
MULTICS TECHNICAL BULLETIN MTB~307 

To: MTB Distribution 

From: C. Erickson and J. Falksen 

Date: 15 October 1976 

Subject: Indexing Manuals on the Multics System 

This MTB describes a new method for generating indexes for 
manuals on the Multics system. 

Old Methods 

The indexes to the FORTRAN and BASIC manuals were generated 
by a sef of p~6grams that used a driver file to produce index 
"hits". A "hit" occurred whenever the program encountered a 
driver file term in the text. However, the false hits far 
outnumbered the genuine ones (consider "do" and "where") when 
these programs were tried on the MPM. 

Therefore a second indexing scheme was used on the MPM that 
identified where a hit should occur by actually modifying the 
runoff source. This second indexing technique provided the basis 
for the new method described in this MTB. The new method 
includes topic, module, "see", and concept hits and can also 
provide a side-by-side runout (text and indexed items) for final 
review. 

Obje9tiyes 

One of the main reasons this indexing method was devised was 
to ensure uniform appearance of indexes within the Multics set of 
manuals. Also, if the indexes are all produced in the same 
manner, a comprehensive index can be produced without too much 
effort. 

Since the GCOS manuals are now produced on the Multics . 
system, it was necessary that the new indexing method accept as 
input the indexing marks already embedded in the runoff source of 
the GCOS manuals. 

Multics Project internal working docum~~tation. Not to be 
reproduced or distributed outside the Multics Project. 



MULTICS TECHNICAL BULLETIN MTB- 307 

Another main objective was to mimimize the human effort 
required in producing an index. Any indexing method requires a 
great deal of human time deciding how an index should be 
organized, what should be in it, how items should be included, 
etc. The best the computer can do, until it understands the 
English language, is make sure the human time is expended only 
once. By modifying the runoff source segment to identify where 
and how an index entry should occur, the index can be generated 
over and over again and the entries will continually be produced 
as they were the first time (except for the page numbers, which 
runoff will keep track of). Thus, for any updates, human 
indexing time is reduced to deciding on index entries for the new 
material. 

The new indexing method offers a side-by-side feature, which 
will probably be used on final review copies, to check the index 
hits against the text. The left portion of the dprint is the 
text of the manual; the right portion consists of index entries, 
placed as close as possible to the corresponding text. 

Finally, the last main objective (not yet a reality) is to 
have all the programs/macros used · in the indexing process 
installed in the tools library. This status will ensure a 
certain level of support and make the information more readily 
available to the general user community. 

Index Format 

The new method produces an index that looks like this: 

command language 
execution 

abbrev 3-3 
answer 3-12 
enter_abs_request 3-126 
exec com 3-130 
memo 3-209 
walk_subtree 3-335 

expansion 
abbrev 3-3 
do 3-100 
get_com_line 3-166 
set_com_line 3-313 

see active functions 
see directory 
see search rules 

Notice that different levels of headings are allowed. Up to four 
levels of headings can be accommodated, and any level can be 
followed by a page number. ~ 

2 



MULTICS TECHNICAL BULLETIN 

Imolementation 

The new method of indexing proposed in this MTB ensures that 
index entries, once defined, are constant. This method also 
minimizes the amount of extra typing necessary to generate a hit; 
i.e., if the key string actually appears in text, it need not be 
retyped. For example, consider the following index entry: 

command language 
execution 

abbrev 3-3 

This entry could be produced by the following lines in the runoff 
segment: 

OR 

The 
.if hit "Kabbrev:command language-execution" 
command 

The -Kabbrev:command language-execution@ command 

These lines are examples of the two methods of indexing manuals 
on Multics: the hit include file method and the marking method. 

The first step in the indexing process is to modify the 
runoff source using one of these methods. Most Multics manuals 
will use the include file method; the marking method is similar 
to the indexing procedures originally used on Series 60 Level 66 
{GCOS) manuals and is provided mainly for use by GCOS manual 
production personnel. (The marked lines in a runoff segment must 
be transformed into hit lines, currently done using a ted_com, 
before any further indexing procedures can be done.) 

Overyiew of Indexing Process 

When the segment containing hit lines is run off, an entry 
for each hit line is put in the chars segment and, if specified, 
text is passed to the runout segment {or printed if the -sm 
control argument is not used). The index_process {ted_com) 
program then takes the hit lines in the chars segment, permutes 
them to form keys, strips off extraneous page information, and 
puts the result in the extracted index (a segment with the 
suffix, xindex). Another program, index_sort {ted_com), sorts 
the lines in the extracted index to produce the sorted index 
(suffix, sindex). Then, the index_print program creates a 
formatted index (suffix, findex) from the sindex segment. This 
is the finished index. To produce the side-by-side version of 
the document for final review, the index_draft program takes the 
chars segment and the runout segment and produces a two-columned 
runout segment (runout'), which is then dprinted. 

3 



MULTICS TECHNICAL BULLETIN 

The diagram below illustrates the indexing process. 

{name.runoff} 
I 
I 

t 
I 
I 

runoff :-----------~->{name.runout} 

----- : t 
I 
I 

t 
{name.chars}---------> 

I 
I 

t 
I 
I 

index_processl 
I 

--------' I 
I 

t 
{name.xindex} 

I 
I 

t 

index_draft 

I 
I 

t 
{name.runout'} 

MTB- 307 

index_sort 

Note: index_sort allows several 
xindex and/or sindex 
arguments; if suffix not 
given, xindex assumed. 

I 
I 

t 
{name.sindex} 

I 
I 

t 
I 
I 

index_print :-----------> <HARDCOPY> 
I 

-------' I 
I 

t 
{name.findex} 

I 
I 

t 

dprint 

I 
I 

t 
<HARDCOPY> 

4 



MULTICS TECHNICAL BULLETIN MTB- 307 

Detailed Description 

The remainder of this MTB explains how the modification of 
the runoff segment is done and gives several examples, showing 
sample runoff hit lines and the result in the runout, chars, and 
xindex segments. The indexing procedures briefly described here 
must be fully documented for future use by programmers, writers, 
and terminal operators. Also, as mentioned previously, the 
programs involved must be documented and submitted to the tools 
library. If necessary, a future MTB will deal exclusively with a 
detailed walk-through implementation of the indexing procedures. 

If the marking method (as opposed to the hit include file) 
is used to modify the runoff segment, the begin and end marks (~ 
and @ in the example above) should be characters that do not 
appear anywhere else in the manual. 

If the hit include file method is used, the quote character 
(") cannot be used as part of the hit. 

The following characters cannot be used as part of the hit; 
they are reserved for special use in the parameter to the hit 
macro: 

used to separate levels 
used to separate phrase from key 
used to separate page info from rest of string 

The forms of hits that cause text to appear in the runout 
segment cannot be used within nofill (.nf), center (.ce), or 
equation {.eq) modes. An error message will occur if this is 
attempted. 

The index hits are collected in the chars segment (to avoid 
various initialization problems and difficulty with the command 
processor). A hit line in the chars segment will look like this: 

- HIT Kphrase:keylkey;3-27 -27 6 6 
1' I 1'T1'1' 
T-------------1 T-T T-T 

I 
I 
I 
I 

parameter -----------: 

section ---------------

after-page ---------------

before-page ------------------: 

after-line ----------------------

before-line -----------------------

5 



MULTICS TECHNICAL BULLETIN MTB- 307 

Line numbers and page numbers are needed for generation, of a 
side-by-side final review version of a document. 

Various kinds of hits can be specified so that the writer 
can control: 

1. hit format (uppercase, lowercase, initial caps, or as-is) 

2. hit formation (either writer explicitly gives keys or 
programs generate keys by permuting text portion of hit 
parameter) 

3. text generation (whether or not text appears in the runout 
segment) 

4. "see" items 

5. "no-index" items 

The control character at the beginning of the hit parameter 
(e.g., K in the hit line above) determines the actions taken by 
the indexing programs. 

1. Text is 
"Utext" 
"Ltext" 
"I text" 
"A text" 
"+text" 

generated and permuted to form keys. 
uppercase keys 
lowercase keys 
initial caps keys 
as-is keys 
uppercase keys .anQ. page_no* 
indicate new index entries, 
addenda) 

2. No text; string is permuted to form keys. 
11 u:string" uppercase keys 
11 L:string" lowercase keys 
11 1:string" initial caps keys 
"Alstring" as-is keys 
"+:string" uppercase keys and page_no* 

3. Text is generated and keys are 
"Ktext:key:key .•• :key" 

4. No text; keys are specified. 
"K: key: key ... I key" 

6 

(used to 
usually for 

specified. 



MULTICS TECHNICAL BULLETIN MTB-307 

5. No text; keys are specified; no page reference in index. 
"Slkey:key ... Ikey" 

6. Text is generated and no entry appears in index. 
"Ntext" 
(This type of hit is used when a word or phrase that 
appears in text should nQ.t. be indexed here even though it 
is indexed elsewhere in document.) 

Examples 

line in .runoff: .if hit "UABC Def ghi" 

result in .runout: ABC Def ghi 

result in .chars: - HIT UABC Def ghi;3-27 -27 6 6 . 
result in .xindex: ABC-ABC Def ghi;3-27 

DEF-ABC Def ghi;3-27 
GHI-ABC Def ghi;3-27 

line in .runoff: .if hit "+ABC Def ghi" 

result in .runout: ABC Def ghi 

result in .chars: - HIT +ABC Def ghi;3-27 -27 6 b . 
result in .xindex: ABC-ABC Def ghi;3-27* 

DEF-ABC Def ghi;3-27* 
GHI-ABC Def ghi;3-27* 

line in .runoff: .if hit "NABC Def ghi" 

result in .runout: ABC Def ghi 

result in .chars: NONE 

result in .xindex: NONE 

line in .runoff: .if hit "LABC Def ghi" 

result in .runout: ABC Def ghi 

result in .chars: - HIT LABC Def ghi;3-27 -27 6 6 . 
result in .xindex: abc-ABC Def ghi;3-27 

def-ABC Def ghi;3-27 
ghi-ABC Def ghi;3-27 

7 



MULTICS TECHNICAL BULLETIN MTB- 307 

line in .runoff: .if hit "!ABC Def ghi" 

r'esul t in .runout: ABC Def ghi 

result in .chars: - HIT IABC Def ghi;3-27 -21 6 6 . 
result in .xindex: Abe-ABC Def ghi;3-27 

Def-ABC Def ghi;3-27 
Ghi-ABC Def ghi;3-27 

line in .runoff: .if hit "AABC Def ghi" 

result in .runout: ABC Def ghi 

result in .chars: - HIT AABC Def ghi;3-27 -21 6 6 . 
result in .xindex: ABC-ABC Def ghi;3-27 

Def-ABC Def ghi;3-27 
ghi-ABC Def ghi;3-27 

line in .runoff: .if hit "KABC Def ghi:first" 

result in .runout: ABC Def ghi 

result in . chars: . - HIT KABC Def ghi :.first; 3-27 -27 6 6 

result in .xindex: first-ABC Def gh1;3-27 

line in .runoff: .if hit "Krunslsecond:third-inning" 

result in .runout: runs 

result in .chars: .- HIT Kruns:secondlthird-inning;3-27 -27 6 6 

result in .xindex: second-runs;3-27 
third-inning-runs;3-27 

line in .runoff: .if hit "Klthird" 

result in .runout: NONE 

result in .chars: .- HIT K:third;3-27 -27 6 6 

result in .xindex: third;3-27 

b 



r 
\ 

MULTICS TECHNICAL BULLETIN MTB-307 

line in .runoff: . if hit "K:ba11-1:strike-2" 

result in .runout: NONE 

result in .chars: - HIT Klba11-1:strike-2;3-27 -27 6 6 . 
result in .xindex: ball-1;3-27 

strike-2;3-27 

line in .runoff: .if hit "S:AcL-see access" 

result in .runout: NONE 

result in .chars: .- HIT s:AcL-see access;3-27 -27 6 6 

result in .xindex: ACL-see access 

line in .runoff: .if hit "S:invoke-see INV:PRn-see register, 
procedure" (this would actually be only 
one line) 

result in .runout: NuNE 

result in .chars: - HIT s:invoke-see INV:PRn-see register, 
procedure;3-27 -27 6 6 (again, really only 
one line) 

result in .xindex: invoke-see INV 
PRn-see register, procedure 

9 


