
MULTICS TECHNICAL BULLETIN HTB- 215 page 1

Toi Dlstrlbutlon

Fro•• T. H. Van Vleck

Oates July 24, 1975

SubJectl Handling Subroutine Errors

l.tllRODUCTIQ!l

Hultlcs conventions currently forbld subroutines whlch may
be called by many different progra•s from performing output
unless that ls their primary purpose. The reason for thls rule
ls the •principle of transparency,• whlch requires that the
subroutine be usable ln environments which do not have standard
l/O attachments, ano ln environments which •ish to use the
subroutine without obtaining any output. In particular,
subroutines are currently forbidden to use co•_err_ to report
status. The standard method for reporting status ls to supply an
additional argu•ent to the subroutine which wltl be set to zero
or to a standard st~tus code by the subroutine.

The caller of such a subroutine Must have some kno•led~e of
the cases ln which status codes are returned. Often, the caltlng
progra• has the choice of lncludlng a series of tests for each of
the possible statess recognized by the subroutine, or of sl•ply
assuming that any nonzero status code indicates that the routine
failed. When a status code ls returned, the calling program
often Mlshes to produce a •essage describing the situation. But
ln some cases, the subroutine can recognize so many different
sltuatlons that the calling program wlll be unable to produce a
helpful message Mlthout addltlonal co••unlcatlor between the
calling program and the subroutine. This problem Mas encountered
in the design of delete_, when deleting a directory. If a
directory contains lte•s whlch cannot be deleted. there ls
currently no clean May to inform the calter of delete_ of the
pathna•e of the Item.

Subroutines which can detect multiple errors <such as
co•pllers) have an even •ore difficult proble•. The returning of
a status code ls suited only to the detection of single errors.
Requlrlng the cal IJng program to allocate storage for a usually
null array of status lnd1cators or status messages see•s
uneconomical; and saving the messages ln storage allocated by
the subroutine encounters other problems lf multiple lnvocatlons
of the routine may exist ln the same process.

Multics ProJect internal working cocu11entation. Not to be
reproduced or distributed outside the Huttlcs ProJect.

HUL TICS TECHNICAL BULLETIN HTB- 215 page 2

When Me thin~ of smal1 subroutines, llke square root
programs, these proble•s can be ignored or papered over. But
when large subsystems are used as subroutlnes of user appticatlon
programs, the need for a mechanism Mhlch allows subroutines and
subsyste•s to report status In detalt, while still alloMlng the
calling environment control over the actual output and the
content of the message, becomes •ore and more Important.

PROfQSAI.

To accomplish these ~oals, a neM subroutine ls proposed,
called sub_err_, which •111 be usec by subroutines In much the
same way that com_err_ ls used by co••ands. Draft HPH SWG
documentation ls a~tached. <The "sub" can be considered to be a
contraction of either "subroutine" or •subsystem.") A call to the
subroutine might look tlke this•

call sub_err_ Ccode, "sort"•
"Input record -d ignored.",

lnf op, •c•,
record_nol;

retvat,

When sub_err_ ls called, the foraat string ls assembled ln the
same way that loa_ does it, a structure ls filled in, and the
condition

sub_error_

ls signalled. Unlike the call to co.._err_, ho•ever, sub_err_
does not print the .. ssage on return fro• the signal; lt assumes
that t~e environment has disposed of the •essage.

The default_error_handler_ for standard Huf tics processes
"Ill In fact currently print out such a Message. HoMever, the
for•at of the •essage currently produced should be l•proved
s•lghtly, so that lt looks something like thlst

name error by caltername I location ••
Co•_err string. Ioa_ formatted string.

<The message returned by com_err_ for small integer codes should
also be changed fro• "Code 1 not found ln error_tabte_• to Just
"Code 1".) for example, the call above alght produce the message

sort error by sort_l1234 (bound_sort_l5677)
Record too short. Input record 334 Ignored.

The sort routine co~ld use sub_err_ as a way of printing a
message; or, by adding code Mhlch tested the value of retv11, lt
could alloM the user the chance to intercept the error and
specify, for exa•ple, that the record be padded out wlth blanks.

MULTICS TECHNICAL BULLETIN HTB- 215

The use of the •retval" argument
"hich wish to intercept the sub_error _
alternatlve action to t~e subroutine.
wJll set retval to zero. It might be
future extension to the start command so

start -return 7

page 3

ls to allo• environments
condltlon and specify

The standard envlron•ent
posslble to propose a
that the command

"ould locate the condltlon lnfor•atlon structure, set cetv11 to
1, and return to sl9na1_.

The Introduction of the sub_error_ condition ls ln fact a
concealed Incompatible change for those users who have their own
default error handlers, since lt now becomes a requirement that
the handler for sub_error_ understand the "no_payse'" s"ltch and
ho ~hlo to dlspos• of the output message. The key step ls the
lntru\Juc:tltu' of " n•• prlnclple. obver'I• to ttie prJnclPI• of
transparency, •hlch is that every process ought to have a handler
of last resort.

All subroutines •hlch call sub_err_ should have the fact
noted ln their docu•entation, showing the JlAI.& and~ values
used ln each possible cal I and the action taken on return with
whatever values of retv11 are allowed.

Programs which have a handter for sub_error_ must check the
condition lnfor•atlon structure and be prepared to pass signals
on lf they cannot handle them.

'

MULTICS TECHNICAL BULLETih HTB-215 oage 4

Hu.A• sub_err_

This prograM ls called by subroutines which which wist to
report an unexpected sltu1tJon. The subroutine specifies an
Identifying message and may specify a status code. Switches
t11hlch describe whetter and how to continue execution and a
pointer to further lnformatlon may also be passed to sub_err_.
The envlron•ent which Invoked the subroutine caller of sub_err_
may Intercept and •odlfy the standard system action taken when
sub_err_ ls called.

dcl sub_err_ entry options Cvarlablet;

call sub_err_ <code• name, flags. infop• retvat,
ctl_strlng, loa_args>;

t11here

U code

2) name

3) flags

4) infop

5) retval

ls a status code descrlblng the reason for
calling sub_err_. code should be declared
f lxed bin (35). Cinput)

ls the name of the subsystem or module on
whose behalf sub_err_ ls called. name should
be declared as a nonvarylng character string.
(input)

describe how and whether restart may be
attempted. Flags shoutc be declared as a
nonvarylng character string. Clnput>

The following values are per•lttedl

continue after orlntlng message.
fatal error. No restart allowed.

ls an optional pointer to Information
specific to the sltuatlon. The standard
syste• environment does not use thls pointer,
but lt ls provided for the convenience of
other environments. lnfop should be an
al I gned pointer. (Input)

ls a return value fro• the environment to
which the error was reported. The standard
syste• environment sets thls value to zero.
Other environments may set retval to other
values, whlch may be used to select recovery
strategies. retval should be declared f lxed
bln (35). <Input/Output)

....

MULTICS TECHNICAL BULLETIN HTB-215 page S

6) ctt_strlng ls an loa_ for•at control string which
defines the message associated with the call
to sub_err_. Consult the description of loa_
in AG93. ctt_strlng should be declared as a
nonvarvlng character string. <Input>

7> loa_args are any arguments required for conversion by
ct t_s tr lng. (Input)

.Qgiu:at loo

Sub_err_ proceeds as follows1 the structure described below
ls filled ln fro• the argu•ents to sub_err_, and the system
subroutine signal_ ls catted to raise the •sub_error_•• condition.

When the standard system environaent receives a sub_error_
slgnat, it prints a message of the for•at

name error by subrnamellocatlon
Status code message. Hessage fro• ctl_strlng.

The standard environment then sets retval to zero and returns, If
•c" was specified; otherwise lt calls the listener. If •start•
ls typed, the standard environ•ent Mlll return to sub_err_, which
wilt return to the subroutine caller of sub_err_ unless •f" was
speclfled. If •r• was. specified, sub_err_ will signal
"lltegat_return."

use by Sybsxstems

If an appllcatlon progra• wishes to call a subsystem which
may report errors by sub_err_, and wishes to replace the standard
system action for some classes of sub_err_ calls, the apptlcation
should establish a handler for the "sub_error_• condition by a
PL/I ON-statement. When the handler ls activated as a result of
a call to sub_err_ by some dynamic descendant, the handler should
call f1nd_condlt1on_1nfo_ to obtaln t~e •software_info_ptr• whlch
•ill point to a structure with the following declaration.

dcl 1 info al19ned based Csoftware_lnfo_ptr),
2 length fixed bin,
2 version f lxed bln,
2 actlon_f lags aligned,

3 cant_restart blt (1) unal,
3 defauf 1_restart bit (1) unat,
3 pad bit (3~) unat,

2 lnfo_strlng char C256) var,
2 code fixed bln (35>,

MULTICS TECHNICAL BULLETIN HTB-215 page 6

2 retvat fixed bln (35t,
2 name char C32)•
2 lnfop ptr;

where

I engtt'I

version

cant_restart

def au I t_restart

pad

lnfo_string

code

retva I

na11e

1nfop

ls the size of the structure ln words.

ls the version nu•ber of the structure.
This ls version z.
ls "1"b lf the condition cannot be
restarted.

ls "1"b lf the standard envlron•ent wlll
print the message and continue execution
Mlthout call lng the listener.

ls padding

ls the converted •essage from ctt_strlng
and ioa_args.

ls the status code.

ls the return value. The standard
environment sets this value to zero.

ls the name of the module encountering
the condition.

ls a pointer to addltloral information
associated with the condition.

The handler should check info.name and info.code to make sure
that this particular call to sub_err_ ls the one desired, and lf
not call contlnue_to_slgnal_. If the handler determines that lt
wishes to Intercept this call to sub_err_, the info structure
wlll provide the message as converted, switches, etc. Any change
made to the value of lnfo.retval wllt be returned to the caller
of sub_err_ if control returns to sub_err_.

