
Multics Technical Bulletin MTB-286

To: Distribution

From: Bernard Greenberg

Date: July 5, 1976

Nulled Addresses, Deciduous Segments, Etc. Subject:
A Primer in the Page-and-Segment Newspeak of NSS

The implementation of the New Storage System (Release 4.0) has
added to the already devastating plethora of arcana known as
Multics by creating many new concepts and new terms for old ones.
In particular, the handling of disk addresses and initialization
segments has created quite a bit of confusion among the
uninitiated, and deserves some explicit clarification. This memo
attempts to alleviate some of this confusion, and enlighten the
interested. The explanations below are applicable to systems of
MIT genre 28-5a and later.

In the old storage system, all disk space was part of a
common pool, shared by all segments of all natures, access
classes, and places in the hierarchy. What is more, all disk
storage was always present at once. When all of the disk storage
in the system was used up, that was it, there was no more, and
the system had reached a fatal error condition. In the new
storage system, each logical volume (user visible set of physical
volumes (disks)) constitutes its own pool of storage. If a user
logical volume runs out of space, this is the user's problem. It
is an error similar to record quota overflow, causes by
mismanagement of resources. A user encountering such an error
should be able to delete other segments on that volume, and
continue. It is no occasion for a system crash.

In the old storage system, disk addresses were
allocated at the time a page was written out from core. Many
pages simply come into core and are zeroed or truncated, such as
mailboxes, and never have to be written out. Thus, postponing
allocation until write time was a good policy, as it reduced the
withdraw-and-deposit (1) traffic, which in the old storage system
might contribute to reused addresses should a crash occur, and

(1) withdrawing a page is asking for an allocation
and having it allocated from the appropriate
Depositing a page is returning it to that free pool.

of a
free

page,
pool.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-286

'
avoided doing potentially useless work. One very broad design
goal of Multics in general has been to delay bindings until the
last possible minute.

In the new storage system, we cannot afford such a luxury. The
old storage system was well aware that it needed not allocate
until write time, for the only case in which that allocation
might fail would be a fatal system problem from which only the
most inelegant recovery was possible.

Since we cannot be assured of the availability of a
page at write time, we cannot create a page unless we can commit
the resources necessary (a disk record) to it at page creation
time. This way, no data has been lost if an allocation cannot be
performed, just as with a record quota overflow. (By the ~ay,
Record Quota is not a technique for making sure the system
doesn't run out of disk, but rather a tool to enforce
administrative policies on the sharing of the disk resource: that
is, to make sure no one takes more than his allotted share.)

Therefore, the new storage system assigns addresses to
pages at page creation time. Since page creation only happens
during page faults, the faulting process can be notified if page
allocation fails, via the mechanism of a signal emanating from .,..,._
the page fault (as is done with quota). Now when an address is ~
so assigned to a page, the page has, upon the completion of the
page fault, both this disk record and the page of core associated
with it. Similarly, a page which has just been read in from disk
has a page of core and a disk record associated with it. Yet,
the first case is different from the second, as in the first
case, the data on the disk record does not correspond to the page
of the segment, while in the second case it does. Assuming that
the faulting reference did not modify the page, the first case
has zeros as the contents of the page, while the second has the
contents of the disk record. In page control, we mark a disk
address of the first type with a special bit:

A nulled
a disk
segment.
however,
zeroes.

address or semikilled address is an address of
record, which is assigned to a page of a given
The contents of the page of the segment,
are not the contents of the disk record, but

The above definition of a nulled address shows that it
is akin to the concept of a device being assigned to a process
but not attached. No one else can use it, it can be used by this
page/process whenever it needs it, but it is not now using it.

In the old storage system, a major cause of misrouted
data and resultant grief was the so-called re-used address ~
phenomenon, which consisted of two segments claming the same
page. This would often happen after a crash, when someone who
had zeroed ·or truncated a page would mark at as free (in the

Page 3

appropriate volume's free pool), and it would be allocated by
someone else before it was take out of the file map for the
previous segment. In the new storage system, this is impossible,
as addresses are never returned to the free pool (deposited) for
their volume until the VTOC Entry (VTOCE), which contains the
Segment File Map has been appropriately written back to disk.
This precludes all address depositing by page control at write
time. Thus, when a page is discovered to contain zeroes by the
ccre replacement algorithm, or truncated, we would somehow like
to associate the disk address with the page, but zeroes with its
contents. Sound familiar? That is precisely the definition of a
nulled address! Hence, zeroed and truncated pages revert to the
nulled state.

when the VTOCE file map is updated for any reason
(deactivation and the AST housekeep known as the ''AST Trickle"
are two), any addresses culled from page control which are seen
to be nulled are not reported to the File Map on the volume.
Fro~ the definition, your segment has no right to the contents of
the disk record. Furthermore, if your page is not in core or on
the paging device, it is a certainty that its logical contents
are zero. Thus, we allow you the privilege of recreating the page
by depositing the address at this time, replacing it in the Page
Table with a null address (defined below, not to be confused
with a nulled address). How does one acquire a right to a page?
Right to a page by write to a page! When page control knows for
a fact (successful completion of a disk write) that the page of
your segment, to which a nulled address was assigned was written
to the disk, the following happens:

The resurrection of a nulled address is the removal of
the nulled flag, logically assoc~ating the contents of
a disk record with a page of a segment. Resurrection
happens at page write complete time and
Read-write-sequence (bulk store flush cycle) completion
time, and establishes a segment's right to a page of
disk. A resurrected address is known as a live device
address. (1) --

Now when segments are created, no disk addresses are
associated with them. After a segment is truncated, and
appropriate deposits have been performed, again no addresses are
associated with the pages. Thus, there is a large conceptual
device all full of zeroes on which all pages have addresses
assigned (non-uniquely) when created and destroyed. Such
"addresses" represent no disk storage, assigned, attached, or

(1) A feature in system 28.7 and later endows the Physical Volume
Salvager with the ability to resurrect addresses found nulled on
the Paging Device (Bulk Store), if the paging device was not
flushed by the previous shutdown (as in a crash in which
Emergency Shutdown failed).

Page 4

otherwise:

MTB-286

A null address is an "address" which is not the address
of any disk record, but rather a designation of a
source of infinite zeroes. A page which has a null
address assigned is not associated with any disk record
in any way, but with all zeroes.

Null addresses in fact contain identifying codes as to
their piogram of origin, so that the maintainer of page control
can isolate and fix many different kinds of problems.

VTOC entries (file maps in particular) are not into any
of this semikilled-nulled mickeymouse. A VTOC Entry says,
"Either this page is yours, or it's not." Hence, only null and
live addresses appear in VTOC entries. As we said before, the
VTOC entry updater puts a null address in a VTOC entry ("You
don't own that page!") when he sees a nulled address in the page
control data bases. When a crash occurs wherein all of main
memory and/or bulk store is lost, the VTOC will in fact say that
no one owns any page to which he has not in fact written.

In the new storage system, each segment is constrained Alllli..

to live on one pack (physical volume). This was a major design ~
point of this version of the storage system, as a frank view
admits the pack as the unit of storage system failure.
Therefore, free storage pools are maintained per mounted physical
volume. Therefore, when an address must be assigned to a page of
a segment (remember, all addresses are withdrawn as nulled), the
Active Segment Table Entry of the segment is interrogated to
identify the drive on which the correct physical volume is
mounted, and the free store map (1) for that drive withdrawn
against. If no more records exist for that drive, the segment
cannot grow and an error is signalled.

BUT WAIT A MINUTE! Aren't physical volumes supposed to
be transparent to the user? Aren't logical volumes the
user-visible entity and storage pool? Well, given the constraint
that each segment must reside on a physical volume, that puts us
in a tight dilemma. Clearly if there is any physical volume in
the logical volume which has enough space to hold the segment, it
ought be moved there. If there is none, the user ought be told:

The segment mover is the program which tries to move a
segment between physical volumes of a logical volume in

(1) The free store map (or volume map) of a pack (physical
volume) is the bit map of the Multics pages on the pack that says ~
which records are in use and which are available for allocation.
Addresses are said to be withdrawn and deposited against the
volume map.

Page 5

the case of physical volume overflow (also known as
oopv, for out of physical volume). If no physical
volume in the logical volume can hold the segment,
logical volume full is signalled (subcondition of
seg_fault error).

The segment mover is an extremely baroque and complex
program, which calls dozens of entries in page, segment, and VTOC
control and plays a myriad of locking and cleanup games. His
name, oddly enough, is segment_mover.

Initialization has been an anathema for many
Multicians, due to many clever bootstrap techniques, tricks, and
special-case policies of interest only to the specialist. The
management of segments by initialization has always been in need
of more illumination to the multing public (although the
Initialization PLM, AN70 has helped many to understand), and the
changes of the new storage system to these policies have been
deep enough that a new explanation is warranted.

The Multics hardcore supervisor is read in from a tape
at bootload time. Since it is too big to fit in main memory at
once, and Multics is a virtual memory operating system, it is
divided into two collections (purists please note that Collection
III is not the hardcore supervisor), the first being all that is
necessary to establish paging, and the second being all else.
Paging is a teriffically complicated business that involves all
sorts of knowledge about what disks are where, data bases, maps,
pointers, chains, and algorithms, not to talk about the tacit
support of all of the ring zero I/O management mechanism. All
this preassumes a completely pre-linked PL/I world at that. Thus,
during the loading of Collection I, all of the software necessary
to initialize and carry out these functions must be put into
unpaged segments, because the software to establish and maintain
paging hasn't been established or maintained yet. The hardware
supports segments that are contiguous in main memory via a
special bit in the segment descriptor word (SDW). Unpaged
segments are not to be confused with wired segments.

An unpaged segment is a segment which occupies a
contiguous region of main memory, corresponding to all
of the addresses of the segment. Only pieces of the
supervisor can be like this.

Many pieces of the supervisor, specifically those that
handle interrupts, paging, and traffic control
(scheduling/multiprogramming) cannot themselves be subject to
paging, due to eventual recursion and finiteness problems. Such
procedures and data bases must be assured to always be in main
memory. For unpaged segments, this is always the case. Multics
never removes unpaged segments from memory (although see below).

Page 6 MTB-286

For certain paged segments, the paging control software is
restrained from removing their pages from main memory by special
calls resulting in the setting of special bits.

A wired segment is one that cannot be removed from main
memory. Either unpaged segments or paged segments that
contain wired pages {pages that cannot be removed, by
covenant with page control) can be called "wired".

A paged segment is one that has pages, i.e., is not
unpaged. The segment descriptor points at c. page table,
and contains a bit to this effect. The contents of the
segment are located by the appending unit through the
page table. It may be wired or pageable.

A pageable segment is a paged segment which is not
wired, i.e., whose pages can be removed from main
memory at the discretion of the page control algorithm.
All user segments, and all directories are pageable.

We have stated that all of the segments read in in
Collection I are unpaged. Although this is true, there are a
certain subset of these segments which are unpaged only because
that is the only way one can be in Collection I loading. For
instance, the program that searches configuration decks is needed
in Collection I to ascertain configuration information, but need
not be wired, much less unpaged. Another example is the Segment
Loading Table and its Name Table. Therefore, at the completion
of Collection I, an event known as the making paged of the
segments occurs, conducted by a program called, appropriately
enough, make_segs_paged. All of the segments which are to be
made paged were placed by the Collection I loader {bootstrapi) at
the high end of main memory, while those which are to remain
unpaged were placed at the low end. {A couple of peculiar
stragglers, known as "Collection O", created by bootstrap1,
appear at the low end, but are made paged).

The hardcore supervisor is much like a process unto
itself. The SDW's which describe its segments share the same
segment number in everyone's process, and appear in everyone's
process. Only a handful of segment numbers (those associated
with the names dseg, kst_seg, pds, and prds) denote different
segments in different processes. Once any process gets into page
control and locks the lock, it is as good as any other. This
behavior has been declared varyingly a bug and a feature by
various students of system architecture.

On certain instances, such as dealing with directories,
the hardcore supervisor actually comes up with pathnames, and
initiates segments, just like your programs. but most of the

.•
Page 7

time it deals with segments that were never initiated, linked, ' . . or activated. The hardcore supervisor is a world of segments
loaded off of a tape and created at boatload time, prelinked at
that time. The paged segments cannot be deactivated, nor SDW's
faulted, nor can wired segments be removed from main memory. All
of the necessary SDw's appear in everyone's process, and nothing
need ever be initiated.

There are certain segments that the hardcore supervisor
uses that other people might like to use too. For instance, as
the supervisor is coded mainly in PL/I, and uses stacks, the
supervisor has a segment called "pl1_operators_" that it uses for
these language support functions. If it's so useful, why can't
everybody share it? Also, there are the hardcore gates, whose
things you have to snap links to for your process to crawl into
the hardcore supervisor. There are also a couple of data
segments wherein the supervisor provides you with certain
information about himself, such as sys_info and
active_all_rings_data. The only way anybody except the
supervisor can ever find these segments is for them to be placed
in the Multics Storage System Hierarchy, by having a branch, a
VTOC entry, and a unique ID.

A deciduous segment is a segment which comes in off of
the system tape (and is thus part of the hardcore
supervisor), and is also in the hierarchy.

Deciduous segments are so called because, like
deciduous plants, they periodically lose their leaves (pages).
Every boatload creates the deciduous segments anew as they are
read in, voiding the previous ones. Deciduous segments are not
"activated": they are active before a concept of activation
exists in a given boatload. The program init_branches creates
empty segments at the place in the hierarchy ·where deciduous
segments are to appear, but instead of activating them, connects
the branches so made to the supervisor segments which are to
become deciduous via the AST UID hash mechanism, by which
potential activators of segments learn of their activity. The
net effect is that anyone who takes a segment fault on such a
segment, having initiated it, finds it active, its page table and
ASTE being those created of the world of the hardcore supervisor
by initialization. The hardcore/user segment sharing mechanism
works thus.

Another form of hardcore/user segment sharing is seen
in the management of Process Data Segments (PVS's) and Known
Segment Tables (KST's). The KST and PDS of the Initializer
process, which performs Initialization (hence its name), are
deciduous. The KST and PDS of any other process, and IOI
~orkspace segments, are created in and of the storage system

Page b MTB-286

hierarchy, and forcibly made a part of some process's hardcore
environment. A forthcoming change to the online salvager output
segment (>online_salvager_output) will similarly take it from the
hierarchy, and place it in the global hardcore address space (by
putting in the Initializer's descriptor segment during
initialization). Such segments are known as reverse-deciduous.

When one is to have paging, one must have a place on
which to page. When Multics is booted, with the new storage
system, the new supervisor may be being born into a world which
has just seen a terrible crash. No VTOC entries can be trusted
for sure. The maps of free storage on the disks may not have been
updated. Hence, it cannot use these maps to determine where to
page. The Physical Volume Salvager is capable of reconstructing
these maps: he can determine what is real and what is not. But
his services cannot be obtained until a place is found to page,
for he cannot fit in main memory with all of the necessary
support software. The old storage system salvager had a similar
problem, and for him, a region of disk was defined known as the
"salvager partition", where he would build his world, as he
viewed the crashed Multics in a third-person sort of way. He
could have all of the salvager partition to do whatever he wanted
with- he didn't save anything there from salvager run to salvager
run, and nobody else used it for anything, so he could totally
ignore the previous contents, and set up an empty free storage
map to describe it.

This policy has been adapted into the new storage
system to provide a place for the supervisor to build his home
where no one else can lay claim. A region of the Root Physical
Volume (RPV) is reserved for this purpose:

The hardcore partition is a region of the RPV
designated by the RPV label, whose contents are defined
as void upon boatload. The supervisor, upon bootload,
can page there without fear of destroying anything.

The supervisor, when make_segs_paged is about to start
his thing, sets up the hardcore partition of the RPV as the place
from which all supervisor pages are drawn. Hence, the validity
of any free store map on disk can be checked by the Physical
Volume Salvager, who can now be opera~ional before any is
believed.

Unfortunately, the organization of new storage system
segment control is such that only one free store map can be
associated with a drive. Rather than declare the hardcore
partition to be a separate "virtual drive", it was decided to use

Page 9

the hardcore partition's free store map as the free store map for
the RPV (as its segments, in point of fact, reside on the RPV)
until the real map is checked out and installed, at which point
the rightful free store map of the RPV takes its place.

There are some fairly subtle implications here. First
of all, any pages of the hardcore supervisor which were not
created before the rightful RPV volume map took its place (this
event is known as the acceptance of the RPV (in Collection II))
will be withdrawn against the real RPV volume map. Such pages
might be a region of the Initializer's stack that had not been
reached before this, or perhaps the hardcore segment into which
directories are listed when you list a directory via the list
command. There are two implications of the withdrawal of hardcore
pages against the real RPV volume map: 1) If the RPV volume map
was depleted right before one of these supervisor withdraws, the
supervisor would not be prepared to take out-of-physical-volume,
or a segment move or failure thereof as an answer. Depending upon
what segment encountered the page shortage, anything from a
crawlout and online salvage (if a page of system_free_seg) to an
undiagnosable, undumpable, un-ESD-able crash (page of
initializer's PDS) might result. 2) If a page is taken from the
RPV volume map, it had better be deposited at some time, or else
the next boatload will find fewer pages available, the next
fewer, etc., until there is no more RPV left. This unfortunate
situation is known as RPV creepage.

The old storage system's solutions were simplistic.
Again, since all pages came from one pool, out of disk for
ANYBODY meant the end of the system's life. So that was no
problem, so to speak (On the other hand, the big page pool was
much bigger than one RPV). Not freeing the pages was more of a
problem. As the old storage system supervisor shut down, it cut
out its entrails, and then cut off its legs and then its arms,
until only the knife was left. It burned all of its bridges
behind it, depositing supervisor segments in a most careful
rr.anner as not to trip over itself. Not only was this very
tricky, but was very hard to get right, and the old storage
system often showed a creepage. Hence, the programs and data
bases involved in the last phases of shutdown had to be either
unpaged, or wired and paged, depending on the fact that
allocations of pages were not performed until write time, and
wired pages were never written. Hence, the obsolete concept of
"wired_shutdown".

This was deemed to be a miserable problem, as it
ensured that if any problem was encountered in shutdown,
miscellaneous software would be missing, having been deposited,
and emergency shutdown could not be tried (the so-called
"repetitive ESD"), because programs that it called first were
deleted. Therefore, the deletion of segments by shutdown was
abolished.

Page 10 MTB-286

When one abolishes the old order, one must put
something in its place, and hence, the two problems above had to
be solved. To ensure that pages for the supervisor would always
be available, it was decided to assign them, via the nulled
address mechanism described above, at bootload time. Supervisor
segments are prewithdrawn:

Prewithdrawing a segment consists of touching all of
its pages, causing addresses (in the nulled state) to
be assigned to all of them. Prewithdrawing may only be
performed upon segments that cannot be deactivated, for
were they are deactivated, addresses so assigned would
be deposited. The conjunction of the AST bits DNZP
(don't null zero page) and EHS (entry hold switch =
don't deactivate) prevents the VTOC updater from
noticing these nulled addresses. Prewithdrawn segments
have a disk address associated with each page for the
life of their activity (entire life for supervisor
segments), and are thus not subject to
out-of-physical-volume conditions.

All of the supervisor (with a couple of exceptions: see
below) is prewithdrawn before the acceptance of the RPV. All
process's PDS's (which are distributed parts of the supervisor in
some sense) and KST's a~e prewithdrawn with the help of the
segment mover before being put into service. This solves both of
the above problems. First of all, the supervisor segments, so
withdrawn, will live entirely in the hardcore partition. Since
all addresses are assigned, and available for resurrection at any
time, no pages will ever be withdrawn against the RPV volume map,
eliminating potential creepage. Since the RPV volume map cannot
therefore be encountered by the supervisor in a depleted state,
we only have to worry about the supervisor depleting the hardcore
partition at bootload time. If this happens, it will happen at
such a time that the supervisor has not yet accepted the RPV, and
hence, will not damage the hierarchy by its crashing. In this
case, the hardcore partition is simply not large enough to hold
the supervisor, and the RPV must be rebuilt (repartitioned).

An interesting corollary of this policy is that all of
the deciduous segments live entirely in a region defined
void at bootload. This is a very graphic analogy
defoliation of flora: when a system is bootloaded, all
deciduous segments find their leaves (pages) totally
gone!

as being
of the
of the

void and

Since there is no creepage against the RPV volume map,
nothing need be deleted at shutdown time, and emergency shutdown
is always restartable and retryable. Try typing "ESD" after a
successful shutdown to a 28-5 or lat3r system. This is a major
reliability feature.

. '
Page 11

However, there are a certain set of segments which are
large, potentially not all used, and non-critical. In this class
fall the system free segments (for listing directories), and some
large workspaces used by the salvager. Were the supervisor to
encounter an out-of-physical volume condition on these segments,
it would be tolerable. Furthermore, prewithdrawing them would
cause the hardcore partition to need to be larger than otherwise,
taking space away from the RPV that might not be used.
Futhermore, they are needed neither by normal nor emergency
shutdown. In this case, the old policy seemed best. Thus,

A delete-at-shutdown segment is a supervisor segment
which is not prewithdrawn against the hardcore
partition, not needed at shutdown, and deleted by
emergency or regular shutdown. Such segments may have
pages from both the hardcore partition and the normal
multing region of the RPV.

Should emergency shutdown fail, and thus not delete
these segments, it is a certainty that the failure of shutdown
will be noticed by the next bootload, and a Root Physical Volume
Salvage undertaken. This will collect all of these pages, and
free them, as they appear in no VTOC entry on the RPV. (1)

To make sure that the above policies are followed, the
program that creates paged initialization segments (make_sdw,
called by make_segs_paged and the collection II loader, among
others) puts all segments into one of three categories:

1. Delete at shutdown. Marked as such in the SLT, by
the bit slte.delete_at_shutdown, generated from the
same as a keyword in the MST header. Only used for the
few segments mentioned above. To make sure it gets
deleted at shutdown, he puts it in a list of segments
to get deleted at shutdown.

2. Explicitly managed (abs_seg). Marked by both zero
cur length and max length, or slte.abs_seg, set from
the abs_seg header keyword. You don't want this segment
to be created routinely. It might be the pdmap_seg,
where special bulk_store PTW addresses will be filled

(1) A hoot Physical Volume Salvage is a Physical volume salvage
of the Root Physical Volume (hPV). One can be initiated manually
by the use of the "RPVS'' parameter to the boot line. From the
name of this parameter, the term "RPVS", generally heard as
"fiehpoovis'', has come to denote such a salvage. 28-5 and later
systems do a RPVS upon every bootload after an ESD, to collect
pages of descriptor segments, to prevent creepage.

Page 12 MTB-286

in by init_pvt, or perhaps the salv_abs_seg's, which
are not segments at all, but descriptor segment slots
into which SDW's will be placed. To make sure that you
don't try to use what make_sdw hands back, a null AST
Entry pointer and zero SDW are returned. For many of
these segments, the special entry make_sdw$unthreaded
(please ignore the name) is called by the program which
explicitly sets up the given segment, to make an ASTE.

3. Prewithdrawn. The default. Everything else is
totally and personally prewithdrawn by make_sdw on the
spot.

