
MULTICS TECHNICAL BULLETIN MrB-232 

To: Distribution 

From: Jeff Broughton 

Date: October 27, 1975. 

Subject: Extensible Commend Languap,e for Use on Multics 

Multics Pro.1ect internal working docmnentation. Not to be 
reproduced or distributed outside the Multics Project. 



EXTENSIBLE COMMAND LANGUAGE 

C ECL> 

The purpose of this document is to describe an extensible 
command language and command environment for use on the Multics 
system which functionally incorporates the abilities of the 
current command processor and its accomplices, abbrev and 
exec_com, and additionally provides the user with more convenient 
mechanisms for dealing with the command environment and for 
creating his own commands. 

ff.81U.li.E.!l 

ECL 

0 Provides a well endowed, interpretive, 
language supporting variables, arithmetic, 
logical operations, a po~erful control 
including conditionals and iteration, and 
mechanism. 

procedural 
st ring and 
structure 

a condition 

o Allows definition of user commands and functions by use 
of procedures written in the command language itself. 
These procedures would be partially compiled and as such 
would execute faster than current exec_com files. 

o Provides a mechanism for the automatic definition of the 
syntax and semantics of the arguments to a user command 
(procedure) including error detection and reporting. 

c Supports a number of special data types, e.g. pathname or 
iocb, that correspond to the things normally manipulated 
by the user at command level allowing him to deal with 
them in a high level fashion ignoring the details of the 
of the supervisor interface. 

o Allows the user to control, through block structure, the 
environment in which a command executes. The environment 
may be iteratively changed, as in walk_subtree, or it may 
be limited for use in a restricted subsystem. 

Page 1 10/20/75 



o Provides a means of defining other languages, such as a 
data compiler like cv_pmf or command subsystems such as a 
debugger using the command processor to interpret the 
statements <commdnds>. 

~tltiQQ_Qf _Qtfl~lllQ~ 

The method of defining the ECL language is the same as used 
for defining the Multics P~/I language. See Section 1.2 of the 
~uiti~~-fLLl-L~a~u~~~-B~i~c~o~~-M~ou~!, Order No. AG94, Rev. 1. 

The ECL langudge describes a sequence of operations to be 
performed in terms of an <active unit>: 

<active unit> ::=<program unit>l<statement unit> 

<program unit> ::= <procedure> 

<statement unit> ::=<executable unit>l<declarative> 

<executable unit> ::= <group>l<on unit>I 
<for unit>l<data unit>l<independent> 

A <program unit> describes a subroutine that may be called 
by other programs. 

A <statement unit> describes a single action that ~ay be 
performed at the direct request of the user. The processing of a 
<statement List> is directed by the command interpreter, and such 
processing is said to be performed at command level. 

Input containing an <active unit> is read and processed by 
the translator. A syntactically correct unit is passed to the 
processor for execution. 

Bl OC KS 

A <block> is the most important syntactic form in the 
language: it controls the flow of execution, delimits the 
meaning of names, and controls the environment of execution. 

ECL 

<blo~k> ::= <procedure>l<on unit>l<for uni t>l<data unit> 

<procedure> ::= <procedure statement>[<parameter block>] 
[<procedure body>J<End statement> 

<procedure body> ::= {<body unit>I 

Page 2 10/20/75 



<body unit> 
<Entry statement>[<parameter block>J 

::= <block>l<declarative>I · 
(<label>J<executable unit> 

<on unit> : := <On statement>[<parameter block> 
[<on unit uody>J<End statement> 

<on unit body> ::= <body unit> ••• 

<for unit> ::= <For statement>(<for unit body>] 
<End statement> 

<for unit body> ::=<body unit> ••• 

<data unit> ::=<Data statement>[<data unit body>] 
<End statement> 

<data unit body> ::= <body unit> ••• 

All of the components of a <block> are said to be contained 
in that <block>. The components of a <block> that are not also 
contained in a <block> itself contained in the original, are said 
to be immediately contained in the original <block>. A 
<procedure> that is a <program unit> is not containea in any 
<block>. 

GROUPS 

A <group> describes a group of <statement>s within which 
there is an internal flow of execution. 

<group> ::= <do group> I <if group> 

<do group> ::= <Do statement>[<statement list>] 
<End statement> 

<statement list> ::= {[<label>J<executable unit>} ••• 

<if group> ::= <If statement><then part>(<else part>] 
<then part> ::= Then <executable unit> 
<else part> ::= Else <executable unit> 

The internal flow of execution is determined by the 
interpretation of the <Do statement> or <If statement>. 

Note: an <if group> that is an <executable unit> comprising 
a <statement unit> may not contain an <else part>. 

STATEMENTS 

All nigher level constructs, e.g. an <active unit> or 
<block>, are formed from a list of <statement~s each with an 
optional <prefix>. The <statement>s recoynized by the language 
are: 

ECL Page 3 10/20/75 



<statement> ::= <independent>l<dependent>l<declarative>I 
<descriptive>l<invalid> 

<independent> ::= 
<Call stdtement> 
<Let statement> I 
<Exit statement> I 
<Continue statement> 
<Goto statement> I 
<Interpret statement> 
<Perform statement> I 
<Signal statement> I 
<Revert statement> I 
<Return statement> I 
<Resignal statement> 
<null statement> 

<dependent> ::= 
<If statement> 
<Do statement> 
<for statement> 
<Data statement> I 
<On statement> I 
<procedure statement> 
<Entry statement> I 
<End statement> 

<declarative> ::= 
<scope statement> 
<Synonym statement> 
<Environment statement> 

<descriptive> ::= 
<Semantics statement> 
<keyword spec> I 
<type spec> I 
<va tue spec.> I 
<Group statement> 
<Multiple statement> 
<Select statement> I 
<Form statement> 

All statements must be terminated by a <newline> or 
semicolon. The syntax and semantics of individual <statement>s 
is described in the following section. 

Independent statements are those which describe an explicit 
action to be performed. 

uependent statements are used to build <procedure>s, <on 
unit>s, anc <group>s as described above. 

ECL Page 4 10/20/75 



Declarative statements are used to define names in the 
program, and to establish the rules for resolving a definition. 

Descriptive statements are used to form a <parameter block>. 

An <invalid> statement is any group uf <token>s delimited by 
a <newline> or semicolon that does not correspond to one of the 
other types of statements. This includes any group of <token>s 
that begins with an <identifier> that is not a statement name. 

STATEMENT PREFIXES 

Statement prefixes are used to name 
control its meaning within the program: 

a statement, or to 

<prefix>::= 
<label> I <control prefix> I <form prefix> I <parm option> 

<label> ::=<identifier> : 

<control prefix> ::=Then I Else 

<form prefix> ::= Optional Repeat 

<parm option> ::=Default I Error I From 

f""" A <label> defines an <identifier> as a name for the 
following statement. Lexically, it may only appear at he 
beginning of a <line> containing a <statement> that may begin an 
<executable unit>: e.g. a <Do statement>, an <On statement>, or 
an <independent> statement. 

A <control prefix> is used to designate the alternative 
actions in an <If group>. It may only appear on a statement that 
may begin an <executable unit>. 

<form pref ix>es and <parm option>s are used 
block>s, and are discussed in that section. 

LEXICAL SYNTAX 

in <parameter 

Each <statement> <and optional <prefix>) is formea from a 
<Line> consisting of a group of one or more basic syntactic units 
calleo <token>s. The format of these <token>s describe the 
conventions needed to input a valid <statement>: 

ECL 

<Line> .. -.. - [<token>J ••• {<newline>I ;} 

<token> ::= <striny>l<identifier>l<operator>I 
<option name>l<comment>l<delimiter> 

Page 5 10/20/75 



<string> ::= <quoted string>l<unquoted string> 

<quoted string> ::= "[<char>l""J ••• " 
<char> : := any ASCII character except " 

<unquoted string> ::=<chars> ••• 

Excluding all such strings that are <identifier>s, 
<operator>s, or <option name>s. 

<chars> ::= <letter>l<digit>l$1~1=1.l+l-l*lll-l$1 !1&1-ll 

<letter>::= <capital>lalblcldlelflglhliljl 
k I l Im In Io Ip I q Ir I s It I u Iv I w I x I y I z 

<capital>::= AIBICIDIEIFIGIHlllJIKILIMI 
NIOIPIQ IRIS ITIUIV IWIXIY IZ 

<digit>::= 0111213141516171619 

<identifier> ::= <capital>[<ichar> ••• J 
<ichdr> ::= <letter>l<digit>l_l$1% • 

<oµerator> ::= +l-1*1/l••l-l=l·=l~l~J<=l>=l&l!ll!I! I== 
\ 

<option name> ::= -<letter>[<chars> ••• J 

<comment> ::= /*[<any> ••• J•/ 
<any> ::=any ASCII character 

<delimiter> ::= <punctuation>l<white space> 

<punctuation>::= ,l:ICl>ILIJlill 

<white space> ::= <blank>l<tab> 

Thou9h not explicitly required by the syntax of statements, 
all <string>s, <identifier>s, <operator>s, <option name>s, and 
<comment>s must be separated by one or more delimiters. 
<comment>s can appear freely in any location, as can <white 
space> which must be used to satisfy the above restriction if 
there is no <punctuation> required. 

A <line> that contains no <token>s is discarded and replaced 
by a non-null <line>. 

! ta.o .s .Lil t.io a 

ThP µrecess of translation causes the input to be read and 
matched to the syntax of an <active unit>. 

ECL ~age 6 10/20/75 



TRANSLATION OF A PROGRAM UNIT 

The source of a <program unit> resides in a Multics 
named proyram-name.ecl. 

segment 

The translator for a <program unit> reads <line>s of the 
source file and matches them against the list of defined 
<statement>s. A <label> may not appear in the input. If an 
<invalid> statement is encountered, an error is reported and 
processing continues with tne next <line>. 

The <statement>s found by the translator must form a 
complete, syntactically correct <procedure>. If not an error is 
reported. 

If there is no error in the input source, the translator for 
a <program unit> generates an object segment named program-name 
containing the <program unit> with entrypoints corresponaing to 
each <procedure statement> or <Entry statement> immediately 
contained in the outermost <procedure>. 

The <program unit> is passed to the processor when one of 
the entrypoints is invoked. 

TRANSLATION OF A STATEMENT UNIT 

~ The source of a <statement unit> is read from the 110 switch 
user_input, and as such may be directly entered by the user. 

The translator for a <statement unit> reads <line>s of input 
and matches them against the list of defined <statement>s. If an 
<invalid> statement or a <statement> not permitted by the synta~ 
of a <statement unit> is encountered, then an error is reported, 

·all input following the offending statement is flushed, and the 
statement itself is throw away. Additional lines may then 
continue to be entered. 

When the translator has assembled enough <statement>s to 
form a single, syntactically complete <statement unit>, the 
<statement unit> is passed to the processor for execution. 

If execution completes normally, control 
translator to read another <statement unit>. 

returns to the 

An <active unit> is executed in a manner 
form of the <active unit>: 

dependent on the 

Case 1. The <active unit> is a <statement unit>: Execute 
the <stdtement> or <group> that comprises the 

ECL Page 7 10/2U/75 



<statement unit>. 

lase 2. The <active unit> is a <proyram unit>: Activate the 
block denoted by the contained <procedure> at the 
entrypoint that was invoked, causing execution to 
commence. 

The execution of an <active unit> moves from <statement> to 
<statement> alon~ a µath called the flow of control. The 
interpretation given to a <statement> is subject to the 
environment of execution as defined in the immediately containing 
<block>. 

The rules for executing an individual <statement>s are given 
in the section on the Syntax and Semantics of Statements. 

THE ENVIROMENT OF EXECUTION 

Each <block> has associated with it a definition list, d 
resolution rule list, and an active handler list which together 
define the environment of execution. 

The definition list is a list of <identifier>s defined in 
the block and the values or objects to which they are bound. 

The resolution rule list specifies rules denoting which 
C<block>s') definition Lists are to be searched when resolvin~ an 
<identifler> reference. 

The active handler list specifies a List of conditions for 
which handlers <<on unit>s> have been established in the <black>. 

In addition to those defined for <block>s, there is a global 
definition list maintained for the purpose of having definitions 
that last from process to process, and a definition list giving 
the builtin functions and psuedo-variables defined ty the 
language. (See the section on 8uiltins.> 

The execution of a <statement unit> (which is not contained 
in any <block>) is influenced by environment lists specially 
maintdine1 in the invocation of the command interpreter directing 
the processing of the <statement unit>. 

BLOCK ACTIVATION 

A <block> is activated when an entry to a <procecure> is 
invoked or an <on unit> is invoked to handle a condition. To 
activdte a <block>, perform the follow operations: 

ECL 

1. Initialize the resolution rule list by executing the 
<Environment statement> immediately contained within the 

Page 8 10/20/75 



<block> if one exists. Otherwise, execute the default 
<Environment statement> as described in the description 
of that statement. 

2. Initialize the dctive handler list to null. 

3. Initialize the definition list to null, and process any 
contextually aerived definitions to be made in the 
<block>. A definition may not override a previous 
definition of the same <identifier>. 

a. For each <label> that is irumediately 
<block>, create a definition for 
specified in the <label>, and bind it 
oesignating the following <executable 

contained in the 
the <identifier> 
to a label value 
unit>. 

b. For each <µrocedure> that is immediately contained in 
the <block>, create definitions for the <identifier>s 
naming the <procedure statement> and any <Entry 
statement>s immediately contained in the <procedure>, 
and bind those <identifier>s to entry values 
designating the corresponding entrypoints. 

4. Execute each non-"Local" <scope statement> and <Synonym 
statement> immediately contained in the <block>. 

s. Create a definition for each <identifier> that aµpears as 
a parameter in a <procedure statement> or a <Parameter 
statement>, and process the <parameter block> or 
(implied) <parameter list> designated for the entrypoint 
for the block. 

6. Execute each "Local" <scope 
contained in the block. 

statement> immediately 

7. Excluding the <descri~tive> and <declarative> statements 
just processed, the body of the <block> forms a list of 
<executable unit>s. Execute these <executable unit>s 
according to the flow of control begin~ing with the first 
such unit that follows the point at which the <block> is 
to be entered. 

the <block> that has been activated most recently is called 
the current block. The <block> that invoked the current block is 
called the calling block. The <block> that immediately contains 
the current block is called the parent block. 

ECL Page 9 10/20/75 



THE FLOW OF CONTROL WITHIN A BLOCK 

The <statement>s or <yroup>s that comprise a list of 
<executdble unit>s are executed in the order in which they 
appear, except as the flow of control is influence by the 
execution of individual <statement>s. ~pon the completior of the 
list, control returns to the point at which the <block> was 
invoked. 

The execution of a <Goto statement> can cause execution to 
move to a <executable unit> other than the next one in sequence. 
In such a case, execution continues as if that <executable unit> 
Cthe target of the goto> were reached normally from its preceding 
statement. 

when an <if group> is 
<executable unit> contained in 
be selected for execution. 
<executable unit> is executed 
normally to the next unit. 

encountered during execution, an 
the <then part> or <else part> may 
If such a case occurs, that 

normally. Execution then ~roceeds 

When a <do yroup> is encountered 
contained <statement list> is executed 
units> subject to the control of the 
execution of the <do group> is complete, 
the next unit. 

during execution, the 
as a list of <executable 

<Do statement>. When 
execution continues with 

~~8L~8Ilg~_gf-~lEd~~~lQ~~ 

Ib~_Qi1~-~J_f,L 

lhe data that is m~nipulated by the language takes on two 
forms: the simple constant values produced as the result of 
evaluatin] an expression, and data objects which may be assigned 
any desired value and have certain properties relating to the way 
in which their values are accessed. 

Each value has associated with it one of fifteen data types 
that determine how it is stored internally and what operations 
may be performeJ upon it. The data types that are supported are: 

ECL 

1. integer - represents positive and neyative whole numbers 
and is stored internally as fixed binary(35l. 

2. real - represents arithmetic values with fractional 
parts, and is stored internally as float decimalC14). 

3. logical - represents a simple truth value and is stored 
internally as bitC1> aligned. 

Paye 10 10/20/75 



ECL 

4. string - represents character strings or bit strings 
(with length greater than one) and is stored internally 
as character<256) varying. 

5. literal - re~resents strings that have a specidl meaning 
in the language or a special meaning to user defineo 
statemPnts (commands> such as keywords, operators, and 
punctuation. Literal values are stored internally as 
characterC32) varying. 

6. 

7. 

8. 

9. 

address - represents the address of a stora9e 
anc is stored internally as a pointer. 

location 

date - represents a Multics standard 
(microseconds since January 1, 1900> 
internally as fixed binary(71>. 

clock reading 
and is stored 

pathname - represents an absolute pathname of some 
as directory entry and is stored internally 

characterC168>. 

branch - represents a directory 
internally as a structure 
information about the entry. 

entry and 
containing 

is stored 
relevant 

10. iocb represents an 1/0 switch and is stored internally 
as a pointer to an 1/0 control block. 

11. refname - represents a reference 
internally as character(52). 

name and is stored 

12. label - represents a 
environment of the 
stored internally as 

location in a program 
invocation of the program. 

a label value. 

and 
It 

the 
i s 

13. entry - represents an entry into a subroutine and the 
environment of the block in which the subroutine is 
defined. An entry value may reµresent both comrr.and or 
noncommand subroutines. The farmer are procedures 
defined by or written in the language. The latter 
include all procedures written in other languages and 
still callable from within the language. An entry value 
may represent three types of subroutines: 

a. A procedure is a subroutine which may be invoked by a 
simple call and which executes a certain sequence of 
operations. 

b. A function is invoked to compute and return a value. 

c. A psuedo-variable may be invoked to return a value or 
used as the target of an assignment to receive a 
suoplied value. Psuedo-variables are useful to model 

Page 11 10/20/7) 



ECL 

1 4 • 

values in 
subroutine 
directory. 

the command 
calls to 

environment 
alter, e.g. 

which 
the 

An entry value is stored internally as an entry 
with additional designators .indicating whether 
command/noncommand procedure and whether it 
procedure, function or psuedo-variable. 

undefineJ - represents the absence of a value 
other type. It is the value associated with 
objects bound to newly defined identifiers that 
other initial value specified. 

require 
working 

value, 
it is a 
is a 

of any 
vadable 
have no 

15. list - is an dggregate type that is an ordered sequence 
of values which may be accessed as a group or 
individually. It may be used to represent arrays, 
structures, stacks, or abstract data types. There is 
one element corresponding to each positive integer. An 
element that has never acquired a value in any manner 
has the type ~ndefined. A list has one attribute, its 
length, which gives the laryest index for an element 
with a nonundefined value. If then there are no such 
elements, then the length is zero. 

1. Simple variable objects which have 
that may be changed by assignment. 

an associated value 

'· An external data object describes an external symbol 
for example, dn error_table_ code -- giving its name and 
a fixed type. Evaluating an identifier bound to such an 
object will extract the value from the external location; 
assigning to the value of the identifier will alter the 
value of the external locatio~. It may have any data 
type exce~t entry. 

3. A psuedo-variable reference describes a particular use of 
a psuedo-variable giving the arguments with which the 
procedure is to be invoked. It is createrl when a 
osuedo-variable used as the target of an assignment or 
passed by reference io a subroutine. 

4. A. list cross-section describes a particular sublist of a 
list value. It designates the list, the object having 
the list 3S a value, the starting element of the sublist 
and the length of the sublist. It is created to describe 
a list cross-section ocurring as the target of an 
assigment or being passed by reference to a subroutine. 

Page 1 2 10/20/75 



There are two syntactic types of expressions: basic 
expressions which either are sin~le tokens or are delimited by 
parentheses or oraces and which are used primarily as single 
arguments, and expressions which involve several tokens and must 
appear delimited by some keyword pharse or punctuation. 
Expressions represent some computation to be performed. 

<basic expression> ::= 
<identifier> I (<expression>) I <constant> I <list> 

<constant> ::=<string> <literal> 

<string> ::=<quoted string> I <unquoted string> 

<literal> l:= <option name> 

<list> ::= i [<basic expression> ••• J l 

<expression> ::= <infix> I <pref ix> I <combination> 

<infix> ::= <expression> <infi~-op> <expression> 

<prefix> ::= <prefix-op><expression> 

The result of evaluating a basic expression is the result of 
evaluating the contained <identifier>, <constant>, <list> or 
<expression>. The result of evaluating an <expression> is the 
result of evaluating the infix or prefix operation or 
<combination> it represents. The methods of evaluating these 
inferior constructs are described below. 

There are two types of constant values that may appear as or 
in an expression. 

1. A <string> represents to a data value of type string. 

2. A <literal> represents a literal data value corresponding 
to the designated <option name>. 

Note that the class of unquoted strings also incluJes whdt would 
normally be considered as numbers 1231 12.3, 12e3 and so 
forth; these are considered strings until the context of their 
use forces conversion to arithmetic <integer or real> values. 

ECL Page 13 10/20/75 



l.di:0.1iiii:tS 

Identifiers are the names of objects or constant values. 
They are a subset of unquoted strings. They must begin will an 
uppercase alphabetic character and contain only alphabetic 
c h a r a c t e r s a n d d i y i t s an d t h e c h a r a c t e r· s " -. " , " $ " , a n d " % " • 

DEFINITION OF IDENTIFIERS 

The creation of a definition for an identifier appends the 
<identifier> to a definition list and binds the <identifier> to 
an object or value. All <identifier>s must be defined before 
they are used. There are five means of definition: 

1. Definition of identifiers representing simple variable 
objects. <See the scope statement.> 

2. Definition of identifiers representing external data 
objects. <See the Synonym statement.> 

3. Definition of an identifier representing an entry 
constant. (See <procedure> and the <Entry statement>.> 

4. Definiticn of 
values. 

identifiers representing constant label 

5. Definition of the µararameters to a subroutine. An 
identifier that is a parameter may be bound to either a 
constant value or an object of any type. 

RESOLUTION OF IDENTIFIER DEFINITIONS 

An <identifier> definition is resolved by finding the value 
or object to which it is bound. To resolve a definition, perform 
the following procedure: 

ECL 

1. Search· the definition list for the current block for a 
definition of the <ide~tifier>~ If found, then return 
thP object or value to which the <identifier> is bound. 

2. Otherwise, the <identifier> definition is to be resolved 
subject to the the list of <resolution rule>s established 
by the (implied) Environment statement for the current 
<block>: Apply the rules specified in the designated 
order. The rules are interpreted as follows: 

a. The f~~~ig~~ rule specifies that the definition 
in the immediately previous activation of 
containing <block> is to be searched. If no 
activation exists, then this rule is skipped. 

l i st 
the 

such 

Page 14 10/20/75 



b. The £iC~D1 rule specifies that the search is to 
continue in the parent of the current block the 
<block> immediately containing the current <block>, 
following the rules established in the parent. If 
there is no parent block, then this rule is skipped. 

c. Th~ £al1~c rule specifies that the search is to 
continue in the block that invoked this block the 
block that invoked a subroutine, entered a begin 
block, or signalled the condition invoking an on unit 
-- following the rules established in the caller. If 
there is no caller, then this rule is skipped. 

d. The ~iQQ21 rule specifies that the 
list is to be searched. 

global definition 

e. The ~YilliD rule specifies that the List of builtin 
functions and psuedo-variables is to be searched. 

f. The f!tfCU~l rule specifies that the user search rules 
are to be used to attempt to find an external symbol 
with the name of the identifier. Resolution of an 
identifier by this rule causes an entry value 
designating the external entry point found to be 
returned. 

3. The definition list selected by 
rules above, is searched 
definition of the <identifier>. 
the object or value to which the 
returned. If the search fai Ls, 
until the list is exhausted. 

the application of the 
for an non-transparent 
If one is found, then 
<identifier> is bound is 
the next rule is applied 

EVALUATION OF AN IDENTIFIER 

When an <identifier> is used as part of an expression, it is 
evaluated to find the value that it currently represents. To 
evaluate an <identitler>, first, resolve the <identifier>'s 
definition. If it is bound to a constant value, then return that 
value as the result of evaluating the <identifier>. If it is 
bound to an ob1ect of some sort, then evaluate that object and 
return the result. 

A <combination> is used to represent parenthesized 
expressions, function invocations, list cross-sections, and 
psu~do-variable invocations. 

<combination> ::= <constant>l<list>I 
C<expression>)l<reference> 

ECL Paye 15 10/20/75 



\ 

Evaluation depends on the nature of the <combination>. 

Case 1. The <combination> is a <constant>, <list>, or 
parenthesized <expression>: Evaluate the construct, 
and return the result as the result of evaluating 
the <combination>. 

Case 2. The <combination> is a <reference>: Evaluate the 
<reference>. If the result is a constant value, 
then return that value. Otherwise, evaluate the 
object, and return the result. 

A <reference> represents a data object or value. It is used 
to aescribe the target of an assignment, the arguments to a 
subroutine, and the operand of an expression. 

<reference> ::= <si~ple reference> I <complex reference> 

<simple reference> ::= <identifier> 

<complex reference> ::= <element><argument list> 

<element> ::= 
<constant> I <id en t i fie r > I (<express i on>) I [<ref ere n c e > J ~ 

To evaluate a <reference>, select the applicable 
perform the indicated operations. 

case, and 

ECL 

Case 1. The <reference> is a <simple 
the <identifier> specified, 
object to which it is bound. 

reference>: Evaluate 
and return the value .or 

Case 2. The <reference> is a <complex reference>: Evaluate 
the component <basic expression>s and <reference>s 
of the <argument List> in an unspecified order. 
Evaluate the <element>, and select the ap~licable 
case: 

a. If the evaluated <element> is a list value, or is 
an object representing a list value or 
cross-section, then the evaluated <argument list> 
must consist of one or two values which must be 
convertible to integer values. Let j be the 
converted value of the first expression. If 
there is a second, let o assume its value: 
otherwise, let o be 1. The result is a list 
cross-section of the object or value representing 
the o elements beginning with the ith element. 

Page 16 10/20/75 



b. If the evaluated <element> is a val~e that 
converts to an entry value representing a 
function, then derive and process the arguments 
as for a procedure call. Invoke the function 
with these arguments and return the result. 

c. If the evaluated <element> is a val~e that 
converts to an entry value representing a 
psuedo-variable, then derive the arguments to be 
passed to the psuedo-variable ~hen it is invoked 
as for a procedure called. The result is a 
psuedo-variable reference formed by associating 
the arguments with the psuedo-variable. 

d. All other cases are in error. 

The evaluation of an object yields the value associated with 
that object: 

J..i.i!.~ 

1. If the object is 
assodated with 
result. 

a 
the 

variable object, then the value 
variable object is returnee as the 

2. If the object is an external data object, then the result 
is a value with the value extracted from the external 
location. 

3. If the object is a psuedo-v~riable reference, then the 
psuedo-variable designated is invoked with the associated 
arguments, processed as for a procedure call. The value 
returned oy the psuedo-variable is the result. 

4. If the object is a list cross_section, then the object 
representing the list is evaluated, and a list consisting 
of the designated elements returned. 

The <list> construct, <basic expression>s enclosed in 
braces, evaluates into a list value. , The elements are foru.ed by 
evaluating the expressions, and forming the resulting values into 
a sequence orderej left to right. 

ECL Page 17 10/20/75 



The language supports most of the standard infix <two 
operand) dnd prefix <one operand) operators, as well as a few 
special ones. Evaluation of an infix or- prefix operator causes 
the oµerands. to be evaluated, the indicated operation to be 
performed, and the result returned as the value of the operation. 
There are five types of opera~ors: arithmetic, logical, 
comoarision, string and list. They maintain the normal <i.e. 
PL/I) operator precedence. 

Most of the operators normally work on scalar data values. 
If the one operand of a prefix operator is a list, then the 
result is a list of the variable objects having the values 
cerived from applying the operator to each element of the list 
individually. For infix operators, if both operands are lists 
Cof the same length), then the result is a list of the values 
resulting from a pairwise application of the operator to the 
elements of the two lists. If one operand is a scalar, and the 
other is a list, the scalar is promoted to a list of the 
appropriate length. 

[xcept as otherwise noted, it is 
operands to have an Undefined value. 

ARITHMETIC OPERATORS 

an error for any of the 
the program is in error. 

These perform the standard arithmetic operations between 
their operands. The operands are expected to be either integer 
or real. If they are not, they are converted to one of these 
types, as appropriate <see conversions), before the operation is 
attempted. The result will be integer if there is enough 
precision to hold the result, otherwise the result will be real. 
There are five arithmetic operators: 

+ addition 
subtraction (infix), negation (prefix) 

* multipication 
I division 
** exponetiation 

LOGICAL OPERATORS 

There are two logical infix operators and C"&"> and or 
<"I"), and one logical prefix operator not<"-">. These 
operators expect their operands to be of type logical, and as 
above, operands not of this type will be converted. The result 
is a logical data value. 

ECL Page 18 10/20/75 



COMPARISION OPERATORS 

These operations return d logical value indicatiny whether 
or not the specified comparision was successful. The 
comparisions fall into two categories: value comparision, and 
type comparison. 

Value Comparision 

the 
They 

There are six infix operators which may be used to 
values of types integer, real, logical, string, and 
are the standard operators: 

compare 
Literal. 

= i s equal to 
= i s not equa L to 

< i s less than 
<= i s not greater than 
>= i s not less th an 
> i s greater than 

These operators expect there operands to be of the same type. If 
not they are converted according to the table below. 
Comparisions of values of type integer and real are done 
arithmetically. Comparisions of logical are performed as if the 
values were the integers, 0 or 1. Comparisions of string and 
literal values are done according to the ASCII collating 
sequence. 

integer real logical string literal 

integer integer real integer integer string 
real real real real real striny 
logical integer real logical logical st r i ng 
string integer real logical string string 
literal string string st ri ny string literal 

These six operators may also be used to compare values of 
type date. If one operand is not a date value, it must be a 
string convertible to a date value. The comparision is performed 
arithmetically on the internal fixed binaryC71) form. 

Only the operators "=" and ., .. =" may be used to compare 
values of other data types. Addresses compare equal if they 
specify the same loc~tion. Entries and labels compare equal if 
thet describe the same location and generation of storage. Iocbs 
compare equal if they identify the same IIO switch (even if 
syn_'ed>. Branches compare eQual if the segments have the same 
unique id's. Pathnames compare equal if they describe the same 
directory entry. Comparisions are made between values of the 
same type. If one of the values is string, and the other 
address, entry, branch, pathname, refname, or iocb1 then the 
string is converted to the other type. If botn values are of the 

ECL Page 19 10/20/75 



types refname, pathname, address or branch, then conversion to 
address or branch (if one of the two is a branch) is attempted 
before the comparision. Otherwise, the program is in error. It 
compares equal to only another undefined value. 

Tyoe Comparision 

The operator, "==", is an 
returriing the value True if the two 
type. It has the same precedence as 

infix comparision 
operands are of 

operator 
the same 

STRING CONCATENATION 

" -" - . 

The operator_, "II", is used to 
together. It expects both operands to be 
they are not, the offenders are converted 
performed. The result is a string value. 

LIST CONCATENATION 

concatenate two strings 
of type string. If 

before the operation is 

The inf ix operator-1 "!"., is used to join two lists together 
in the same manner as two strings are joined by concatenation. It 
expects both operands to be of type list; if not, the scalar 
operands are promoted to one element list before the operation is 
performed. It has the same precedence as "IJ". 

Conversions may be requested explicitly by use of conversion 
functions, or implicitly by context. The conversions given in 
the table below may be performed among scalar data types. 

An equals sign indicates conversion of a value to the same type, 
in which case th~ value is simply copied. An asterisk indicates 
a conversion that may be performed under transitive closure and 
which is likely to have meaning. These multistep conversions 
will be performed automatically. CAn attempt can be made to 
convert most types to most any other type with a string value as 
an intermediate step, but such attempts will generally result in 
conversion errors.> Those marked with numbers indicate one step 
conversions anJ are described below. 

ECL Page 20 10/20/75 



r' 

-----------------~-----------------------------------------------

Data Type Conversions 

integer logical literal date branch ref name label 
\ TO 

FROM \ real string address pathname iocb entry 

int eyer = 3 8 

real 2 = * 8 

logical 4 * = 9 

string 5 6 7 = 11 1 2 1 3 1 4 * 1 8 2U 27 

literal 10 = 
address 1 2 = 22 * 24 

aate 13 = 
pathname 1 5 2 .s = 16 * 
oranch * * 1 7 = * 
iocb 1 9 = 

ref name 21 25 * * = 

entry 26 = 
label = 

1. integer to real - the integer value is converted to a real 
value according to the rules of PL/I for their internal 
forms. 

2. real to integer - the integer part 
taken. For example, 2.34 becomes 2; 

of the real value 
-2.34 becomes -2. 

i s 

3. integer to loyical - if the integer value is nonzero, the 
result is True; otherwise, it is false. Real Vdlues are 
converted to integer in conversion to logical. 

4. logical to integer - True becomes the value 1; False, zero. 
Logical to real involves a conversion through integer. 

ECL Paye 21 10/20/75 



s. strin~ to integer - if the string represents. an integer in 
the rdn~e -2••35 to 2••35-1, the result is that integer. If 
the string represents a real value in that range, the integer 
part of that value is the result. Otherwise, the program is 
in error. 

6. striny to real - if the string represents a number in the 
range -10e128 to +10e127, the result is that number. 
Otherwise, the program is in error. Whenever a string is to 
converted to an arithmetic type (as for example, when it is 
the operand of an arithmetic operator> a string to integer 
conversion will be performed if the numoer is an integer in 
the ~ppropriate range; otherwise, a string to real 
conversion will be attempted. 

7. string to logical - if the string 
true: if the string is "O", 
Otherwise the program is in error. 

is "1", then the result is 
then the result is false. 

8. integer or real to string the result is the character 

9. 

string which most compactly represents the number. There 
will be no leading blanks, and a sign will appear orly for 
negative val~es. For values with magnitudge greater than 
1C••14, exponential form will be used.· 

lo~ical to string - if the source value is true, 
is "1''; otherwise, the result is "O". 

the result 

10. Literal to string - the character 
literal is simply copied. 

string representing the 

11. string to literal - the character string representing the 
string value is simply copied. If, however, there are more 
than 32 significant characters in the string, the program is 
in error. 

12. address to string, string to address - the ioa_ format for a 
pointer is used to represent the address value as a string. 
If a string to address conversion fails, a string to pathname 
to address conversion will be attempted before an error is 
reported. 

13. date to strin~, strin~ to date - the convert_date_to_binary_ 
format string is used to represent the string equivalent of a 
date. 

14. string to pathname a (possibly) relative pathname is 
ex~anded to an absolute pathname. The entry portion of the 
pathname may oe star laden. 

15. pathname to striny - the character 
pathname is si~ply copied. 

ECL Page 22 

string representing the 

10/20/75 



16. pathname 
made to 
actually 
error.> 

to branch - the pathname is copied and a check is 
verify that the entry specifed by the pathname 

exists. (Star laden entry names will result in an 
Other conversions to branch are done via pathname. 

17. branch to pathname - the path~nme of the directory entry is 
copied. Conversions from branch values are perforrred with 
pathname as the intermediate type. 

18. string to iocb - the 1/0 control block for the 1/0 switch 
whose name is given in the string is found. 

19. iocb to string - the name of the I/O switch associated with 
the IOCB is the result. 

20. string to refname - the string is copied, and a check is made 
to verify that it is indeed a reference name on some segment. 

21. refname to string - the character string representing the 
refanme value is copied. 

22. address to pathname - the result is the pathname of the 
segment designated by the address value. 

23. pathname to address - the segment specified by the pathname 
is initiated. 

24. acdress to refname - the first nonnull refe~ence name on the 
segment specified by the address value is used. 

25. refname to acdress - a pointer to the segment whose reference 
name is given is found. 

26. entry to string if the entry represents a command 
procedure, the result is the identifier associated ""it h that 
entry. I f the entry represents an external procedure, then 
the result is the name of the entry in the form 
segname[$offsetname]. 

27. string to entry - first, a check is made to see if there is a 
procedure, function or psuedo-variable with the name given by 
the string. If so, the result is an object of the 
a~propriate type with the address and environment of the 
routine specified. Second, a search for an external 
procedure is performed according to the algorithm of 
find_command_, and if found becomes the entry value. It will 
be a procedure or function depending on the status of the 
function bit in the entry parameter descriptor list Cif one 
is present>; otherwise, it will be designated a procedure. 

ECL Page 23 10/20/75 



Ei::.cmctiac 

The promotion 
appropriate length 
the scaldr. 

of a scalar to a list causes a list of the 
to be constructed from copies oi the value fo 

THE Call STATEMENT 

<basic expression> [<argument list>] 

<argument list> .. -. .• -
{<basic expression>l1<reference>J} ••• 

The leading <basic expression> may 
<identifier>. This restriction is made 

not 
t 0 

lie a 
permit 

simple 
leading 

<identif ier>s to identify other statements. 

This statement causes a designated procedure to be invoked 
with the drgument list supplied. To execute a <Call statement>: 
Evdluate the leading <basic expression>, and convert the result 
to an entry value. This value must represent a procedure as 
opposed to a function or psuedo-variable. If there is no 
<argument list>, then invoke the procedure without argumentsi 
otherwise, evaluate each component of the <argument list>, and 
derive the arguments to be passed to the called procedure in the 
follo~in~ manner: 

1. A <basic expression> that evaluates to a scalar Cnonlist) 
value, produces a single argument, the value of the 
<basic expression>. 

2. A <basic expression> that evaluates to a list value 
produces a number of arguments that is equal to the 
length of the list (including zero>. ,The arguments 
<ordered left to right) are the values that are the 
elements of the list. 

3. A <reference>' produces a single argument which is the 
object that results from evaluation of the <reference>. 

The arguments have the same left to 
generating syntactic forms. Prior 
proceoure, the arguments are processed 
the type of the procedure: 

right ordering as their 
to being passed to the 
in a manner dependent on 

ECL 

1. If the procedure is a command procedure, then no further 
processing is required. The arguments are passed as is, 
to be processed according to the parameter specification 

Page 24 10/20/75 



of the called procedure. The procedure may assiyn values 
to those arguments which are obj~cts Ci.e. result form 
the evaluation of a <reference>). 

2. If the procedure is an noncomm~nd procedure with entry 
parameter descriptors, then the arguments are first 
evaluated and converted to the type expected by the 
procedure. Scalars convert to their corresponding PL/I 
types. Lists may convert to either one dimensional 
arrays or structures <with contained lists rratching 
substructures>. On return, the argument values 
corresponding to <reference>s, but possibly modifed by 
the called procedure, are reassigned to the original 
<reference>. 

3. If the procedure is an noncommand procedure without entry 
parameter descriptors, then the arguments are passed 
accordin~ to their corresponding PL/I data types. Lists 
are passed as uni-dimensional arrays if their elements 
are convertible to a common type. <The common type is 
determined as for the comparison of two different dato 
types.> On return, the argument values corres~onaing to 
<reference>s, but possibly modifed by the called 
procedure, are reassigned to the original <reference>. 

THE Let STATEMENT 

Let <reference> =<expression> 

Execution of a <Let statement> causes the source 
<expression> to be assigned to the target <reference> to alter 
the value of the object that the latter represents. 

To execute a <Let statement>, evaluate the source 
<expression> and the target <reference>, and assign the value of 
the source expression to the evaluated target. The target of an 
assi9nment operation may not be a constant value. Otherwise, 
assignement is performed by selecting the applicable case on the 
basis of the type of the target. 

ECL 

Case 1. The target is a variable object: associate the 
object with the value of the source expression. 

Case 2. The target is an external data object: Convert the 
source value to the type of the external object, and 
copy the result into the external location. 

Case 3. The target is a psuedo-variable reference: Invoke 
the psuedo-variable with the arguments specified, 
and supply it with the assigned value. 

Page 25 10/20/75 



Case 4. The target is a list cross-section: Evaluate the 
object representing the list value. Insert the 
element(s) of the source value into the resulting 
list value in place of the designated element(s) 
extending or contracting the list as necessary. 
Assign the modified list t-0 original object. 

THE Exit STAT~MENT 

Ex i t 

An <Exit statement> may not appear immediately contained in 
the body of a <procedure>. 

The execution of ,;in <Exit statement> 
context in which it appears: 

is dependent on the 

Case 1. It appears within a <group> as an <executable unit>: 
Terminate the execution of the <group>. 

Case 2. It appears in the body of an <on unit> 
<executable unit>. Return from the <on unit> 
point at which the condition was signaled. 

as an 
to the 

Case 3. It appears in a the body of a <for unit> as an 
<executable unit>. Return from the <for unit> to 
the <Perform statement> invoking the <for unit>. 

THE Continue STATEMENT 

Continue 

A <Continue statement> may only appear as an <executable 
unit> in a <group> headed by an <iterative do>, a <do while>, or 
a <do list>. 

To execute a <Continue statement>, terminate the execution 
of the list of <executable unit>s in the <group>'s <statement 
list>, and continue with the next step in the execution of the 
<group>. 

THE Goto STATEMENT 

Goto <identifier> 

The <ijentifier> must evaluate to a label value. 

To execute a <Goto statement>, evaluate the <identifier>. 
It must yield a label value. Move control to the <executable 
unit> designated by the label value bound to the <identifier>. 

ECL Page 26 10/20/75 



This operation involves a local goto if the statement is in the 
current block. If the statement is in some other block, this 
involves a nonlocal goto which causes all intervening active 
blocks to be deactivated and the condition .cleanup to be 
signalled in each such block ~efore deactivation. 

THE Interpret Statement 

Interpret 

The <Interpret statement> allows the construction of a 
command interpreter using the mechanisms of the command language 
interpreter for input and transldtion. 

To execute an <Interpret statement>, read and translate one 
<statement unit> <as from command level), and execute in it as it 
it were contained in the <block> containing the <interpret 
statement> itself. 

THE Perform STATEMENT 

Perform 

The <Perform statement> is used to invoke a <for unit body> 
comprising the second part of a compound command. 

To execute a <Perform 
body> contained in the 
containin3 the statement. 
execution of tne <Perform 

THE Sig~al STATEMENT 

statement> simply invoke the <for unit 
<for unit> that invoked the <procdure> 
If no such <for unit>· exists, tne 

statement> will have no effect. 

Signal <condition> [<argument list>] 

The <Signal statement> is used to invoke the most recent 
handler for a specified condition. It may cause a handler 
established by the standard Multics condition mechanism to be 
invoked. To execute a <Signal statement>, perform the following 
procedure: Evaluate the <condition>, and convert its value to a 
string value. This yields the name of the condition. Begin a 
search for a handler for the condition in the current blcck1 and 
continue, on failure, with its callers. Scan the active handler 
list of the block being searched first for a handler for the 
condition specified, and then for a. handler for the condition 
"any_other". If the search yields a hanoler, then process the 
<argument list> as for a procedure call, and invoke the handler. 
If no handler is found, the program is in error. 

ECL Page 27 10/20/75 



Note also that as in a <procedure>, while executing in an 
<on unit>, the Values of the arguments passed by reference may be 
changed to communicate information back to the calling procedure 
{the procedure signalling the condition>. 

THE Revert STATEMENT 

Revert <condition> 

To execute a <Revert statement>, evaluate the <condition> 
ex~ression and convert the result to a strin~ value giving the 
name of the condition to revert. Search the active handler list 
in the current block for a handler for the condition so named. 
If one is found, remove it from the list. 

THE Return STATEMENT 

Return [<expression>] 

A <Return statement> can only appear immediately contained 
within body of a <procedure> or a <data unit>. The optional 
return <expression> may only appear in the body of a function or 
psuedo-variable; the return <expression> must appear when in the 
<data unit>. 

In the context of a <procedure> body, execution of this 
statement causes the subroutine in which it is contained to 
return to the point at which it was invoked. If the optional 
<expressiJn> is present, it is returned as the value of the 
function or psuedo-variable. Cit a psuedo-variable was invoked 
to receive a value instead of return a value, then the program is 
in error if the <expression> is given.> 

In the context of a <data unit>, execution of this statement 
causes the <expression> to be evaluated, converted to a character 
string, and returned as the next value of the <data unit>. 

THE Resiynal STATEMENT 

Resigna~ [<argument list>] 

A <Resignal statement> may only appear immediately contained 
in the body of an <on unit>. 

Execution of this statement causes the current <on unit> to 
be exited. The search tor an active handler for the condition, 
as performed by a <signal statement>, is continued, and the next 
most recent handler invoked. If an <argument list> is specified, 
it is processed as for a procedure call, and the next handler is 
invoked with that group of arguments. If no <argument list> is 

ECL Page 28 10/20/75 



specified, the same (but possibly altered) ar~ument list as the 
current handler was invoked with is used. 

THE NULL STATEMENT 

<null statement> .. -.. - no tokens 

Execution of a <null statement> causes no action to be 
performed and has no effect on the program. Control passes 
normally to the next <executable unit>. The purpose of the <null 
statement> is to provide, for example, a convenient way to 
specify a <then part> that performs no action. 

THE If STATEMENT 

<If statement> ::= If <basic expression> 

The <If statement> controls the internal execution of an <if 
group>. That is, it selects for execution either the <then part> 
or optional <else part>. 

To execute an <If group>, evaluate the <basic expression> 
appearing in the <if statement>, and convert its value to a 
logical value. If the result is true, execute the <executable 
unit> contained in the <then part>; otherwise, if d <else part> 
is given, execute the <executable unit> contained in the <else 
part>. 

THE Do STATEMtNT 

ECL 

<do statement> .. -.. - <simple do>l<iterative do>I 
<do while>l<do case>l<do list> 

<simole do> ::= Do 

<iterative do> ::= 
Do <do index> = <initial> Repeat <next> 

[<while precicate>J 

<do index> ::= <reference> 
<initial> ::= <expression> 
<next> ::= <basic expression> 
<while predicate>::= While <basic expression> 

<do while>::= Do <while predicate> 

<do case> ::= Do Case <case selector> 

Page 2 9 10/20/75 



<case selector> ::= <basic expression> 

<do list> ::=Do <list spec>[,<list spec>J ••• 

< l i st 
<list 

[<while predicate>] 

s µ e c > : : = < d o i n d e.x > F r o m < l i s t v a l u e > 
value> ::= <basic expression> 

The <do statement> denotes the beginning of a <group> and 
controls the execution of the <executable unit>s contained in the 
<grou~>'s <statement list>. 

A <do statement> is never itself actually executed. Rather, 
when the control encounters the <do group> as an <executable 
unit>, the applicable case is selected on the basis of the <do 
statement> and the indicated operations performed. 

ECL 

Case 1. The <do statement> is a <simple do>: 

Execute the list of <executable unit>s once, 
terminate the execution of the <group>. 

Case 2. The <do statement> is an <iterative do>: 

th en 

a. Evaluate the <reference> in the <do index>; let 
the result be R. Evaluate the <initial> 
expression, and let its result be v. ~ 

b. Assign V to R. 

c. If a <while predicate> is given, evaluate the 
<basic expression>, and convert the result to a 
logical value. If this value is false, the 
execution of the <group> is complete. 

d. Execute the list of <executable unit>s, and when 
finished, continue to step e. 

e. Evaluate the 
result be V. 

<next> expression, 
Continue with step b. 

Case 3. The <do statement> is a <do while>: 

and let the 

a. EJaluate the <basic expression> given in the 
<while predicate>, and ~onvert the result to a 
logical value. If the value is false, then the 
execution of the <group> is complete. 

b. Execute the l i st of <executable unit>s, and 
continue with step a. 

Case 4. The <do statement> is a <do case>: 

Page 30 10/20/75 



a. Evaluate the <case selector> expression, and 
c o n v e r t t h' e r e s u l t t o a n i n t e g e r v a l u e • Le t I b e 
this value. The program is inerror if I <= 0 or 
if I is greater than the number of <executable 
unit>s in the <statement list>. 

b. Execute the Ith <executable unit> in the list. 

Case S. The <do statement> is a <do list>: 

a. Evaluate each <reference> specified as a <do 
index>; let the results be R1, ••• , RQ where Q 
is the number of <list spec>s. Evaluate each 
<list value>. If the result is not a list, 
promote the scalar value to a one element list. 
Let the list values be Ll, ••• ,Lo. let ~be 1; 
let! be the length of Ll. The program is in 
error if !. does not· also equal the length of all 
t h e o t h e r L.i • 

b. Assign to each Ri the ~th element of Lj. 

c. If a <while predicate> is given, evaluate 
<basic expression>, and convert the result 
logical value. If the value is false, 
execution of the group is complete. 

the 
to a 
then 

d. Execute the list of <executable unit>s and when 
finished, continue with step e. 

e. Let 1" be the value of .i + 1. If k 
execution of the group is complete. 
continue with step b. 

> ,L, then 
Otherwise, 

THE For STATEMENT 

<for statement> ::= for <Call compound> 

The <for statement> is used to construct compound commands. 
It denotes the beginning of a group of <statement>s thdt are 
subject to the control of the command specified in the <For 
statement> itself. 

A <For statement> is never actually executed. Rather when 
control reaches the <for unit>, the <Call statement> specified is 
executed. Execution of this command may cause the <for unit 
body> to be invoked by execution of a <Perform statement>. 

After the <for unit> has been invoked, control is returned 
to the point at which it was invoked, that is, the <Perform 
statement>, upon completion of all <executable unit>s in the body 

,..... of the <for unit> or upon execution of an <Exit statement>. The 

ECL Page 31 10/20/75 



<for unit> may be invoked zero or more times 
command. 

by the specified 

The <for unit> may 
with no arguments that is 
However, its environment 
procedure defined witbio 
statement> ~ay, of course, 

be viewed as a single entry procedure 
passed to the command specified. 

is norm a l l.y t he s am e as an intern a l 
the command. The <Environment 

change this. 

THE Data STATEMENT 

<Data statement> ::= Data <reference> 

The <Data statement> defines 
9enerate Lines of input to be read. 

a block of statements that 

The <Data statement> is not itself directly executable. 
Rather, when control encounters the <data unit> as an 
<executable unit>, an IOCB value for a switch controlling this 
input stream is assigned to the <reference>. When subsequent 
attempts dre made to read from this switch, the <data unit> is 
invoked to return a value that is to be convertec into a 
character string and "read" as input. For the first such 
invocation, control begins with the first <executable unit> in 
the <aata unit>, and ends when a <Return statement> is executed; 
for all subsequent invocations, control resumes at the point 
following t~e <Return statement> previously executed, and again 
terminates when the next <Return statement> is executed. 

THE On STATEMENT 

On <condition> (<parameter list>] 

of an <on unit>, a 
be viewed as a 

the condition is 
the parameters 

The <On statement> denotes the beginning 
handler for an abnormal condition, which may 
sinyle entry procedure that is invoked when 
signalled. The <On statement> further defines 
with which the handler is to be invoked. 

The <On statement> is not itself directly executable. 
Rather, when control encounters the entire <on unit> as an 
<executable unit>, the <on unit> is establised as a handler for 
the specified condition by performing the following procedure: 
Evaluate the <condition> expression and convert the result to a 
string value. This is the name of the condition. Add the <on 
unit> to the active handler list in the current blcck as a 
handler for the conJition replacing any handlers fer the 
condition previously established. 

The condition may be signalled, and the <on unit> 
by the execution of a <Signal statement> (see above> or 

ECL Page 32 

invoked, 
by the 

10/20/75 



,. 

standard Multics siynalling mechanism. 

The parameters are specified for an <on unit> in the same 
manner as for a <procedure>. Either a <parameter list>, a 
<parameter block>, or the Argument builtin may be used. 

After an <on unit> as been invoked, control is returned to 
the point at which the condition was signalled upon completion of 
the execution of all <executaole unit>s in the body of the <on 
unit> or upon execution of an <Exit statement>. 

THE PROCEDURE STATEMENT 

<procedure statement> ::= 
<type descriptor><identifier>[<parameter list>J 

<type descriptor> ::= ProcedurelFunctionlVariable 

The <procedure statement> denates the beginning of a 
<procedure>, a subroutine block1 and desiynates the type of the 
subroutine by the <type descriptor>. Moreover, it defines an 
entrypoint to the <procedure> and may include a description of 
the <parameter list>. 

A <procedure statement> is not itself directly executable. 
The appearance of a <procedure statement> in a <block> causes the 
<identifier> specified to be defined and bound to an entry value 
desginatiny the corresponding location when the <block> is 
entered. The appearance of a <procedure statement> in a 
<procedure> that is a <program unit> causes a corresponding 
external entry to be genrated for the the object segment into 
which it is compiled. Parameter Specification 

Parameter Specification 

The parameters to a procedure, function, or psuedo-variable 
are specified in one of two ways: by providing a <~arameter 
list> in the procedure header, or by giving a <parameter block> 
defining the syntax and semantics of the arguments expected by 
the procedure. 

If a <parameter block> appears within the <body> of a 
procedure, it is taken to apply to all entries to that procedure 
unless there is a <parameter block> which appears immediately 
following each entry, in which case each such block applies to 
its corresµonding entry. If there are no <parameter block>s 
within a procedure, then each entry is considered to have an 
(implied> <parameter list>. All other cases are in error. 

There is one final mechanism for referencing the arguments 
to a procedure: the builtin list Argument, which corresponds to 

ECL Pag~ 33 10/20/75 



the argument list with which the procedure was invoked. 

Parameter lists 

A parameter list specifies a list -0f <reference>s which will 
assume the identity of the values passed to the entry that the 
parameter list applies to: 

<µarameter list> ::= {<value parm>l<~eference parm>} 
<value parm> ::=<identifier> 
<reference parm> ::= L<identifier>J 

when the entry to which the <parameter list> applies is invoked, 
one of two operations will be performed for each 
pdrameter-argument pair: 

Case 1. The parameter is a <value parm>: 
argument must be a simple 
<identifier> to the value given. 

The corresponding 
value. Bind the 

Case 2. The parameter is a <reference parm>: The argument 
must be some sort of object. Bind the <identifier> 
to the object given. 

If an entry is invoked with less arguments than there are 
parameters specified for the entry, then the program is in error. 
If an entry is invoked with more arguments than there are 
parameters specified, then it will be expected that the remaining 
arguments are to be referenced by the Argument builtin 
psuedo-variable, and no error wilt be reported. 

THE Entry STAlEMENT 

Entry <identifier> [<parameter list>] 

The <Entry statement> defines an alterante entrypoint for a 
<procedure>. The type of entry value that it designates is given 
by the <type descr.iptor> in the <procedure statement> beginning 
the <procedure>. It may also describe the parameters to the 
entry. 

An <entry statement> is never directly executed itself. The 
appearance of an <Entry statement> in a <procedure> causes an 
additional <identifier> to be defined as entries to the 
subroutine in the same manner as the <identifier> appearing the 
<procerlure statement>. 

ECL Page 34 10/20/75 



THE End STATEMENT 

End 

The purpose of the <End statement> is to syntactically close 
the constructs: <µrocedure>, <on unit>, <do group>, <parameter 
block>, and <compound form>. It is never actually executed. 

THE SCOPE STATEMENT 

<scope><symbol spec>[,<symbol spec>] ••• 

<scope>::= LocallTem~IGloballParentlCallerl 
Bui ltinlExternallPrevious 

<symbol spec> ::= <identifier>C<initialization>J 
<initialization> ::= = <expression> 

An <initialization> option may not ap~ear if the <sccpe> is 
other than Local, Tempi or Global. 

The <scope statement> serves two purposes: to create 
definitions for local and glooal identifiers bound to variable 
object~, and to override the effect of an <Environment statement> 
for evaluating a single name. When making definitions, only a 
<scope statement> that is a <statement unit> may override 
previous declarations of the same <identifier> made in the 
<block>. 

To execute a <scope statement>, select the applicable case 
and perform the indicated operations. 

tCL 

Case 1. The <scope> is "Local": Compute the initial value 
Cas described below>, let the result be v. Aµpend a 
definition for the <identifier> to the definition 
list for the current block (subject to he 
restrictions concerning overriding a previous 
definition>. Bind the <identifier> to a new 
variable object, and assign V to the object. 

Case 2. The <scope> is "Temp": Compute the initial value, 
and let the result be v. Append a definition for 
the <identifier> to the definition list for the 
current block (subject to he restri~tions concerning 
overriding a previous definition> with the notation 
that the definition is transparent (not to be found 
from other than the current block>. 8ind the 
<identifier> to a new variable object, and assign V 
to the object. 

Page 35 10/20/75 



Case 3. The <scope> is "Global": Search the global 
definition list for a declaratfon for the 
<identifier>. If present, let the variable object 
to which it is bound be R. Otherwise, create a 
global definition for the <identifier>: Compute the 
initial value, and let the result be v. Append a 
definition to the global definition list. Bind this 
global instance of the <identifier> to a new 
variable 0bject1 also designated R. Assign v to R. 
In either case, add a definition for the 
<identifier> to the definition list for the current 
block (subject to the restrictions concering 
overriding a previous definition), and bind it to R. 

Case 4. The <scope> is Bny other valid <scope>: Resclve the 
<identifier> by searching the definition list 
desi~nated by the <scope> interpreted as a 
<resolution rule>; let the result be R. If no 
definition exists, then the program is in error. 
Otherwise, add a definition for the <identifier> to 
the definition list of the current block, and bind 
the <identifier> to R. 

The initial v~lue is determined in the following fashion: 
If an <initialization> is given, evaluate the contained 
<expression>; the result is the initial value. Otherwise, the 
initial value is undefined. Note that the initial value is 
calculated before the new definition is made. Therefore~ 

Local A = A 

creates a local copy of the value given by the <identifier> "A". 

THE Synonym ~TATEMENT 

A synonym .for an external object may be defined with the 
synonym statement: 

Synonym <identifier> <external symbol> <type> 

<extern<:d sy.mbol> : := <basic expression> 
<type>:·:= ,<.basic exp.ression> 

To execute a <Synonym statement>, evaluate the <externdl 
symol> expression~ and convert the result to a string value to 
give the name of t.he external symbol to be represented. Evaluate 
the <type> expression. If the value is Undefined~ the program is 
in error. I.f the va.lue is of type entry, then the external 
symbol is taken to designate a procedure entrypoint, and a 
definition for the <identifier> is created, and the <identifier> 
is bcund to the corresponding entry value. If the value is of 
some other type, an external data object of that type is created 

ECL Page 36 10/20/75 



to represent the external location, anu a definition for the 
identifier bincredted, binding the <identifier> to the object so 
created. 

TrlE Environment STATEMENT 

The <Environment statement> 
definition lists are searched to 
<identifier>. 

may be used to control which 
resolve an reference to an 

Environment [<resolution rule> [,[<resolution rule>J ••• J 

<resolution rule> ::= {Parent I Caller} I 
Previous I Global I Builtin External 

Only one <Environment statement> may apµear in the body of a 
<procedure> or <on unit>. 

Execution of this statement establishes, in the <block> in 
which it is contained, a list of <resolution rule>s sµecifying 
what <block>s' definition lists are to be searched, in left to 
right order, when an identifier definition is to resolved. <See 
the discussion of the resolution of <identifier> definiticns.> 

Default Environment Statements 

If no <Environment statement> appears in a <procedure> that 
is a <program unit>, then by default, the following is supplied: 

Environment Caller, Global, Builtin, External 

Similarly, any other <procedure>, or a <data unit> or <on unit>, 
that does not contain an <Environment statement> has the default: 

Environment Parent 

A <for unit> is intended to be executed within the environment of 
its caller, and therefore has the default: 

Environment Caller 

The special "block" that defines the 
<statement unit>s, initially has 
following statement: 

execution environment for 
rules corresponding to the 

Environment ~lobat, Builtin, External 

ECL Page 3 7 10/20/75 



PARAMETER BLOCKS 

This facility allows the user to define the syntax and 
semantics of a new command by providing a means of describing the 
forru and meaning of the arguments expected by a command 
procedure. The same facility is available for functions, 
psuedo-variables, and on units. 

Syntax of the Parumter Hlock 

ECL 

<parameter block> ::= 
<Parameter statement> [<parm spec> ••• ] <End statement> 

<Parameter statement> ::= 
Parameters <identifier> [, <identifier>J ••• 

<pa rm spec> : := 
<basic form> <compound form> <construction> 

<basic form>::= 
[<form prefix>J{<keyword spec>l<type spec>l<value spec>} 

[<success>J(<default>l<error>J 

<keyword spec> ::=Keyword <literal> [Or <literal>] ••• 

<type spec> ::= <type name> <identifier> 

<value sµec> ::= Value <identifier> 

< s u c c es s > : : = <ex e cut ab l e un i t > 

<default> ::= Default <executable unit> 

<error> ::=Error <executable unit> 

<compound form> ::= 
<compound header>[<parmspec> ••• J<End statement> 

[<success>] [<default>l<error>J 

<compound header>::= [<form prefix>] 
<Group statement>l<Select statement>l<Multiple statement> 

<Group statement> ::=Group [<title string>] 
<Select statement>::= Select [<title string>] 
<Multiple statement> ::= Multiple [<title string>] 

<title string> ::=<string> 

<construction> ::=<Form statement>[<from spec>] 

Paye 38 10/20/75 



<for ni s ta t e men t > : : = Form {Li st I St r i n g} < i dent if i er> 

<from spec> ::= From <µarm spec> 

Medning of Semantic Forms 

The <Parameter statement> defines the <identifier>s which 
are to be the parameters to the contianing procedure. Their 
values are determined by the parameter speci.fications given in 
the body of the <parameter block> as aescribed below. 

The arguments supplied to an entry for which a <pdrameter 
block> has been specified must be simple values and are are 
scanned right to left Cf irst to last) matching each to a form 
spec i fed i n the par am et er spec i f i cat ion l i s t. I f 'a mat c h cannot 
be found, or if the are too many or too few arguments an error is 
reported as described oelow. 

The three basic forms are used to match a single argument. 
An argument that is a literal constant can only be used to match 
a Keyword form. This permits their use as unambigous delimiters 
of drgument groups. 

The Keyword form gives a list of one or more keywords 
(literal constants> of which one is expected to match the 
argument occurin9 in the implied location. The argument itself 
must also b~ a literal constant. For example: 

Keyword -brief Or -bf 

rreans that either the control argument -brief or its abbreviation 
~ust appear. 

A type form requires the presence of an argument of a type 
convertible to the specified data type. The converted value is 
assigned to the <reference> specifed in the type specification. 
A <type name> may be one of the data types supported in the 
langua~e: Integer, Real, Loyical, String, Literal, Aadress, 
Entry, Label, Pathname, Branch, or Iocb. 

The Value· form merely requires the presence of an ar~ument 
in a given location. The value of the argument is assigned to 
the <reference>. 

The compound forms allow 
oraer for a list of forms, or of 
distinguishable forms which mdy 

the specification of positional 
selection among one er more 
appear in an unordered fashion. 

The Group form defines an ordered list of one or more forms 
that must match arguments in the precise order given in the 
semantic block. The first form in a ·group may not be optional. 

tCL Page 39 10/20/75 



The Select 
list of forms. 
between each of 

form demands the appearance of one member of a 
There must be an unambiguous way to distinguish 
the forms in the list. 

The Multiple form is similar, but requires the presence of 
one or more members of the list of forms. They may appear in any 
order, but one member of the list is permitted to be used only 
once. There must be, in addition to the restriction mentioned 
above, a non-ambiguous means of distinguishing between the 
members of the list and any following forms. 

Two prefixes are allowed on either basic or compound forms. 
An Optional prefix specifies that the given form need not appear. 
That is, if the corresponding argument does not match the form, 
then that form may be skipped, and processing continued by 
matching the same argument with the next form in the Li st. It 
must be possible to distingusih between the optional form and any 
followinq (optional) forms. A Repeat prefix specifies that the 
form given may aµpear any number of times and that the body of 
the procedure is to be executed once for each time the form 
appears, and after all variable assignment for each match have 
taken place. There may be no nested Repeat specifications. 

One final mechanism is pro~ided to allow a list or string to 
be built from several arguments. For contiguous arguments, the 
syntax is: 

Ferm {ListlString} <identifier> 

which forms a list or string out of all arguments up to but not 
incluaing the first which matches the next specified form (or the 
end of the argument list>. This next form, which acts as a 
delimited fer the list or string, must be a keyword. Once the 
string or list has been built, it is assigned to the <identifier> 
interµreted as a <reference>. The value may also be built from 
the occurences of certain noncontiguous arguments. The syntax 
for this variant is: 

Form {ListlString} <identifier> 
From <parm spec> 

Any explicit assignment to the 
spec> will instead add a new element 
is, an assignement of the form: 

<identifier> within the <parm 
to the list or string. That 

Let <identifier> = <expression> 

will become for the list form of a <construction> 

Let <identifier> =<identifier> <expression> 

(For strings, 
concatenated 

!:CL 

each new element 
to the end of 

is converted to 
the existin9 string 

Page 40 

a string and 
along with one 

10/20/75 



intervening blank.> 

Two basic forms are distinguishable if they are both keyword 
specifications or if one is a keyword and the other is a type or 
reference specification. Two groups are distinguishable if their 
first forms are distinguishable. 

Semantic Meaning 

There are two means available to provide semantic 
information. First, each compound or basic form may be 
immediately followed by a <success> specification, an <executable 
unit>, to be executed if the form is present. For example: 

Select 

End 

Keyword -workiny_dir Or -wd 
Let Dir= WorkingDir 

Pathname Dir 

Second, each compound or basic form may be followed by a 
<default> specification~ an <executable unit>, to be exec~ted if 
tne form was allowed to not appear Ci.e. optional or appearing in 
a Select or Multiple form) and did not indeed appear. For 
example: 

Optional Select 
Keyword -brief Or -bf 

Let BriefSw = True 
Keyword -long Or -lg 

Let BriefSw = False 
End 
Default Let 8riefSw = False 

Error Processing 

If the arguments supplied to a command do not correspond to 
what is required for the com~and, an error message will be 
generated automatically. The message is selected trom the 
following: 

ECL 

1. Too many arguments. After processing the last 
argument, there exist as as yet unscanned ones. 

expected 

2. Bad syn~ax in command. A required Keyword is missing. 
(A check is made to see if the next form is what it 
should <could> be.) 

3. Expected argument missing. A required argument, as in d 

type or reference form, is not present. CA check, as 
above, is made.> 

Page 41 10/20/75 



4 • 

5. 

6. 

7. 

Expected argument group missing. An entire group 
construction is missing. The pharse "argument group" 
replaced by a <title string> if one is specified for 
group. 

or 
i s 

the 

A r gum en t i s no t c on v er t i b l e t o ,( type> : < a r g >. A 
argument is not of the designated type. CA 
perform to determine that an argument is present 
location, and not just missing.) 

required 
check is 
in that 

Extraneous argument 
present, that is, 
one should be. 

present. An extra argument is 
the next argument is what the curent 

Invalid keyword: 
invalid keyword 
optional keyword. 

<keyword> expected. Issued when an 
appears in the place of a required or 

8. Invalid syntax in argument group. A required group or 
optional group whose first members have been matched 
contains unmatchable forms. The pharse "argument group" 
may again be replaced by the <title string> for the 
group. 

9. Invalij option. There are argument(s) present that do 
not match any form in a Select or Multiple specification. 

10. Invalid syntax in command. 
failed. 

Issued when all else has 

11. Invalid syntax in command: arguments <arg1> ••• <argn> not 
recognized. Issued in the above case, but when later 
forms can be matched. 

The user can specify the action to be taken if one of the 
errors, 2, 3, 4, or s, occur by using an <error> statement. For 
basic forms, the statement supplied is executed if the form was 
required to aµpear but did not. Note that an <error> neec not be 
applied to forms within a Select or Multiple form, and also that 
<default> and <error> statements are mutually exclusive. 

Order of Processing 

A <parameter block> is interpreted by 
followin~ operations in the order indicated: 

performing the 

ECL 

1. The arguments passed to the <procedure> or <on unit> are 
scanned and matched according to the rules given for each 
form. If an error is detected1 then the <error> action 
or default error action is taken as applicable, and 
processiny aborted. 

Page 42 10/20/75 



2. All implied assiynments <as for the type and value form> 
are performed in unspecified order. 

3. The <defaul~> actions for optional forms 
appear are executed in unspecified order. 

that aid not 

Upon comµletion, the rest of the body of the <block> is executed. 
(That is, step 6 of block activation is performed.> If there are 
additional groups 'of arguments to be processed for a repeat form, 
steps 2 ana 3 are repeated for only those forms that appeared in 
the repeated <parm spec>s. The body of the <block> is cllso 
rexecuted. 

A number of computational and special purpose functions are 
provided by the language. These functions may be invoked by name 
in the same manner that a user defined procedure would be1 
~rovided that the user has not defined one with the same name, 
and if Builtin is specified as part of the current environment. 

The description of these functions will include their name, 
para~eters, and the type of their result. Most of the functions 
require that their parameters be of a specific type. If an 
argument is not of. the correct type, it will be converted or 
promoted as appropridte. The type expected for a parameter will 
be designated oy the letter denoting the parameter: 

a 
b 
d 
i 
l 
p 
r 
s 
t 
v 
x 

arithmetic <real or integer) 
branch 
date 
iocb 
l i st 
pathname 
reference 
strin-J 
logical 
value (anything) 
address 

The result is indicated by"->" <which may be read as evaluates 
to> followed by a type letter. Psuedo-variables are indicated by 
"<->" instead of "->"; in all cases, the type of the assigned 
value is the same as the result. 

These perform the same function as their 
PL/I. The operands must be (convertible to> 
The result is either an integer or real value 
precision needed to express the result. The 

ECL Page 43 

counterparts in 
arithmetic values. 
depending on the 
functions provided 

10/20/75 



are: 

1 • Mod al a~ -> a 

2. ;vii n al . ·• . aQ -> a 

3. Max al a-' -> a 

4. Ce i l al '."") a 

5. Floor al -> a 

6. Abs al -> a 

These may be used as both functions and psuedo-variables. 
When used as a function with one argument, they convert the value 
of the one argument to the type implied. When used as a function 
of no arguments, they r~turn a value of the specified type for 
use in type comparisions. When used as psuedo-variables1 they 
take the value assigned to them, convert it1 and assign it to 
their one argument. There is one such builtin for each data 
type. Conversions are performed in the manner described in he 
section on conversions. 

The first group of strin~ builtins perform the same function 
as their PL/I counterparts. Provided are: 

1 • Index sl s2 -> a 

2. Substr sl al [a _z J <-> s 

3. P.everse sl -> s 

4. Verify sl s., -> a 

). Search sl s2 -> a 

6. Length sl -> a 

The second group of string builtin perform certain special 
functions. Soecifically: 

\ 

ECL 

1. Suffix rl sl <-> s 

Appends a suffix given by sl to <String rl> if the suffix 
is not already present. For example: 

Page 44 10/20/75 

~ 



-

(Suffix "x" ".,µl1"> -> 
(Suffix "x.pl1" ".pl1") 

"x.pl1" 
-> "x.pl1" 

This may also be used as a psuedo-vartable 
string, guarenteed to contain the specified 
rl: 

Let 5 u f f i x ( AJ ".pl 1 " = "x" 

to assign a 
suffix, to 

sets A to the value "x.pl1". This is particularly useful 
for Pathname parameter specifications. 

2. Striµ rl sl <-> s 

This removes a suffix given by sl from <String rl> if the 
suffix already appears. For example: 

(Strip "x.pl1" ".pl1") -> "x" 
(Strip "x" ".pl1") -> "x" 

This may also be used as a psuedo-variable to assign a 
string, guarenteed not to contain a suffix, to rl: 

Let Strip [A] ".pl1" = "x.pl1" 

sets A to "x". 

3. Format sl vl v.o -> s 

This returns a string which is the result of editing the 
values of rl through re under control of the ioa_ style 
format sl. For example, if A = 1.23, then: 

(Format "A = '"d" A) -> "A= 1.23" 

The list ouiltins may be divided into two ~roups. The first 
are functions which perform the same sort of operations on list 
elements as the string builtin functions do for characterers. 

1. Index ll L-' -> a 

Example: (Index {{1 2 4 5}} {{2 4}}) -> 2 

2. Reverse ll -> l 

Example: <Reverse {{1 2 3}}) -> {3 2 1} 

.s. Verify ll l~ -> a 

ECL Page 4 5 10/20/75 



ECL 

Example: (Verify {{"5" "4" "6"}} {{5 7}}) -> 2 

4. Search ll t~ -> a 

Example: (Search {{yes no}} yes) -> 1 

s. Length ll -> a 

Example: <Length {{1 True a 8}}) -> 4 

The second group performs certain special functions: 

1. Expand l1 -> l 

This performs "iteration" processing on its argument. 
The result is a list formed by concatenating together 
correspondin~ elements of the first level sublists dnd 
scalars. All first level sublist must be of the same 
length. For example: 

<Expand {{1 {2 3} 4 {5 6}}}) -> 
{{1 2 4 5} {1 3 4 6}} 

2. Eval sl -> l 

This returns a list which is the result of tokenizing and 
evaluating the contained expressions: 

(Eval "a <2 + 2> -c") -> {"a" 4 -c} 

1. Line [ilJ <-> s 

This may be used as function or psuedo-variable to read 
or write one line to the I/0 switch specified by il 
(defaulting to user_input or user_output>. Examples: 

(Li ne) -> one line of input including <NL> 

Let Line error_output = "help" 

writes "help" ll <NL> on the switch error_output. 

2. Input (i1J -> s1 Output (i1J <- s 

These perform the same function as Line except that they 
read (write> one token or expression from Cto) the 
designated switch. 

3. Query sj, Response sj -> s 

Page 46 10/20/75 



ECL 

These ask the question given by s1 and return the string 
containin9 the answer given by the user. Query restricts 
the answer to being either yes or no. 

4. Userlnµut, UserOutput, ErrorOutput -> 

These represent the IOCB's of the corresponcing I/O 
switches. 

1. Argument -> l 

This identifier is bound to the argument to the argument 
list with which a procedure, function, or 
psuedo-vdriable was invoked. It may be used as a list 
value would. 

2. Narguments -> a 

This identifier is bound to the value of (Length 
Argument). 

3. Target t 

This returns a logical value indicating whether or not a 
psuedo-vdriable was invoked as the target of an 
assiynement. If invoked from other than a 
psuedo-variable, it returns the value Undefined. 

4. AssignedValue -> v 

This identifier is bound to the value that was assigned 
to a psuedo-variable. It is an error to reference this 
function in a context where Tar9et yields a val~e other 
thdn True. 

1. True, False -> t 

These are bound to the logical values true and false. 

2. Null -> x 

This is bound to the null address value. 

3. Undefined 

This returns an undefined value -- that is, the value of 
the object to which a newly defined identifier is uound. 

Paye 47 10/20/75 



ECL 

4. Converts rl -> t 

This returns a logical value indicating whether or not rl 
can be converted to the type of r,. Example: 

(Converts 2 Address> -> False 

1. Directory Pl -> P 

Tnis returns the pathname desi·~nating the parent 
entry designated by Pl· The parent of the 
itself. 

2. EntryName Pl -> s 

of the 
root i s 

This returns the character 
p0rtion of the pathname, pj. 
is"". 

string giving the entry 
The entry name of the root 

3. rl:JmeDir <-> p 

This psuedo-variable represents the pathname of the 
user's home directory -- or default working directory. 

4. WorkingDir <-> p 

This represents the 
working directory. 

pathname giving the user's current 

S. Unique -> s 

This returns a character 
cnaracter string. 

b. Se~rnents [Pl], 
Links 

Directories 
[pl], MSFs 

string 

[pl], 
(pl], 

containing a unique 

Fi le s [pl] -> l 

These return a list of branch values identifying 
Jirectory entries whose names match the <star laden> 
pathname given by Pl and of the approriate type. (Files 
include seyments and multisegment files.> The default 
value for pl is workingDir II ">**"· 

7. Match sl s,, MatchPath sl Pl -> t 

These return a logical value indicating whether or not 
the string s' (EntryName pl> matches a given starname, 
sl. For example: 

Page 48 10/20/75 



cl. Equal 

(Match •.•.archive c.archive) -> False 
(MatchPath *.*.archive <tools.s.archive> 

sl s,Z -> s, EqualPath pl s 2 - > p 

-> True 

These implement the equal convention. The first 
parameter represents the source strin~; the second, the 
e4ual pattern with which to edit the first. The result 
of Equal is the string giving the edited name. EcualPath 
uses the entry portion of the pathname, but the result 
has the directory portion restored. For example: 

<Equal prog.s.archive =.archive) -> "proq.archive" 
(EqualPath >udd>p>pers>x.pl1 a.=> -> 

"> u d d >p >per s >a.pl 1 " 

These functions return information about the attributes of a 
specified cirectory entry. For those attributes for which it is 
sensible for the user to alter the values, they may also be used 
as psuedo-varidbles. 

ECL 

1. Author bl -> s 

2. BCAuthor bl -> s 

3. D tu bl, Dtem bl -> d 

These return the date/time modified, date/time used, 
date/ti~e dumped, and date/time entry modified 
respectively. 

4. Type bl -> s 

This returns either "segment", "directory", "link", or 
"multisegment file". 

S. CurrentLength bl -> a 

c. RecordsUsed bl -> a 

7. 

Ci. 

LinkTarget bl -> p 

This returns the pathname that a link points to. 

Nulllink bl -> t 

This returns a logical value indicating whether 
points to an existing branch. 

Page 4 9 

a link 

10/20/75 



9. 

1 u. 

11 • 

12. 

1 3. 

1 4. 

1 s. 

BitCount bl <-> a 

Co..iySwi tch bl <-> t 

SafetySwitch bl <-> t 

Quota bl <-> cl 

:'4axleng th bl <-> a 

ACL bl, IACL bl <-> l 

Where the l i st takes on the form: 

i !<mode> <a c l name >.l ••• l 

1J am es bl <-> l 

where l is a list of string values qiving the names on 
the entry. 

16. RingBrackets bl <-> l 

~here l is a list of length three (for segments> or 
lergth two (for directories) containing integer values 
giving the ring brackets on the entry. 

If the entry specified by bl, does not have an attribute of the 
particular type specified, then the program is in error. 

The followiny is an example of a very simple co~mand. It 
performs the function of the current add_name command. 

tCL 

Procedure add_name 
Entry an 

Temp Code 

Parameter BranchName, NewName 
Pathname Branchname 
Repeat String NewName 

End 

hcs_$chname_fi le (Directory BranchName) 
CEntryName BranchName) "" NewName [Code] 

If Code A= a Then Do 

End 

com_err_ Code "add_name" NewName 
Return 

Page 50 10/20/75 



End 

The following subroutine is intended to invoked the first 
thiny in a process. That is1 it is equivalent to a current 
start_up.ec. 

Procedure Startup 

End 

Global LastLogon 

Para~eter Interactive, NewProc 

End 

Optional Keyword -Login 
Let NewProc = False 
Default Let NewProc = True 

Optional Keyword -absentee 
Let Interactive = False 
Default Let Interactive = True 

If Interactive Then Do 
accept_messages -print -brief 
mail -brief 

End 

If • NewProc Then Do 
memo -brief 

End 

Do I From Segments >doc>info>•.info 
If LastLogon < Dtm I 

Then Line= Entry I I I "modified." 
End 

Lastlogon = Clock 

It peforms more or less standard functions on loyin and 
new_procs. In addition, it examines all info segments to see if 
any have been modified since the last login. 

The following two suoroutines show the use of the condition 
mechanism in ECL with the command query mechanism. First, is an 
example of how the built in function query could be coded. 

ECL 

Function Query Question 

End 

Temp Answer 

Siynal command_query_ (String Question> True [Answer] 
Return 

Pa\:1e 51 10/20/75 



Second, is an example of how to code the answer command. 

Pro c e cJ u re ans we r 

Parameter BriefSw, Answer, Command 
Value Answer 

End 

Optional Keyword -bf Or -brief 
Let UriefSw = True 
Default Let BriefSw = False 

Form List Command 

Un command_query_ Question YesNoSw [Ans] 
If· ariefSw 

Then Line = Question 11 " " 11 Ans 
If YesNoSw 

Then Do While Verify Ans {yes no} > O 
Output = "Please answer ••• " 
Ans = Input 

End 
End 

(Command 1) (Command 2 (Length Command - 1)) 

End 

The following subroutine 
function as the current Multics 

performs essentially 
command processor. 

Procedure command_processor_ Commandline 

Environment External 
Temp CommandLine 
Builtin Expand, Length, Eval 

the 

Do Command From 
(Command 1) 

<Expand CEval CommandLine)) 
(Command 2 (Length Command - 1)) 

End 

End 

same 

The command line to be interpreted is passed as an argument to 
the procedure. The function, Evat, is invoked to parse the line 
into basic expression and evaluate them Cby reference). 
Iteration processing is then performed by Expand. Each resulting 
command is then invoked, one at a time, with the Call statement 
embedaed in a list iteration loop. The environment statement 
insures that only external commands (not builtins or procedures 
aefined in a calling block) will be found by the Call. Note that 
sµecifyinq just "Environment" would, in a like manner, restrict 
the user to calling procedures defined in the same subroutine. 
In tnis way, a restricted subsystem ·or language interpreter could 

ECL Page 5 2 10/20/75 



be constructed. 

The following is an example of the use of block structure to 
control the environment. It is the command walk~subtree written 
in a manner to exploit a local copy of the variable working 
directory. 

Procedure walk_subtree 
Entry ws 

End 

Parameter Dir, Command, Brief 
Select 

End 

End 

Keyword -wd Or -working_dir 
Let Dir = workingDir 

Pathname Dir 

Optional Keyword -brief Or -bf 
Let Brief = True 
Default Let 8rief = false 

Form List Command 

Walk Dir 
Return 

Procedure Walk Wdir 

End 

Local WorkingDir = Pathanme Wdir 

If • Brief Then Line= WorkingDir 
<Command 1> <Command 2 <Length <Command - 1)) 

Do I From Directories 
Walk I 

End 

When the command gets executed within the the internal procedure, 
walk, the local variable WorkingDir has been set. If the command 
procedure called makes use of the variable explicitly (and found 
through the Caller, not Builtin1 rule} then the correct things 
will happen. Correct functioning is also dependent on the 
builtin Directories and the conversion process also being aware 
of the new copy of the variable. This approach is particularly 
cesirable as the change is local; with the environment for 
command level set to exclude calling blocks, a new command level 
created as the result of a quit signal is isolated from the 
chan9ing state of the current working directory which may be 
ongoing in the previous level. 

ECL Page 53 10/20/75 



The following two examples show alternate ways in which a 
"default" value can be obtained for an argument. In the first 
case, prompting is used to acquire the missing value. 

Procedure pl1 

End 

Parameter Sourcefile1 Map, 

End 

Optional Pathname (Suffix Sourcefi le ".pl1") 
Default Do 

End 

line ErrorOutput ="Enter source file-" 
Pathname (Suffix SourceFile ".pl1") =Input 

Optional Multiµle 
Keyword -map 

End 

In t h e sec on u ex a ;n p le , d gt ob a l def au l t vat u e i s used • Th i s 
default value maintains the idea of a current file name which may 
be used in or ~~1 by any command that uses it. 

tCL 

Procedure pl1 

End 

Global CurrentFile 

Parameter Scurcefile, Map, ••• 

t:nj 

Optional Pathname <Suffix Currentfile ".pl1") 
Default let Line= "Assuming" II CurrentFile 

Optional Multiple 
Keyword -map 

End 

Page 54 

I• CurrentFile is global */ 

10/20/75 


