
llultics Technical fJulletin M'J.'B-197 

To: Distribution 

From: R.H. Morrison & D.A. Kayden 

Date: April 11, 19'75 

Subject: GCOS Simulator Restart at the Activity Level 

1.0 Introduction. 

This project fulfills the requirement of SF-7440 (730010) TASK E. 
The requirer.ient is to provide tl1e ability under Multics to 
restart all GCOS jobs at the activity which was interrupted by 
system failure. 

The minimum functional specifications for the Simulator activity 
restart are assumed to be the functions performed by real GCOS 
under SR 1G in batch mode. In the Multics GCOS Environment this 
is equivalent to GCOS jobs submitted via the GCOS Daemon or by 
absentee. The functions should also be available to the 
interactive user since they will be controlled and implemented 
within the Simulator. 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 



HTa-197 -2-

2.0 Real GCOS: Restart Functions, Control and Implementation 

2.1 ~unctions and Control 

Restart refers to the autoMatic re-starting of jobs that were in 
execution at the tine of a system interruption. Jobs can be 
restarted either at the beginning of the activity that was in 
execution or at the beginning of the job. (Jobs can also be 
restarted from a program checkpoint; however, this capability is 
outside the scope of the this project). Restart is conditional 
upon successful system recovery from the system interruption by a 
warm boot. If it is necessary to fall back to a cold boot, 
restart is not attempted. 

Primary control for the restart functions are the options 
REST/NREST and JREST/NJREST on the activity defining control 
cards in the GCOS job deck. REST/NREST specifies whether or not 
to attempt restart at the beginning of this activity if a system 
interruption occurs during the execution or termination of this 
activity. Similarly, JREST/NJREST specifies whether or not to 
attempt restart at the beginning of the job after a system 
interruption, or to attempt job restart if the specified activity 
restart cannot be attempted. Thus the programmer, based on his 
knowledge of the job, makes the principal determination on an 
activity by activity basis of whether or not the job can be 
successfully restarted. 

Secondary controls on restart consist of various checks made by 
GCOS system programs (mainly the Peripheral Allocator) that no 
conditions exist that prevent a successful restart~ For example, 
restart is not attempted if a peripheral or a temporary file 
saved from a preceding activity was released in the current 
ar~ivity prior to the system interruption. 

If a tape is required and for some reason it cannot be nounted, 
the operator can terminate the job. 

2.2 Implementation 

The job flow through the Simulator is much the same as the job 
flow through real GCOS and therefore the implementation of 
restart in real GCOS serves as a model for the implementation of 
restart in the Simulator. \ie will briefly trace the real GCOS job 
flow relevant to restart to point out how restart is implemented 
in it, and to note the extensions needed to the Simulator for a 
similar inplementation. This section, then, is the background for 
the proposed Simulator implementation described in section 4. 



-5- MTB-197 

In the Simulator, the equivalent of these functions are performed 
in p;cos_run_activity_. 

2.2.4 System Recovery 

GCOS maintains a (hard core) System Recovery Table to save 
selected queue pointers, queue bodies, and other important tables 
over a warm boot, and to save restart data for the privileged 
syste~ programs. At the end of the start-up portion of the warm 
boot, control is given to POPM for rollcall and initializationr 
If the operator requests a restart, POPM divides the jobs that 
were in the system at disaster time into three groups: 

1. Those that can potentially be restarted. 
2. Those that had finished execution, but still have output 
in the system., 
3. Those that were interrupted during loading and must be 
reloaded. 

Jobs that can be restarted are re-entered in the input queue for 
either the Peripheral Allocator or the Core Allocator. The job 
status in the Peripheral Allocator Job Control Table is set to 
"restart". 

Finally, when the Peripheral Allocator is next enabled, it 
processes each queue entry an~ makes the final determination of 
whether or not the job can be restarted, 

3.0 Simulator: Restart Functions and Control 

3 .1 F'unctions: 

Restart functions in the Simulator, as far as the GCOS job is 
concerned, will be the same as in the real GCOS. An absentee job 
with the restart option will be automatically restarted in the 
new process at the beginning of the activity in execution at the 
time of system interruption, or at the beginning of the job, as 
specified by the options on the activity definition cards of the 
GCOS job deck. The Simulator saves the job deck and reads it to 
define each new activity in the job flow as does GCOS so this 
control data is available. 

The control data not available to the Simulator as it is in real 
GCOS is a flag that, in effect, would inform the simulator that a 
system interrupt had occurred, and it will be necessary to 



i"ITB-197 
,. 

-o-

restart the job. The Simulator, in lieu of such a flag, will 
have to maintain a record of progress of the job throuGh the job 
activities, and at each invocation will have to search for such a 
record. If the record exists for a particular job, the job is 
being restarted; if no record exists, the job is a new job. 

This record can be kept along with other necessary activity 
initiation data in· some segment that will be saved through a 
systeM interruption. In concept, this segment is equivalent to 
the GCOS Initiation/Restart Record. 

Restart will not be automatic for jobs when the Simulator has 
been invoked interactively from a terminal. However, if gees is 
invoked for the same job name in a new process after a system 
interruption, the restart mechanisn will operate as it would 
when gcos is re-invoked by the absentee processor after a system 
interruption. If the job is not to be restarted, the saved data 
~egment would need to be deleted, or a control argument to the 
Simulator used to specify no restart, when the Simulator is 
invoked in the new process. 

In addition to the scan for a saved data segment, there will need 
to be an internal restart procedure to reset conditions to those 
existing at the start of the execution of the interrupted 
activity. There are conditions that may have occurred which make 
restart impossible~ These are in general the same as those in 
real GCOS~ These conditions and the activity restart options 
will be checked before restart is actually attempted. 

4.0 Proposed Implementation of Restart 

The most straightforward implementation of restart in the 
Simulator is to implement the different restart functions in the 
joo flow as they are sequenced in real GCOS. The extensions to 
the Simulator, then, would mainly be in the following procedures. 

4. 1 ~cos 

This is the entry procedure to the Simulator which processes all 
control ar~uments to the Simulator. The extensions would be: 

1. Hecoo;nize and process a control argument "-nosave". The 
default would be to restart jobs or activities. A control flag 
would be set to direct later procedures to create a 
save_se~ment, GCOS system file segments, and temporary file 
segments saved across activities in a directory that will be 
saved through a system interruption (currently these files, by 



-7- MTB-197 

default, are created in the process directory). 

2. Scan the directory containing the save_segment to see if 
one exists for this GCOS job. If one exists, this invocation 
of GCOS is a restart and process control should be sent to the 
restart procedure. 

4.2 gcos_gein_ 

This procedure performs the GCOS functions of System Input, 
Peripheral Allocation, and Core Allocation. The extensions would 
be: 

1. Create the segments to be saved in an appropriate 
directory other than the process directory if the restart flag 
is true. This directory must be standarized so that GCOS will 
know where to create the segments and therefore where to look 
for them (especially the save_segnent) during restart. Three 
main standardization possibilities are: 

1. A directory associated with the person.project ID. 

2. A directory associated with the GCOS Environment. Such 
a directory is >ddd>GCOS>pool_dir assuming that the GCOS 
Daemon will be installed if the Simulator is installed (if 
not, create this directory anyway). 

3. A directory specified 
Simulator (which will 
invocation). 

by another arRument 
therefore be known 

to 
at 

the 
each 

The preferred directory is the working. directory at the time 
the Simulator was invoked. 

2. Initialize the save_segment with job data. 

3. Maintain a restart control word with the current activity 
number and flags for the activity control options of 
REST/NREST and JREST/NJREST. 'This word would also contain 
another field as described in the next section on activity 
restart. Note that this control word is equivalent to the GCOS 
first Status Table entry for the job, but in the Simulator it 
must be kept in the save_segment in lieu of the HCH. 



MTB-197 -8-

4.3 Restart 

gcos_~ein_ could contain the restart procedure, although the 
restart procedure could also be an independent procedure. In 
either event, the restart procedure's functions are: 

1. Recover the save_segment and examine the Restart Control 
word. If REST is true, reconstruct gcos_ext_stat_ as it was at 
the be~inning of the interrupted activity and restart the 
activity, If NREST is true (i~e., REST is false) examine 
JREST/UJREST and either restart the job or abort it. 'The 
activity restart function defines the contents of save_segrnent 
as those variables in ~cos_ext_stat_ and pathnames of GCOS 
system files and temporary files that must be restored instead 
of re-initialized. 

The Restart Control word in the save_segment will need to be 
updated during the execution of an activity if any events 
(such as a release of a saved temporary file) occur which make 
an activity restart impossible .. Another situation with several ~ 
alternatives arises when the activity has successfully 
completed execution, but a system interruption occurs in the 
activity termiQation (cleanup) phase. In principle, it should 
not be necessary to restart at the activity level or job level 
(and it may often be impossible); the problem becomes that of 
re-starting or continuin~ only the activity termination (and 
perhaps the SYSOUT activity). The functions in real GCOS in 
this case, are currently evolving, and the best thing to do 
for the moment may be to defer a decision temporarily. 
However, we can define a field in the Restart Control word to 
flag whether or not activity termination had started~ We also 
note that the save_segment might need to be updated when 
termination be~ins. 

If the restart functions are successful in re-establishing the 
initial conditions, then control is returned to the normal job 
flow control. 

4.4 ~cos_run_activity_ 

Activity termination and cleanup is performed in this procedure. 
The extensions would be: 

1. After the termination activities are completed and the job 
is ready to be returned to gco~_gein_ for the next activity, 
update the save_segment. 



-9- MTB-197 

2. Update the Restart Control word when an activity enters 
termination. Possibly write an updated save_seR~ent with the 
end of activity data~ 

4.5 gcos_mme_rels_ 

This procedure releases peripherals and mass storage files. It 
must be extended to update the Restart Control Word in the 
save_segment when files essential to activity restart are 
released. 

4.6 gcos_ext~stat_ 

As the extensions to the major procedures are made, it is 
expected that the changes will ripple into some other procedures, 
either from necessity or convenience. One such change is to 
re-arrange gcos_ext_stat_ to facilitate saving and restoring the 
data in it needed for restart. 


