
Multics Technical Bulletin MTB - 326

To: D.istribution

From: David M. Jordan

Date: January 26, 1977

Subject: Batch Processing on Multics

I. Introduction

In the past, Multics has led the relatively pristine life of
a pure time sharing system. With a small user community,
pressures for support of the more mundane forms of computing
services were limited and, to a large degree, ignorable.
Recently, however, several user sites have been added for
organizations whose users are neither sophisticated nor
dedicated. In many cases these users are unimpressed by those
things that Multics does well, as they are unable to accept the
difficulty of performing tasks traditionally associated with
large scale systems.

In particular, many users are requestin~ that Multics
provide appropriate mechanisms for the handling of punched cards
in what can best be described as the "traditional" manner. These
users are asking that Multics not only read cards, but that it
also allow the cards to be processed as batch input. From the
users' viewpoint, this implies such things as the ability to read
source, object, and data in a single deck and includes the
ability to control the job through some sort of batch monitor
which implements a fairly traditional form of Job Control.

II. Major Areas of Conc·ern

In order to provide a reasonably broad implementation of
bdtch capabilities some areas of the system will need to be
reworked and some completely new code will have to be generated.
In each instance, the object of the changes is to provide the end
user with a reasonably powerful, consistant, and easy to use form
of batch processing.

A. Security

The concept of security is a basic element of the Multics
design, and every effort should be made to provide as much
security as is reasonable in a batch environment. However, it

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

- 1 -

MTB - 326 Multics Technical Bulletin

seems clear that the whole concept of batch processing limits
our ability to provide real security: a card deck may be
easily "borrowed"; identification of a remote batch station
may not be possible with any real assurance. In spite of
these problems and others which may become evident later, the
needs of the users must be considered primary, and thus we
must be careful to provide a usable facility.

One major concept to be considered is an individual
site's ability to determine, for itself, the Level of risk
involved in providing batch services. In fact, the site
s h o u l d b e r e q u i r e d t o t a k e po s i t i v e a c t i o'n t o e n a b l e a n y b a t c h
processing at all and further, to allow those services which
are more risky.

B. Remote Batch Processing

The use of remote batch workstations is becoming more
widespread as time passes. In fact, some Multics users have
Literally hundreds of stations which they would like to
interface to the system. Although we have provided some
remote support in the past, several changes appear to be
required in order to support batch processing in a consistant
manner:

1. Initialization of Remote Connections
Problems currently exist in terms of initiating a

dialup remote station through the Initializer. Most of
these problems are probably due to bugs in the current
software, but, when we begin to consider "hundreds of
stations", this whole area probably requires reexamination.
This is especially true considering the desire to allow the
submission of jobs, not just decks, from the remote
station.

2. Batch Processing Input
Currently Multics allows the use of a remote station

to read card decks into the card pool, but not to submit
them as batch jobs.

3. Other Considerations
Several other factors are of interest relative to

remote stations: the structure of a remote deck should be
as identical to a locally submitted deck as possible; the
source of the remote input should be available to the
running job to allow automatic routing of output; the
ability of the IO daemons to handle hundreds of queues
should be examined.

- 2 -

Multics Technical Bulletin MTLI - 326

C. Local Batch Processing

The major consideration relative to local batch
processing is that its use be essentially identical to the use
of remote batch.

D. Card Input, Batch and non-Batch

1. In order to provide as much consistancy as possible, the
card de c k st r u c tu res, for both ca rd i n put (as cur rent, l y
defined) and batch input, should be essentially identical.
The only differences should center around whether the deck
is to be executed or not. Also, the procedure which reads
cards should be able to read both card input and batch
input decks without any operational intervention being
required.

2. The. current requirement that a card deck be in a single
card format should be abandoned or significantly modified.
It is not unreasonable to assume that users of a batch
facility will want to mix source, object, data and control
cards in a single "job". In order to make this feasible,
it will probably be necessary to read the entire deck (with
the possible exception of overall deck control cards) in
raw mode and to leave the actual format conversions to
either the copy_cards command or to the batch processing
control procedure.

3. In order to allow reasonably natural use of cards, a new
punched card format should be d~fined which, like the "MAP"
preaccess command, will cause automatic conversion of upper
case to lower case with appropriate escapes to get upper
case input.

E. Batch Processing Environment

It seems both reasonable and proper to allow a card deck
to be executed as though it were simply an absin segment. In
this mode of execution, however, the user is restricted by
having to anticipate what the system will want next. The
Multics command language has been designed primarily as a
conversational interface with the user prompting the system
and the system prompting the user. In a hatch environment,
however, this can be extremely clumsy. If the user executes a
Fortran program involving I/Q, for example, he must remember
to include a mechanism for answering the "Close files?"
question. In addition, it can be extremely difficult to
handle errors in execution, as abs_io_ will generally refuse
to continue, thus, as a result of an error, no output at all
may be printed.

- 3 -

MT8 - 326 Multics Technical Bulletin

In order to allow more reasonable use of Multics in a
batch mode, it therefore seems necessary to provide some sort
of batch job control procedure. Such a control procedure
would provide features associated with batch such as a job
control language, error handling utilities, i/o control
functions and so on. All in all, the design and
implementation of such a batch control system may be the most
significant effort required to produce a useful native Multics
batch system.

III. Summary

The preceding paragraphs have outlined some possible design
objectives of an easily usable batch facility for Multics. It
seems clear that more detailed design work will be required and
that a significant effort will be needed to implement such
designs. However, the Multics environment provides many of the
tools necessary for the implementation and thus the overall
effort should be quite reasonable.

While there can be no doubt that a batch system as described
above will violate some basic Multics design philosophies, we
must remember that it will also open the system for a wide
variety of less technically oriented end users and will therefore
add significantly to the utility of the system.

- 4 -

