
-- _.
Multics Technical Bulletin MTB-178

To: Distribution

From: N. I. l1orris

Date: March 25, 1975

Subject: I/O Interfacer Specification Changes

Several changes have been made in the I/O Interfacer
mechanism. The two most important of these is the removal of the
queued connect feature and the removal of the hardcore status
queue.

Q~vice Assignment Changes

An extra argument was added to the pioi_$assign and
pioi_$priv_assign calls. This argument is used to return a
relative pointer to the configuration card describing the device
just assigned. The calling sequence is now as follows:

devx

declare pioi_$assign entry (fixed
bit(18) aligned, fixed
bin(35));

call pioi_$assign (devx, devname,
rcode) ;

bin, char
bin C'7 1) ,

configrel,

(*) '
fixed

event,

is the device index to be used in subsequent
calls to the I/ 0 Inter facer. (Output)

devname is the name of the device being assigned.
(Input)

configrel

event

rcode

is a relative pointer to the configuration
card describing the device just assigned. A
pointer to the configuration card may be made
by taking p tr (addr (config_deck$) ,
configrel). (Output)

as an event channel ID to be used in sending
wakeups to the user upon receipt of status
from the assigned device. (Input)

is an error code. (Output)

The call to pioi_$priv_assign is identical to the call to
pioi_$assign.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

- -

Page 2 MTB-178

Connect Changes

The queued connect feature was removed from the I/O
Interfacer. Therefore, it is no longer permissable to call
ioi_$connect or ioi_$connect_pcw while the device is running. If
this is done, an error code of error_table_$device active will be
returned to the caller. The calling sequences to ioi_$connect
and ioi_$connect_pcw have not changed.

The hardcore ring status queue was removed from the I/O
Interfacer. Instead, the user workspace buffer is used to
provide a circular status queue for terminate, marker, system
fault, and time-out status events. Special status is kept in the
hardcore ring. It is not queued. Only the last special status
event is available to the user. The ioi_$get_status entry has
been removed. A new call, ioi_$set_status, has been provided to
set the location and size to be used for the circular status
queue in the user workspace. Each element of the status queue is
identical to the structure described in ioi_stat.incl.pl1 and
previously used in call to ioi_$get_status. Another call,
ioi_$get_special_status, has been created to allow the user to
retrieve special status.

devx

sqloc

sqlen

declare ioi $set status entry (fixed bin, fixed
bln(18), fixed bin(8), fixed bin(35));

call ioi_$set_status (devx, sqloc, sqlen, rcode);

is the device index of a previously assigned
device. (Input)

is the offset in the user workspace segment
of the status queue. (Input)

is the number of elements to be used for the
status queue. (Input)

declare ioi_$get_special_status entry
bit(1) aligned, bit(36)
bin(35));

call ioi_$get_special_status (devx,
spi_status, rcode);

(fixed
aligned,

bin,
fixed

spi_flag,

spi_flag is a flag which is set to "1"b if a
interrupt has taken place and
otherwise. (Output)

special
to "O"b

spi_status is the 36 bits of special interrupt status
returned by a PSIA channel. If the channel

MTB-178 Page 3

used for this device is a Common Peripheral
Channel, spi_status will be all zeroes.
(Output)

In addition, the status mechanism has been modified to
return status information in the event message which is sent to
the user when a wakeup is generated. The format of the
information is shown below. In many cases, the 72 bits returned
in the event message will contain sufficient information for the
user to adequately analyze his status. If such is the case, the
user need never make a call to ioi_$set_status to supply a status
queue. In effect, status will be queued by the interprocess
communication mechanism.

declare 1 imess based aligned,

st

er

run

time_out

level

offset

status

2 completion unal,
3 st bit (1),
3 er bit '(1),
3 run bit (1),
3 time_out bit (1),

2 pad bit (11) unal,
2 level bit (3) unal,
2 offset bit (18) unal,
2 status bit (36) unal;

is a flag indicating status is present.

is an error flag. If it is equal
the returned status indicates
condition.

to "1"b,
an error

is a flag indicating whether or not the
channel is still running. It is set to "1"b
when marker status is returned and to "O"b in
other cases.

is a flag indicating that a time out
occurred. If it is set to "1"b, the channel
has been connected for too long a time and
has just been forcibly stopped.

is the interrupt level which caused status to
be produced.

is the offset in the user workspace of the
DCW which caused status to be produced.

is the first 36 bits of the 72 bit status
stored by the IOM.

Page 4 MTB-178

Other changes have been made to the I/O Interfacer. The
timeout mechanism has been correctly implemented and the call to
ioi_$timeout now works. A call has been provided to force a
given device to use only a specific channel in the cases where
more than one channel could be used. (That feature is intended
primarily for online T&D.) Another entry has been provided to
allow changing the event channel ID to be used to wake the user.

iom

chan

rcode

(END)

declare pioi_$set_channel_required entry (fixed bin,
fixed bin(3), fixed bin(6), fixed bin(35));

call pioi_$set_channel_required (devx, iom, chan,
rcode) ;

is the IOM number of the IOM containing the
channel to be used for I/O for this device.
(Input)

is the channel number of the channel to be
used. (Input)

is set to error_table_$bad_channel if the IOM
and channel specified are not correct.
(Output)

declare ioi_$set_event entry (fixed bin, fixed bin(71),
fixed bin(35));

call ioi_$set_event (devx, event, rcode);

r

