_ need not always recurse back to the
root directory when trying to resolve a pathname. Instead, find_
stops when it notices a given prefix of the pathname it is trying
to resolve has already been initiated. The flaw with this scheme
is that renaming a directory or removing a name from a directory
that has been made known does not purge the KST's of no longer
valid pathname-segment number associations.

Several solutions to this problem have been proposed
including, 1) establishing an elaborate "trailer" mechanism so
all KST's that contain a given pathname can be located, 2) not
allowing renaming of directories (or delay the effect until
offline salvage time), 3) managing a system wide data base of
pathnames that can be mapped easily onto a user's name space, and
4) not allowing find_ to use a pathname-segment number
association.

It is proposed that this problem eventually be solved as
part of the prelinking project. The cleanest solution seems to
be to recurse back to the root in the user-ring version of find_.
However, due to the potentially long conversion period when
pathnames will be used by commands, there may be a large overhead
in solving this problem with the first versions of the prelinker.
Metering tests are being run to determine the actual cost of
doing this; the decision of whether the initial prelinking system
fixes the bug will be resolved after analysis of this data.

If it turns out that it would be valuable to optimize the
find function (and its inverse hcs_$fs~get_path_na~), a
per-ring table of pathnames managed by find_ could be mai,.tained
in a small associative memory. This solution, of course, does
not fix the bug, but it does provide an efficient mechanism in
the interim before the bug is finally fixed, i.e., after enough
of the system has been converted to use the new interfaces
efficiently.

It may be noted here that, due to a bug in the system, for
several years find_ actually did recurse back to the root. When
the recursion bug was "fixed" few users noted any improvement in
the system.

Page 18 MTB-169

Process Creation

The process creation task will not differ much from what is
done today, but the end result will be a process much further
along in its own initialization. The answering service will
perform the following steps:

1) create a process directory

2) create a "pds" in that directory

3) initialize the pds by first copying in the template_pds
(including the entire softcore KST in an initialized
state) and then filling in per-process variables

4) create a "pit" segment and initialize it by first
copying the template_pit. Note that action will be
taken to make the pit known in the new process's KST
with a softcore seg~ent number.

5) allocate and fill in an APT entry.

6) tell the traffic controller to start the process
running.

The KST which is contained in the PDS is in a completely
initialized state. In particular all softcore segments have been
made known (their UID and branch pointers filled in) and most
already have the access control information filled in. (When the
prelinker runs, it fills in the access control information for
any segments which have only *·*·* on the ACL.) The DTBM is also
set appropriately to 1) 0 if the access control information is
not filled in, and 2) the value at the time of prelinking
otherwise. This means that selective access on all softcore
segments is still possible and that access on softcore segments
can be changed at any time in the normal way.

The Internal Static Offset Table

The internal static offset table (isot) is a table used by a
procedure to find a pointer to its internal static storage much
the way the lot is used to find a pointer to the linkage. In
particular, a pointer to the isot for a ring exists in the stack
header and points to an array of packed pointers, indexed by
procedure segment number, to the static regions. The isot entry
for a procedure is initially set to a value that will cause a
fault if an attempt to load it is made. The handler for this
fault (which happens once per segment per ring) allocates storage
for the segment's static in the combined linkage segment and then
copies the static from the object segment into the UCLS.
Finally, the isot pointer is filled in to point to this
dynamically allocated static.

The first reference to the isot entry (the one causing the
fault) in a ring is usually in the entry operator for the given

. '
MTB-169 Page 19

program. This is because PL/I programs save linkage and static
pointers in their stack for efficiency. An option is being
considered to bypass the fault mentioned above by explicitly
examining the isot value and taking appropriate action if the
static is not allocated. This would be done in the (new) entry
operator for PL/I programs and is hence independent of any
compiled code.

Ring Initialization

A ring is initialized by the system at first reference to
it. The most common cases are 1) on an outward call from ring O,
and 2) on reference to an inner-ring gate procedure. The first
reference is trapped by the system and the ring is initialized by
the (system) handler for the outward call condition. The second
case causes initialization of the ring by the (system) segment
fault handler in response to a segment fault on the stack segment
for the inner ring.

The actual work required to set up a ring consists of the
following steps:

1) create a stack segment in the process directory,

2) copy the stack template into this new segment,

~- 3) initialize the per-ring variables in the stack header, and

4) if a combined. linkage segment is required (i.e., the linkage
is not in the stack) create and initialize the first
combined linkage segment for the ring.

The stack template copied in contains an initialized linkage
offset table (lot) as well as an initialized internal static
offset table (isot). All lot entries for softcore segments have
been filled in to point to the linkage for the respective
softcore segment in one of the shared, softcore combined linkage
segments (or the stack template). The isot entries have also all
been filled in with either:

1) a value that will cause a fault if an attempt is made to use
it, or

2) a pointer into the combined static segment for softcore
segments which have definitions into their static.

Note that any linkage in the stack segment must have the
corresponding lot or isot pointers changed at ring initialization
time as the segment number of the stack segment is a function of
the ring being initialized.

The stack . header is entirely
except for those pointers into the
per-ring. These latter pointers are
initialization in the same way the lot

filled in by the prelinker
stack itself which are
filled in as part of ring

and isot pointers for

Page 20 MTB-169

segments whose linkage is in the stack. Note that no segments
need to be made known or reference names initiated to fill in the
various operator pointers, signal_ pointer or unwinder_ pointer.

It may turn out to be convenient to combine the steps of
ring initialization into a "new_ring" command. This command
could leave everything as it stands in the process directory
(except possibly the names on appropriate stack and linkage
segments) and create a new, fresh execution environment
consisting of fresh static storage and a new stack. This command
would probably be used as a replacement for the new_proc command
in many cases where it is desired to retain, for debugging, the
stata of the process.

PL/I Changes

There are several changes required of the PL/I compiler
before we can take full advantage of the prelinker. Some of
these are optimizations which are independent of prelinking but
which become more important because of it, while others are
changes that the prelinker will depend upon. In particular, the
following ''optimizations" are being considered by the language
group:

1) restructuring the trace command (compatibly) so that
internal static storage is not allocated at compile time but
rather storage is allocated when and if a pa~ticular entry
is traced,

2) introduction of the "options (constant)" attribute for
internal static storage variables. This would merely be an
implementation optimization, not a change to the language,
which would allow variables (named constants) to be placed
in the text section even though we pass them by reference
(i.e., without a copy). Passing variables by reference in
this case means the possibility exists for the called
procedure to set the variable a common means of
destroying constants in other operating· systems. With
Multics one can avoid most problems of this nature by making
executable code read-only, as is the normal case.

3) Recoding several programs of the compiler itself so that
type 6 (create if not found) links are used in an acceptible
way.

4) changing the compiler to optimize the use of ''searc~" and
"verify" tables. These tables are currently allocated in
the text of the procedure using them. It is proposed that
the code generator optimize the more commonly used tables by
sharing them somewhere in pl1_operators_. The actual
number of canned-in tables would probably not exceed 10 or
so.

MTB-169 Page 21

The following changes to the PL/I compiler are more than
optimizations and until a program is compiled with a version of
the compiler having these features, full utilization of the
prelinking of the programs will not be achieved. These changes
include:

1) changing the code generator of the compiler so that internal
static references and linkage references are not necessarily
based on the same pointer value, because the two regions may
no longer share the same virtual memory.

2) changing the object segment generation components of the
compiler to make a new-style object segment, i.e., one with
a separate static region.

Due to code optimization assumptions in some programs on the
system (including the PL/I compiler itself) and due to the
requirements of the overall installation plan discussed later,
the new PLtI compiler will create an object segment with static
in the linkage section by default, i.e., as is done today. A new
control argument (that users needn't know about) will instruct
the compiler to generate an object segment with the linkage and
static separate.

Another change to the PL/I compiler being considered
consists of the redefinition of where entry descriptor pointers
are placed in an object segment and how they are found. The
intent is to use a bit in the flags word of the entry sequence to
indicate the new referencing scheme for the entry descriptor
pointers. This would allow the compiler to generate the entire
entry descriptor data structures in the text section of the
object segment and thereby avoid a.good deal of needless overhead
when trying to find the entry descriptors. This change is
mentioned here because with the prelinking project comes the
as~umption that we will recompile the system (or at least that
portion we want prelinked) and that this recompilation should be
done with a version of the PL/I compiler which has the necessary
features. This latter change is actually needed by the project
of extending and optimizing the command processor.

ALM Changes

As with the PL/I compiler, the ALM assembler must be changed
to generate new object segments and recognize the new ''static"
component. In particular, this means the "join" pseudo-op must
be extended to handle multiple (at least 1) location counters in
the static region.

Again, as with the PL/I compiler, this is as good a time as
any (?) to add two other features to ALM which have little
bearing on the prelinking project but which would be convenient.
One, and the more important, is an ''entrybound" pseudo-op which
allows the programmer to instruct the assembler to save the given
value as the entry bound for the segment. This entry bound will
be placed in the object map for the segment and gives us a better

Page 22 MTB-169

handle for manipulating gate segments.

One last change to ALM is a proposed "text-embedded-link"
feature which would be used primarily during system
initialization but has a potential for user-ring use once we
understand better how to manage the "permanent pointers" that
prelinking provides. These text-embedded-links would be used
during system initialization to avoid the clumsy initialization
of ITS pointers in many hardcore procedure segments (e.g., fault
and interrupt handlers). These links could also be used during
prelinking to avoid use of linkage sections completely for the
prelinked segments (as well as preventing the unlinking of them).
Although there is no immediate plan to use text-embedded-links
anywhere except during initialization, the addition of the
capability to handle this feature in the assembler would be
convenient and allow further research.

The Storage System Associative Memory

Several months ago, MTB-104 discussed a change to the
structure of the KST that is, as stated then, required for
prelinking. Among the features proposed was a scheme whereby
access calculation could be avoided in many cases by keeping the
date-time-branch-modified (DTBM) value for a segment in that
segment's KST entry. Comparing the value of the DTBM in the KST
entry with the value in the branch allows us to verify whether
the data we placed in the KST entry is still valid. The prime
unfortunate side-effect of this scheme is that the check (of UID
and DTBM) still causes a reference to the branch of the segment.
(Today we not only make this reference, but we also calculate the
access from scratch each time ...) It is proposed that this
problem be solved with a small associative memory of storage
system information. This storage system associative memory (SSAM)
would contain the UID of a segment (or directory) as well as its
DTBM. In addition, it could contain other information such as
bit count, primary name, etc. The intent is to minimize paging by
concentrating the most referenced data in pages more likely to be
in main memory.

The SSAM would be organized by a simple hash scheme based on
a segment's UID. The SSAM can be managed (read) without a global
lock associated with it. This means that it is easy to validate
the contents of a KST entry as well as to render obsolete the
contents of the SSAM entry for a particular segment when that
segment's branch is changed. The SSAM will thus be assumed to be
a part of the new KST structure and hence required for
prelinking.

The actual implementation of the SSAM being contemplated is
to merge it with the Active Segment Table (AST). (The UID hash
mechanism within the AST is needed by the new Storage System.)
This means that the reference to the branch will still occur if
the segment itself is not active, but this is not too bad since
the segment will most likely be activated before the page is
evicted from main memory and the page will be needed for

MTB-169 Page 23

,.... activation anyway -- hence, still no unnecessary paging.

Prelinking Installation Plan

Installation of the prelinking extensions to the system will
come in several phases. The earliest installations will not
require any of the compiler, assembler, or binder changes, but
will require the reworking of the name/address space managers -
i.e., splitting them apart. Later installations will take
advantage of the compiler (etc.) changes by taking different
actions on a segment based on which version of the compiler
(binder, etc.) created it. In time, all of the prelinked
segments will have been recompiled and the prelinker can then
take maximum advantage of all system changes.

The first installation stage will consist of a system with
none of the linkage, static, etc. segments being shared.
Instead, process or ring initialization will explicitly copy all
of these segments into the user's process directory. The size of
the segments copied can be limited during this phase by limiting
the number of segments prelinked. The copy-on-write feature is
thus not required for this stage.

The second stage of installation also precedes the new
compilers and places as many linkage sections as possible into
shareable combined linkage segments. This includes all linkage
sections with no static and those linkage sections whose static
consists entirely of words reserved for the (by then) obsolete
trace mechanism. This stage will require the copy-on-write
feature in order· to unsnap links in these shared combined linkage
segments.

Before new object segments can begin
libraries, managem~nt of the isot must be
that the prelinker must generate the
operator and object segments must use it.

to appear in the system
provided. This means
isot and the various

As these first two stages unfold, much user documentation
will have been prepared and released describing the upcoming
changes to the standard object segment format and the programming
environment in general.

The next major phase in the installation plan is
installation of all the necessary system programs to work with
the new object segment structure and the new interface to
object_info_. Once these programs (about 20) have been
installed, the binder, object_info_, get_bound_seg_info_ and the
like can be installed. This precedes the next stage which is the
actual installation of the PL/I compiler and the ALM assembler
which generate the new object segments. (The compiler and the
binder were, of course, both necessary to check out each other.)

From
recompiled

this
and

point on, the more of the system that is
rebound the better the system will run. Although

Page 24 MTB-169

there is no date before which the entire system must be
recompiled, it can only help to do so. During this stage of
running the system, new object segments will have their linkage
copied into the shared combined linkage segments while the static
won't be copied at all unless there are definitions into it. In
this case the static is copied into the (softcore, but
non-shared) combined static segment(s) which get copied-on-write
into a process's process directory if referenced. It is
therefore advantageous to get as many programs reprogrammed as
soon as possible in order to minimize the size of (per-ring)
combined static segments.

The advantages of requiring the recompiling of the system
are many. One disadvantage, in a sense, is the urge to reprogram
as well. In fact, there are several simple reprogramming changes
which could be done as part of the recompilation phase. These
are:

1) use of options (constant) where appropriate,

2) reprogramming to avoid type 6 links ·to
segments, and

non-existent

3) reprogramming to use the new system primitives (hardcore and
user-ring).

It is probably better to only do the first of these as part
of the initial recompilation.

Entry Meters

As mentioned earlier in the discussion of PLDT's, the
capability of metering selected entry points of the prelinked set
of programs is provided at a very slight overhead for those
entries metered. The method used is to replace the snapped links
to those entries to be metered with pointers to a ring 1 gate
procedure which counts the calls by updating a ring 1 data base
(contained in the gate itself for efficiency). The dynamic
linker can do the same by recognizing that a snapped link
represents an entry in the list of entrypoints being metered. The
actual overhead for the meter is 6 instructions, all executed in
ring 1. There is no overhead for entrypoints not being metered.
The 6 instructions will very rarely cause any page faults as all
data referenced will likely be in core anyway at the time.

Note that this type of metering is possible because all
processes will reference the entrypoint by the same virtual
address and that it is therefore possible for the ring 1 metering
program to know who to pass control to after updating the meter.

MTB-169 Page 25

Appendix I

Preliminary Installation Plan

1. Install a system which places names in the AST name table.

2. Install a system which uses the AST UID hash scheme. This
implies a reformatted AST. The DTBM will effectively be
placed in the AST.

3. Install a system using the new KST/RNT strategy. This means
that the reference name management will be completely split
apart from the KST. Pathname resolution will be done by
find_ which may keep a small associative memory for
pathnames. The RNT and its manager will still remain in ring
o.

4. Install the first prelinking system. It will not require
copy-on-write nor will it know about or handle new format
object segments.

5. Install object_info_, trace, and
recognize and handle new format
object segments will appear yet.

the
object

debuggers which
segments. No new

6. Install the second (final) prelinking system. This system
will handle copy-on-write, the isot management, and new
object segments.

7. Install user-ring primitives for name space management.
These will eventually go into ring 0 (one by one if need be).
Some of these primitives were installed in step 3 above.

8. Install the new binder which accepts and generates new object
segments.

9. Install the new PL/I compiler and ALM assembler.

10. Primitive swap. Several user-ring primitives will be moved
into ring O, and several hardcore primitives will be moved
out of ring 0 (including hes_).

11. Remove the linker and the RNT and its manager from ring O.

12. Recompile the world. Reprogram where necessary to use new
primitives, minimize static and obey new conventions.

