
Kultlcs Technlcal Bulletin MTB-236 

Toi Dlstrlbutlon 

Froml Jerry Stern 

Date I 11111175 

Subjects An Extenslon to the Kultlcs Condition Hechanls• 

Thls HTB proposes an extension to the Hult!cs condltlon mechanism 
that would al low a progra• to exercise a useful .new for• of 
control over the slgnaltlng of conditions. Thls change ls 
appropriately described as a generallzatlon of the exlstlng 
crawlout mechanism. We shall show that such a feature ls 
extreHlf useful for solving proble•s faced by procedures that 
cannot •afely permit an unexpected condition to pass control to a 
handler defined earller ln the stack. 

Due to the relative obscurity of •any of the •r1ner points" of 
the Hultlcs condition slgnalllng scheiae, an overvle" of 
slgnal I lng ls first oresented. Thls ls tol loMed by a dlscusslon 
of the problem that the new feature ls Intended to solve. Next, 
the currently available solutions to this proble• are examined 
and shown to be Inadequate. Atter this, the proposed extension 
ls described and lts advantages noted. Following this, 
l•plementation conslderatlons are discussed. 

Ovacvlew Jl1 SlqnaJl4Q9 

In this section we dlscuss the mechanics of slgnalllng as lt 
currently exists. The knoNledgeable reader •av skip this 
section. No atte•pt will be made to discuss the varlous aspects 
of slgnalllng at a unltor• level of deta11. Rather, we shall 
concentrate on those details that are relevant to the subJect of 
the sections to come, and omlt those that are not. The crawlout 
•echanlsa, in particular, wlll be of special Interest. 

It ls assu•ed that the reader understands the .baslc facts abo~t 
condition handling, 1.e. how handlers are established and how 
they are used. The only point worth mentlonlng here ls that a 
handler ls associated with a particular stack frame. When a 
procedure establishes a handler tor a specified condltlon, an 
entry ls added to a condition llst stored ln the stack frame for 

-----· 
Multics ProJect lnternal •orklng docu•antatlon. Not to be 
reproduced or distributed outside the Multics Protect. 

-1-



HTB-236. Hultlcs Technical Bulletin 

the procedure activation. Thls entry contains the condition name 
and a pointer to t~e handler procedure. 

Condltions are divided lnto t•o categories according to their 
orlgln. A soft•are condltlon orlglnates by means of a direct 
call to the •odule na•ed •s1gna1_•. For exa•ple. the slgnalllng 
of the •command_error• condltlon ls lnltlated by co11_err_ cal Ung 
signal_. A hardware condltlon orlglnates by 11eans of a hardMare 
fault, e.g. •zerodlvlde•. Nhen the fault ls taken, the •machine 
condltlons .. <1.e. the processor state> are safe-stored ln ring o. 
Control ls then transferred to the approorlate fault handllng 
•odule in rlng o. Thls •odule deter•lnes lf the fault should be 
•apped into a condition and signalled ln the ring ln •hlch the 
tau It occurred. If so,, a procedure na•ed •s lgna Iler• ls Invoked 
that manufactures a stack fra•e on top of the stack for the 
faultlng ring. The 11achlne conditions are copied into this 
fra•e. A transfer ls then •ade to the signal_ procedure that 
executes ln the faultlng ring and appears to have been called 
:ro• the •anufactured stack fra••• 

As Just described. both software and hardware conditions 
eventually result ln a call to signal~· It ls this •odute that 
actually l•ple11ents the slgnalllng •echanls•. Beginning at the 
top of the stack, signal_ examines the condltlon llst of each 
stack fra•e. It looks f lrst for the particular condition na•e 
specif led as one of lts arguaents. If no handler ls def lned for 
that condition. lt then looks for the •any_other• condltlon. 
EJ. ther way, 1 f a hand I er ls found, that hand I er 1 s invoked by 
slgnal_. Otherwise, slgnal_ sklps to the next frame down the 
stack and continues the search. 

All handlers called by slgnal_ have a standard argu•ent llst. 
Among the arguments ls a pointer to the •achine conditions 
structure. This pointer will· normally be null for software 
conditions. Also included ln the arguments ls the •continue• 
flag. This flag ls lnltlally set off. If lt re•alns off when a 
handler returns to signal_, then signal_ wlll return to Its 
caller. If lts caller ls signaller, an atte•Pt will be •ade to 
restart execution fro• the point of the orlglnal hardware fault. 
This ls all done by black •aglc and will not be pursued here. If 
the continue flag ls turned on by a handler, then Mhen the 
hand I er returns, sl gna 1_ •11 I cont lnue its search towards the 
botto• of the stack Invoking other handlers as they are found. 

If the bottOtl of the stack ls reached (either because no handler 
Mas found or because all handlers found set the continue flag) 
one of tMo actions ls perfor•ed. If this ls really the absolute 
bottoM of the logical process stack, i.e. no outer ring stack 
seg•ent exists on •h!ch •• can contlnu• signalllng, then the 
situation ls hopeless and the process ls ter•inated. If, on the 
other hand, the botto• stack fra•e ls threaded to another frame 
on an outer rlng stack, then a craMlout ls pertor•ed. 

. . ' -2-



Hultlcs Technical Bulletin HT8•236 

A crawlout ls designed to exit a ring as gracefully as possible 
and to arrange for signalling to continue on the outer rlng 
stack. Once an exlt ls made to the outer, ring, lt Is not 
possible to return to the Inner rlng due to the nature of the 
rlng protection mechanism. Therefore, a crawlout ls Inherently 
one-way, 1.e. restarting fro• the point of orlgln of the 
condition beco•es l•eosslble. 

The crawlout mechanls• ls conc•Ptualty simple, although the 
details are a blt messy. The first step ot a crawtout Involves 
"unwlndlng the stack•. Basically, thls amounts to searching the 
stack from top to botto• a second time looking for a special type 
of handler for the •cleanup• condition. Each cleanup handler 
found ls Invoked. (1) The next step of a crawlout ls to 
•anuf acture a stack f ra•e on top of the outer ring stack on which 
we want signalling to continue. This tra•e ls known as the 
•slgnal caller tr•••"• The Machine conditions and other 
arguaents to signal_ are copied lnto this fra•e. Flnal ly, th~ 
last step of the crawlout ls a special CALH-assistedt transfer to 
a procedure executing ln the outer ring that appears to have been 
cal led fro• the slgnal caller fra11e. Thls procedure ls none 
other than signal_ itself which proceeds to signal the orlglnal 
condition on the new stack. The signal caller fra•e Is cleverly 
set ue so that lf sl~nal~ ever returns Cas it •ight lf a handler 
returns wlth the continue flag oftl, the call to slgnal_ ls 
repeated. This ls necessary since, as mentioned above, a return 
to the Inner ring ls not possible. 

I.b.a ergb I•• 
Let us deflne a "crltlcal operation" to be an operation that 
should not be Interrupted by an unexpected condltlon. An 
op er at lon •ay be ter•ed er It lea I for a var 1 ety of reasons. for 
exa•ple, the operation •aY require locklng a resource that should 
not stay locked lndeflnltely. Alternativelv. the ooeratlon ••v 
require unusua I aodl f'lcat Ions to the nor•al process environ•en1, 
e.g. •asking lps signals, changing standard I/O switches, etc. 
The danger here ls that control may oass to some handler defined 
earller In the stack that cannot Cand should nott be assu•ed to 
understand the crltlcal nature of the interrupted operation. 
Consequently, thls handler •av benlgnly co••lt som& grievous 
error due to lts necessary Ignorance of the sltuatlon. 

It becomes apparent that, in view of the dangers, conditions 
occurrlng during a critical operation •ust be Intercepted by the 
procedure performing Cor lnltlatlng) the operation. We shall 

Ci> Thls same mechanls• for unwinding the stack ls also used 
whenever a non-local goto ls executed. 

- .. "' , 



MTB-Z36 Hultlcs Technlcal Butletln 

call this procedure the •critical procedure•. BY hypothesis, the 
condition ls unexpP.cted and hence cannot be •handled• in the 
conventional sense, i.e. there ls nothing the critical procedure 
or any handler established by lt can do that would safely allow 
the critical operation to be restarted. Therefore, the only 
recourse ls to restore the envlron•ent to the state that existed 
before the crlt1cal operatlo.n began. Or lf this ls not entirely 
posslb le, then at I east the envlron•ent 11Ust be restored to some 
•secure• state. Having done thls, lt woutd then presumably be 
safe to allow slgnalllng to continue. HoNever, there ls stlll a 
danger that so•e handler alght return, thereby causing the 
crltlcal operation to be resu•ed fro• the point of origin of the 
condition. This ls clearly unacceptable once the special 
envlronaent has been restored to nor•al, l.e. locks unlocked, 
•asks unaasked, etc. If the critical operation ls to be 
restarted, then lt must be restarted fro• the beginning and not 
fro11 the Middle. 

Jefore proceed!ng to dlscuss the avallabte re•edles to this 
probte11, let us first shoM that this ls, indeed, a real problea 
by glv.lng a real example. The •essage seg11ent faclllty provides 
one such exaaple. The central procedure of thls faclllty, called 
••seg_•, is a critical procedure responslble for the locking and 
unlocking of aessage seg11ents. Clearly, a 11essage seg•ent should 
not be per•itted to re•aln locked lndeflnltely since various 
syste• services depend on shared 11essage seg11ents. Soae •essage 
segment operations are perfor•ed entirely by 11seg_, whlle other 
operations are perforaed by subroutines called by •seg_. In all 
cases, hoMever, mseg_ must ensure that the message seg•ent ls 
tocked before the operation beg.lns and unlocked •hen the 
operatlon coapletes. If an operation ls Interrupted by a 
condltlon, then 11seg_ aust ensure that the •essage seg11ent ls 
salvaged and unlocked before control ls rellnQulshed. 

It is in this last duty that mseg_ falls 11lserabty. The approach 
taken bv mseg_ .ls to establish a claanuo handler to do the 
salvaging and unlock.lng. In effect, •sag_ ls counting on the 
fact that lt ls an inner rlng procedure. It .ls also counting on 
the fact that none of the procedures in the chain of calls from 
the •essage_segment_ (or ••llbox_) gate to mseg_ establish any 
handlers. G.lven these circumstances, a crawlout ls lnevltable 
Mhenever a condit.lon ls signalled, and hence the cleanup handler 
established by •seg_ wllt, in fact, be Invoked before any har• 
can be done. 

Unfortunately, mseg_ ls not always an Inner ring procedure. 
Certain syste• processes, e.g. Backup, run In the same ring as 
~seg_ and hence no in•ard call ls ever made. In these processes, 
lf a condition occurs during a message seg11ent operatlon, no 
crawlout will occur. Instead, It .ls likely that the default 
handler estabtlsned by the process overseer will be Invoked. The 
nor•al action taken by the default handler ls to come to co••and 

-It-



Hultlcs Technical Bulletin HTB•236 

level, thereby leaving the message segment locked lndef lnltelyl 

The rlng problem aff llctlng mseg_ ls by no means an essential 
aspect of the crltlcal operation problem. Any ordinary user 
procedure can perfor• a crltlcal operation lnvolvlng a locked 
data base. Ho•ever, the case of mseg_ ls especlalty Interesting 
because of the approach taken to solve the problem. Thls 
approach wrongly deoends upon the occurrence of a crawlout. 
When, ln fact, a crawlout does occur, however, the approach works 
quite nicety. As we shall see later, this Idea has considerable 
11er 1 t. 

Clearly, ln order to prevent condltlons from •escaping•, a 
crltical procedure •ust establish an any_other handler to 
Intercept all unexpected cendltlons. As discussed earlier, this 
handler can do nothing that would p.-•lt the critical operation 
to be safely resumed. It must therefore restore the environment 
to a "secure• state. The question Is what to do next. We would 
llke to continue signal ting because, lf nothing else, this ls the 
best •av of communlcat Ing preclse ly what has gone Mrong to so11e 
hlgher authority. As already pointed out, ho•ever, this ls 
unacceptable due to the fact that some other handler may decide 
to return to signal_ Ml th the continue f'lag off. This Mould 
cause the crltlcal operation to be resu•ed after the necessary 
environment has been undone. We llUSt also consider the 
possibility that the cendltlon 11ay not have occurred wlthln the 
critical procedure Itself. It may, Instead, have occurred within 
soae subroutine called by the crltlcal procedure. The crl,lcal 
procedure ls not necessarily ln a position to restore the 
subroutine environ•ent. Therefore, lt ls preferable that the 
subroutine be given a chance to do this using the nor11at cleanup 
11echanis1t. 

One posslble approach ls to atte•Pt to return to the caller of 
the critical procedure ln a nor11al manner. This could be 
acco•Pllshed by executing a non•local goto fro• the any_other 
handler to an approprlate tocatlon in the critlcat procedure. 
HappllY• this would have the desired effect of invoking all 
cleanup handlers def lned in the stack above the crltlcal 
procedure. However. this approach ls only reasonable lf there ls 
so•e way to Indicate to the caller of the crltlcal f)rocedure that 
the operation was aborted. e.g. by setting an approprlate error 
code. Already •e can see that this approach ls non-general. 
There mav be no error code or other •ethod ~f Indicating an 
error. This ls because error codes and the llke are designed for 
anticipated errors, ot which there •ay be none. CThe condition 
•echanlsa, on the other hand, ls designed for unanticipated 
errors; but we can•t see• to use it here.) Of course, •e could 
insist that alt crltlcat procedures have error code arguments for 

-5-



HTB-236 Hultlcs Technlcal Bulletin 

this purpose alone lf none other. 

Let us assume that an error code argu•ent exists. Does this then 
present a reasonable sotutlon? Unfortunately, lt does not. If 
for all possible conditions, we s1Mply set the error code to some 
universal value, e.g. •unexpected_condltlon•, "e have lost all 
traces of what went •rong. We could try to be fancier, 1.e. 11ap 
each different condition Into a different error code, but this 
!•poses an unreasonable burden. Perhaps so•e syste•-provlded 
utility procedure could do the •applng. Still, this would not 
account for user•def lned conditions. More Importantly, no matter 
what error code Is returned, we have lost the •achlne conditions 
(and other Information trans•ltted by signal_) which are vital to 
diagnosing the trouble. Thls ls not merely a matter of providing 
debugging infor•atlon. So•eti•es the user, playing the ultl•ate 
handler, •ust himself take actlon based on Information 
communicated by signal_ (and printed by default_error_handler_). 
For exa•ple, lf a record_quota_overflo• condition ls signalled, 
the user •ust know whlch seg•ent was being referenced so as to 
deter•lne the dlrectorv that ls out of Quota. 

It would see• that what we need ls a way to allow slgnalllng to 
continue without the danger of restarting the crltlcal operation. 
There is. In fact, a rather underhanded method that Mill 
accomplish this feat. First, the any_other handler aust copy the 
•achlne conditions and other arguments to signal_ (available from 
Und_conc:U t lon_lnfo_) into stat le storage or space reserved ln 
the stack frame of the critical procedure. Then the handler can 
execute a non-local goto to a special location ln the crltlcal 
procedure. At this location the necessary envlron•ent 
restoration can be done and the any_other handler reverted 
followed by a call to signal_. Thls call will use the stored 
argu•ents to the original call to signal_, thus falthfully 
reslgnalllng the condition. The call to signal_ can be e•bedded 
ln a loop so that lf lt ever returns, lt •111 sl•ply be repeated. 

As already ad•ltted, this solution ls a hack. It uses the 
signalling mechanls• ln a •anner that was not Intended. As a 
result, the condition will appear te have orlglnated at the 
special locatlon ln the crlt1cal procedure where the call to 
signal_ ls •ade. But the •achlne conditions and other signal_ 
data will, ln fact, apply to the true orlgln of the condltlon. 
This minor lnconslstency ls not so terrl~le. Nhat really •akes 
this a hack ls that lt requires too •uch knoMledge of the 
signalling •echanis•• The technique would probably not even 
occur to the average programmer. Indeed, lt dld not occur to the 
author untl I carefully studying the signal Ung mechanism. Nor 
did lt occur to several other experienced Hultlclans to •ho• the 
author posed the problem. But even lf the technique were widely 
known, it would still be undesirable because lt forces the 
programmer to concern himself wlth details that are Irrelevant to 
the proble•• Nevertheless, despite thls drawback, the technique 

,.., ' -6-



Hultlcs Technical Butletln HTB-236 

does produce the desired effect. 

ecgoosed ~QlutlQQ 

The clever reader will already have noticed that the technique 
Just described is essentially equivalent to a crawlout. In both 
cases. the arguments to slgnat_ are copied Into a ne" stack 
frame, the stack ls un•ound. and a transfer ls made that results 
in signal_ being catted anew. Therefore. lt ls proposed that the 
crawlout mechanism be generalized ln such a way that lt can be 
utilized to solve the probfe• at hand. 

The kev to generalizing the crawlout mechanls• ls to define an 
appropriate abstraction that the progra1111er can understand 
without irrelevant details.· If we view the collection of stack 
seg•ents from different rings as a single logical stack. we note 
that there are implicit boundaries that exist between adJacent 
stack fr .. es ln different rings. In the course of signalling a 
condition, lt one of these boundaries ls encountered. a crawlout 
must be perforaed across the boundary. A simple extension to 
this scheme ls to allow new boundaries to be def lned expllcltly. 
We shall call these boundaries •condition waits•. 

Glven this neN toot. it ls relatively easy for a crltlcal 
orocedure to protect against unexpected conditions. Essentially. 
all that ls necessary ls to first establlsh a condltlon "all and 
then to establish a cleanup handler to do the necessary tldylng 
up. Any condltlon that reaches the condition wall •Ill cause a 
crawtout to occurv thereby Invoking al I cleanup handlers def lned 
above the condition wall ln the stack. Note that the condltlon 
wall ls created l•medlately beloM the stack fra•e of the critlcal 
procedure. Thls al tows al I outstanding procedure actlvatlons to 
be cleaned up uniformly using the standard cleanup •echanls•• It 
ls not necessary f'or the crltlcal precedUl"'e Itself to be cleaned 
up by an anv_other handler (which always seeaed rather 
ine I egant). 

J.u.1.e1eotatlsm 

I•ple1entatlon of the condltlon Mall feature ls falrly sl•ple. A 
new Procedure, •establish_condltlon_wall_•. must be provided. 
This procedure will simply turn on a blt in the stack frame of 
its caller lndlcatlng the existence of a condltlon wall. The 
slgnal_ program •ust be changed to check thls blt at the sa•e 
polnt lt now checks for i•Pliclt condltlon Malls. 1.e. the tump 
to a stack fra•e on an outer ring stack. In either case. the 
operatlon of the craMlout ls baslcally the same with one notable 
exception. 

When a regular inter-rlng crawlout ls performed. slgnal •pushes• 

'; I . -1-



HTB-236 Hultlcs Technical Bulletin 

the signal caller fra•e onto the top of the outer ring stack. 
When an lntra•rlng craNlout ls performed, however, the new top of 
stack, 1.e. the condition Malt, ls ln the middle of the stack. 
On top of the stack ls the fraae for the actlvatlon of signal_ 
that ls executing the cra•lout. Needless to say, this ls a 
delicate operation and some care must be exercised to •ake it 
•ork. We cannot sl•~ly bulld the signal caller frame ln place, 
i.e. lm•ediatety above the condition wal I, unless •e kno• there 
is enough roo•• Unfortunately, there ls no room. Any of the 
fra•es above the condition wait may contain data that ls part of 
the arguments to signet_. In other words, we •lght Inadvertently 
overwrite the very data we•re trying to copy into the slgnal 
ca 11 er fra11e. Therefore, the reco1111ended approach ls to have 
signal_ extend Its own stack fraae and bulld the signal caller 
fra11e ln this space. Then, at the last •o•ent, the signal caller 
fra•e can •slide• down the stack int• position. 

Thls technique need not be special to lntra-rlng crawlouts only. 
It can be used for all crawlouts. In fact, we can even use this 
technique to f lx what •lght be consld.-ed a bug ln the current 
crawlout implementation. This bug derives froa the fact that 
slgnal_ unidnds the stack before bulleting the signal caller 
fra•e• In unwinding the stack, a cleanup handler 11lght be 
invoked that could inadvertently destroy the argusents to sJgnal_ 
before we have copled them. For exa•ple, Imagine a program that 
allocates a structure and establishes a cleanup handler to free 
it. A pointer to this structure may be passed as an argument to 
signal_. Thus, ln the event of a crawtout. the structure will be 
freed before signal_ copies lt. One might consider this to be a 
progra••ing error, although understanding why and how this ls an 
error ls probably beyond the grasp of the average programmer. In 
any case, the proble• ls eliminated lf signal_ first builds the 
signal caller frame in lts own stack frame, then unwinds the 
stack, and then moves the signal caller tra•e into place. 

The signal caller frame has a special crawlout flag turned on. 
This flag ls copied by flnd_condltlon_info~ into the "cond_lnfo" 
structure that lt returns. In order to distinguish the two 
different types of craMlouts, a second flag, call lt 
"expllcit_cra•lout••, should also be kept both in the stack frame 
and the cond_lnfo structure. If nowhere else, this flag •ust be 
checked by default_error_handler_ ln order to print an 
appropriate crawlout •essage. 

ConcJuslan 

The proposed condltJon wall feature solves ln an elegant and 
appropriate manner a general problem for which no adequate 
solution currently exlsts. Good programming practice ls 
encouraged by thls feature ln contrast to the kludgery now 
necessitated by lts absence. The proposed feature ls economical 

-a- .i 



Hultlcs Technlcat Bulletin HTB-236 

ln the sense that J.t 11akes use of an existing syste• 111ect-anJ.s• 
wl th on I 'I a few t1tlnor changes. 

-9-


