
,... !!ul tics Technical Bulletin llTB - 192

Date: April 8, 1975

From: Susan Barr

Subject: Proposed user interface for FAST

It is planned to add a new subsystem to Multics that provides
inexpensive "classical timesharinr;" capabilities. This suqsystem has
been ~iven several names at various times - LiMited Service Subsystem
(LSS), Low Level Entry Subsystem, and Fast Access Subsystem for
Timesharing (FAST). The currently proposed name is FAST.

This system must have the following properties; it must:

be inexpensive to use,

include both Fortran and Basic,

be easy to use.

It is desi~able for FAST to be a closed subsystem with resource
limitations (to be described in another MTB) so that lower prices may
be charged for it.

It is desirable for it to be similar to the Dartmouth System, DTSS:
The motivation for this is twofold:

A primary user of FAST will be General Motors who will
transfer a large number of DTSS users to this system.

The DTSS user interface (an extension of the original GE 265
system) is very commonly available on other systems. As a
result it is well known and has proven to be easy to use.

Components of this subsystem are:

A new Fortran compil~r,

The Basic compiler,

The system modifications that allow
smaller amount of resources,

Multics Project internal working documentation.
or distributed outside the Multics Project.

-- 1

a process to use a

Not to be reproduced

MTB - 192 Proposed user interface for FAST

Prelinking,

MCS,

A new Command System/Editor similar to DTSS.

Performance is the most important factor in desiRning FAST. When
there was a choice between compatibility with DTSS and performance,
FAST did not simulate DTSS. Features should not be added to FAST that
will degrade performance, since the user requiring a more powerful
system could log in under the full Multics system6

The rer1ainder of this document concerns itself with the command system
interface and the issues that are encountered in its relation to other
components of the system.

Proposed implementation:

DTSS has a simple editor that is entered at command level. This
editor uses two temporary files. The "current" file which contains
the file beinp; edited and the "alter" file which contains replacement
lines or additional lines to be added to the file when a merge is
done. Lines that be~in with a number are added to the "alter'' file.
All other lines are assumed to be commands. This editor works on a
complete line each ti~e. It allows the user to add, delete or change
a line and to list the file bein~ created.

The "current" file is used for input and output for many commands that
use files. If the user calls a command that normally reads the
"current" file, the "alter" file and the "current" file will be merged
and the result stored in the "current'' file before the command is
called. No permanent files are created in the user's catalog unless
the files are explicitly saved. This approach will be used for FAST.

FAST will be different from the DTSS operating system in those cases
where cor.ipatibili ty with t·Iul tics conventions is necessary. There are
three major areas where DTSS and 11ul tics are not compatible: access
mechanism; search procedures; typing conventions and terminal
control. The DTSS operating system has several editors that provide
similar functions. FAST will include the EDIT com~and and a version
of the Multics editor edm~ The DTSS command DEBUG cannot be
implemented with the current Basic compiler so the Multics debu~ger
probe will be provided instead.

-- 2

Proposed user interface for FAST

,... System commands (from DTSS) to be included:

APPEND
BUILD
IGNORE
T_,IST
OLD
RENAME
REPLACE
SAVE
SCRl\TCH
SORT
UNSAVE
EDIT
PHIHT

Con oilers

System

BILL
BRIE£<'
BYE
CATALOG
GOODBYE
HELLO
LENGTII
NBRIEF
SYSTEM
TTY
USERS

Terminal

DIRECT
.FULL DUPLEX
l!ALE"DUPLEX
KEYBOARD
TAPE

COMPILE (for Fortran and Basic)
RUi~

The following Multics commands will be added:

Access

set_acl
list_acl
set_iacl_seg
list_iacl_ser;

Access control:·

Misc.

edm (special version) ·
qedx
probe
change_wdir

d'.l'B - 1g2

DTSS has two types of access associated with each segment. Access
with a password entered by a user and access without a password. Some
of the access is for the convenience of the user and does not protect
the se~ment or its information. (See Appendix I for DTSS access
codes~) For example, LIST access means the segment is ascii and can
be listed with the LIST command. This feature does not require a
separate access code and a check for non-ascii se~ments can be built
into the LIST command for FAST, The APPEND access is not conpatible
with Multics.

l1ultics access control is very different from DTSS access control,
All DTSS access except for APPEND is available on Multics. Instead of
simulciting DTSS access, it is proposed to use l"lultics access and
Multics access control commands (set_acl, list_acl etc.)

-- 3

l1TB - 192 ?reposed user interface for FAST

Two alternate proposals were su~~ested:

1. Use Multics access and allow the user to specify additional
access with the SAVE and REPLACE commands.

DTSS:
fAST:

SAVE;RXP,RXP
SA VE , re *. * .. *

PUBLIC access
PUBLIC access

If no access was specified, the user would get the same
default as the full Multics today.

2. Use Multics access, but allow the user to specify with DTSS
conventions where applicable.

SAVE ; RX P , RX P wo u 1 d ma p in to
set_acl current_name re *·*·*

DTSS does not use search rules. Every filena~e reference implies
an exact pathnane. DTSS does not remember and use initiated
segments. There are many ways to implement FAST that are
dependent on other choices that are described in sections below,
such as the namin~ conventions, the implementation of the DTSS ~
LIBRARY statement, and the implementation of the call statement
in Fortran and Basic. If subroutine calls are to source code,
this is not an issue.

It is proposed that calls are to· object code. Prelinking will be
used to find procedures needed by Basic, Fortran and the comnand
processor. This will be done for efficiency and so that the
standard_systeci library will not have to be in the user's search
rules. There will be search rules that include special FAST
system libraries, but not initiated segments.

There is an alternate proposal to simulate DTSS and to have no
search rules. Prelinking would still be used for the compilers
and the command processor.

Typin~ conventions and input:

DTSS uses different erase and kill characters and has more
control in some areas of input than Multics. It is proposed to
use Multics conventions. FAST will have the following
differences from DTSS:

1. Erase will be 11 # 11 instead of "(CTHL) Z".
Kill will be 11 @11 instead of "(CTRL..) X".

Proposed user interface for FAST l!TB - 192

2. The internal representation of source se~ments will use the
ttultics convention of one character (new-line) for the end of
the line. DTSS uses a two character string (carriage return
followed by a line-feed) for the end of the line. This
chan~e should be invisible to users, since this is
implementation dependent knowledRe rather than part of the
Basic or Fortran languages.

The following DTSS features will not be implemented on Hultics.

1. When a line is deleted using the DTSS kill character, the
word "DELETED" is printed and the carriage is positioned at
the start of the next line. On Multics there is no echo for
the kill character.

2. DTSS permits the user to suppress the normal even parity
generation. In this mode, the ei~hth bit is transmitted as
~enerated by the pro~ra~ causin~ the inforMation to be
transmitted to the terminal..- . This is used for special
purpose terminals. There are plans to implement this feature
on Multics in the future.

3. The DTSS system allows the user to skip blocks of output
(about 256 characters) by typing CTRL X while the terminal is
printing.

Case conventions:

DTSS and Multics differ in the use of case conventions. DTSS
stores input from uppercase only terminals as uppercase, but
Multics maps input from those terminals into lowercase. The DTSS
printer uses uppercase only. FAST should be easy for users to
learn. If a user has always seen pro~rams in uppercase, the use
of lowercase can be confusing.

1. Case conventions for filenames on DTSS:

a. Filenames can be up to 8 characters long and consist of
these ~haracters:

A-Z
0-9
hyphen
period

b. Command Processor

The user can set the current name to use lowercase by
using OLD, NEW, or RENAME. This name is shown as it was
typed by the user, but when it is used in a SAVE or

5

MTB - 192 ~reposed user interface for rAST

RL',PLAi'E d th t . l t ~ r v comman , e curren name 1s mappec o uppercase
and the filena~e convention is enforced.

c. Basic

Basic maps filenames to uppercase. For example, the
LIBRARY statement has quoted strinrr,s for arguments. Each
strin~ is the name of a file where subroutines used in
the pro~ra~ may be found. These filenames will be mapped
into uppercase, but the actual subroutine names may use
upper and lowercase. There may be several subroutines in
one file.

d. Fortran

Fortran maps all characters not in quoted strings to
uppercase, as a result filenames are in uppercase.

2. Case conventions for non-filename use on DTSS:

a. Command Processor

The contents of user files are left as the user created
them so upper and lowercase distinctions are preserved.

b. Basic

1. Upper and lowercase is si~nificant within quoted
strin~s. For example, the subprogram name must
exactly match the nar.1e p;iven on the CALL statement.
In hath cases an upper and lowercase distinction is
made.

2. The upper and lowercase distinction is not Made
outside of quoted strin~s. (i.e. CALL, CaLl, and
call are all treated as a CALL statement)

c. Fortran

Fortran ~aps all characters into uppercase.

d. Printer

The DTSS printer can only print with uppercase. That is
a deficiency of that system since users can create files
and Basic programs where the distinction of upper and
lowercase is si~nificant.

It is proposed to handle upper and lowercase bT usin~ Multics
conventions, but allow the user some visual aids. FAST will hav~
these features:

-- 6

Proposed user interface for FAST ll'l'l3 - 192

a. The input from uppercase only terMinals will be napped into
lowercase as is the tlultics convention. The users of these
terminals will enter uppercase letters by precedin~ the
letter by an escape character.

b. System library names will be lowercase. (An alternative
would be for these segments to have both upper and lower case
names; I think this is unnecessary.) Segment na~es will not
be mapped into uppercase by the conpilers and the command
processor. These names will be used as ~iven.

c. A new command, "uppercase" will be supplied for users who
would like to see only uppercase characters on a two case
terminal. This command could be requested when the user is
at command level. It would make a modes call to the tty_
dim. (It has also been suggested that this be a login
option.)

usage: u fl!JCrcase [edit]

If the "edit" option is ~iven, all letters will be printed as
uppercase. Non-printin~ characters will be deleted.

If the "edit" option is not f-';iven, the following conventions
will be used.

1. Lower case letters will be mapped into uppercase.

2. Uppercase letters will be preceded by an escape
character.

3. Non-printin~ characters will cause the string 11 \nnn"
to be printed to give the octal representation of the
character.

d. The FAST implementation of the PRI!JT command, which lists on
a line printer, will have an uppercase option.

There is an alternate proposal to simulate the DTSS conventions.

a. The command processor would enforce the uppercase se~ment
name convention with the SAVE and REPLACE commands.

b. Basic and Fortran would recognize ser,ment name references
and map segment names to uppercase.

c. Uppercase only terminals would not have input mapped to
lowercase. By system 3.1, MCS would allow the FAST
process overseer to change the conversion tables so that
uppercase would be mapped to lowercase on uppercase only
terminals.

-- 7

MTB - 192 Proposed user interface for FAST

Cor.:iparison:

The use of Multics conventions with the extra uppercase option
seems to solve the problem and it remains compatible with the
full Multics systeM. The user's concern is only with how the
contents of se~ments appear, not their internal representation.

This proposal has the advantaRe that a user can create a progra~
on an uppercase only terminal and be able to edit the segment on
a two case terminal without havin~ to use the shift key to keep
the contents of the se~ment consistent.

Use of external subroutines:

1. Basic

DTSS does not use dynamic linkin~~ The COMPILE command tries
to compile the current file. The source code for external
subprogram~ is found at compile time using the LIBRARY
statement. The LIBRARY statement gives the names of files to
be searched for the source code of subprograms referenced in
the current file but not found there. These subprograms are
compiled as if they had been part of the current file.

The LIBRARY statement may ~ive one or more files to be
searched for the subprogram source code. A file may contain

·more than one subprogram.

2. Fortran works differently. The current file can be compiled
separately without the subroutines it references. \/hen the
program is executed and the subroutine is called, it is then
compiled and executed.

It is proposed to use Multics conventions~ Users would have to
learn these incompatible Multics conventions:

a. Source se~ments need a langua~e suffix.

b. Object se~ments can not be renamed arbitrarily. On DTSS
the user can Rive an object se~ment any name since there
is only one entry name for an object program. On
Multics, the object segment can have several entry
points, so the na~e of the source segment without the
lan~ua~e suffix is used as the principle entry name.
Then a call to "na:ne" is assumed to be a call to the
principle entry point, "name$name".

c. Subroutines can be linked to at runtime.

-- 8

Proposed user interface for FAST [\'fl3 - 192

r J.'here are two additional proposals:

1. Simulate DTSS:

a. Basic

The Basic compiler would use the LIBRARY statement to
search for the source code for the subprograms not
found in the current file. There would be no dynamic
linking to object subprograms.

b. Fortran

The Fortran compiler would use the LIBRARY satement
to search for the source code or object code for the
subprograms not found in the current file. There
would be no dynamic linking.

2. Use a combination of the DTSS LIBRARY statement and
Multics dynamic linking.

The previous proposal would be implemented with an
additional search. Subroutines not found in the source
se~ment and not found with the LIBRARY statement would be
assu~ed to be object segments to be found at runtime.

Comparison of the proposals:

The DTSS simulation has some advanta~es in terms of storage. The
user does not need to keep the object code of each subpro~ram in
a separate segment which must use a minimum of one record. The
user does not even need to keep object code for subprograms. The
source code for several subprograms may be stored in one se~ment.
This could be a large saving if the user has many small
subprograms.

This method has the disadvantage of increased compile time.
Every time a change is made in the main program or any subproGram
all the source code must be recompiled. If the user stores
several subpro~ra~s in one seF,ment then editors and the prepass
for Basic will be more costly. DTSS simulation means Basic
pro~rams will not be able to call Portran subroutines, since
calls are to source code at conpile time.

The advantage of followin~ Multics conventions are: FAST and
full Multics will be co'llpatible; no prepass is required; the user
can use several small object segments instead of one large one;
subpro~rarns don't have to be compiled every time some other part
of the pro~ram is chan~ed.

-- 9

l-'ITB - 192 Proposed user interface for FAST

Pathname conventions:

DTSS uses different pathname conventions from Multics. It is
proposed that Multics pathnames be used. The following list
shows DTSS pathnames and the equivalent Multics pathname.

1. <name>
The file is in the user's catalog.

(On Multics: [wd] >na:"'le

2. *<user_no.>:<name>
The file is in the main catalo~ of user with account number
user_no.

(On Multics: >udd>projectid>na~e The user must know
the project name and user name instead of a user no.)

3. <nar.ie>***
The file is in DLIBRARY

(On i·1ultics: >ldd>dlibrary>name)

4. :DLIBRARY: <sub library>: <name>
<sub 1 i brary> iH+ .:t: <name>
The file is in the sublibrary off the DLIBRARY off the main
library DLIBRARYw

(On Multics: >ldd>dlibrary>sublibrary>name)

5. The user's "work ing 11 ca talor; can be chan.".,ed to be one of his
su~catalo~s or to a system catalo~.

ENTER <subcatalor,> Chanq,e to sub catalog.

(On '.·1ultics: cwd subdir)

ENTER Use main catalog of user.

(On Multics: cwd)

There were these alternate proposals to allow the users to
continue using DTSS pathna~es:

1. Hnve !.<'AST do the conversion to tlul tics pa thna:nes at runtime.
This could be done with a spcial version of the Hultics
subroutine expand_path.

-- 10

--

,... -

Proposed user interface for FAST HTB - 192

2. Have the fAST compilers do the conversion to Multics
pathnames at compile ti~e. If this is done, then object code
produced under FAST and the full !lultics syste'Tl would be the
same with respect to pathna~es.

3. Supply a FAST command that reads a source file and converts
DTSS pathnames to Hultics pathnnmes.

tJami!:l_g conventions:

On DTSS filenames are arbitrary names given by the user. The
user can rename a program after it has been compiled. The na~ing
convention used by FAST is dependent on the previous choice of
implementing external subroutines.

If Multics dynamic linking is used, then it makes sense to use
Multics namin~ conventions. Users would have to learn these
Multics conventions:

a. Source code must have a lanr,uage suffix.

b. Object segments can not be renamed.

An alternative proposal could be implemented if external
subroutines are found at compile time. All pro~rams compiled
under FAST would have the same entry name. The source code for
the COMPILE command would be a temporary segment (called the
current file on DTSS) in the process directory. This seg~ent
would have the name "main.basic" or "nain.fortran" so that the
cor.ipilers would use "main" for the entry name. The compilers
would store the object code in a se~ment in the process
directory. When the user copies this segment into his workin~
directory usin~ the SAVE command, he can Rive· it an arbitrary
na11e. When the user calls the EXECUTE command with an object
segment "nar:ie", the command would call "name$Main".

Jlata chaining:

Chaining is used on DTSS for two reasons: to provide an overlay
mechanism in order that a prov,ram that exceeds the core ~aximum
can be divided; and to allow users to ~ass files from one progra~
to another.

The DTSS cornmand EXECUTE uses chaining to pass the current file
and a scratch file to programs (as files #1 and #2) There is a
method to signal the command processor to exchange these two
files when a pro~ra'Tl returns to command level. This allows users

-- 11

MTB - 192 Proposed user interface for FAST

to edit the current file withdut having to reference it by name.
Information about the file position is also passed.

Chainin~ will be implemented for both Basic and Fortran.

BacJ(ground:

The BACKGROUND command in DTSS allows user's to run ''batch" jobs.
This would not be consistent with the idea of the fast limited
system because it would allow users to have two jobs bein~
processed.

DTSS users Must use BACKGROUND to list se~ments on the line
printer~ FAST would supply a replacement for the BACKGROUND
PRINT request.

Editors:

The DTSS EDIT operates on the current file and does one request
for each call to the editor. It permits the user to merge
several files, to Move blocks of lines within the file, to
resequence the file, and to convert the file to a "string" data
file for input to Basic pro7,rams. ~

The DTSS TEXT and STRING editors operate on the "current" file
but continue to read edit requests until an "exit" request. TEXT
recognizes both Basic line numbers and strings in its edit
requests. STRING uses only character strings. The function of
~hese editors could be replaced by a version of the Multics
editor edm. A new entry could be added to edm, which would pass
a pointer to the "current" file. All edm requests would be
permitted. The write request would not allow a name argument and
would be interpreted as a write to the "current" file. This
chan~e to the installed edm is necessary to prevent the user from
chan~inR a file in his catalo~ from within an editor.

QED is very similar to the :1ultics editor qedx. There are
different conventions for the escape characters and differences
in sor.ie forms of addressin.~. The Multics editor qedx will be
substituted.

Catalor::

The CATALOG command pr in ts information about the user's ca·talog.
On FAST the user will use a subset of the Multics list command
ar~uments with the CATALOG command. No attempt will be made to
fornat the resultinr, output to look like DTSS.

-- 12

. .
l!TG - 192 Proposed user interface for FAST

Appendix I

DTSS access conventions:

A
c
F

G
L
p
R
H
x

append
compile
fetch

p.;roup
list
public
read
write
execute

Command

BACK
COMPILE
LIST
OLD

PUNCH
RENAME
REPLACE
RUN
SAVE
SCRATCH
UNSAVE

Statement

FILE

INPUT
PRINT
READ
SCRATCH
WRITE

length may be extended
is compiled object code
may be used in pro~ram fron different user
number
available to users in sa·me ~roup

may be listed
may be copied by any user
may be read from
previous contents may be replaced
is executable machine code

Access needed on "current" file

RA
H
HL
H or X, also G or ? or ~if file is in another
catalog
HL
R
HWA on file beinp.; replaced
R or X
H
RWA
HWA on file being unsaved

Access needed on file referenced

R or W or A (F also needed if s~ved in another
user's catalog;)
R
A
R
WA
A if file is lengthened
W if some elements in file are destroyed

-- 13

