
'r'

Multics Technical Bulletin MTB-328

To: Distribution

From: J. A. Weeldreyer

Date: February 23, 1977

Subject: Logical Inquiry and Update System (LINUS)

Introduction

There is a requirement for an "End User Facility" to provide
access to Multics data bases, on an ad hoc basis, for users who
may not be computer specialists. Such a facility is not
currently provided by the Multics Data Base Manager (MDBM), since
this subsystem was designed for the application programmer. This
MTB proposes a new subsystem LINUS which, together with the
Report Generator Language (RGL) described in MTB-321, will
fulfill this requirement.

Please forward comments or suggestions to Weeldreyer.Multics
on System M, or call (602) 249-7244 or HVN 341-7244.

Qyeryiew

LINUS is designed to provide a data base query and update
capability for users who may not be computer specialists, but who
are willing to learn to converse with a computer in a fairly
structured manner via a high level, non-procedural language.
This facility is designed primarily for interactive use on an ad
hoc basis. However, an extensive macro capability is provided to
allow a "canned" series of operations to be performed as
required.

LINUS operates as a subsystem, much like debug or a text
editor, and provides the capability to retrieve and update data
in a Multics Relational Data Store (MRDS) data base. (If
required, LINUS may be extended, at some point in the future, to
access Multics Integrated Data Store (MIDS) data bases as well.)
Data to be selected is specified via expressions in the LINUS
Language (LILA) which is a dialect of SEQUEL [1,2].

The LILA expressions will be translated directly into MRDS
selection expressions, except for the few cases where a
one-to-one mapping is not possible. Such cases are those in

Multics Project internal working documentation. ~ Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-328

which a set function (e.g.
of an inner select-from-where
expression is:

max, min) is applied to the results
block. An example of such an

select name
from emp
where sal > max {select sal

from emp
where dept = "Shoe"}

Here, the LILA expression would be translated into two MRDS
selection expressions: one to retrieve salary values so that a
maximum can be determined, and a second to select the desired
names. All LINUS data base operations will be accomplished via
calls to the ~RDS data sublanguage entries.

It should be noted that several features normally provided
in "End User Facilities" such as the Management Data Query System
(MDQS) on GCOS, will not be provided directly within LINUS.
Instead, the capability is provided to place selected data into
segments or multi-segment files within the Multics storage
system. This allows other Multics facilities to be invoked to
perform such functions as report formatting (including grouping,
totaling, sorting), statistical analyses, editing, etc. There is
also no data base definition capability within LINUS, since the
data base and data submode! creation commands included in MRDS
are very simple and easy to use.

Modifications .t.Q ~ .t:1.llQS.

Several extensions to the MRDS selection expression will be
required to support LINUS. These proposed changes are compatible
with the current selection expression, and will require no
changes to existing MRDS application programs.

One change is to define the -dup keyword which may be
included in the -select clause for the dsl_$retrieve entry. This
keyword specifies that duplicate selected values are to be
returned to the caller. If omitted, duplicates will be
eliminated (which is the current mode of operation). For
example:

-select -dup x.salary

will return all salary values, including duplicates, while

-select x.salary

will return only unique values of salary. The -dup keyword will
simplify the retrieval of data to be used for the calculation of
averages, sums, etc.

MTB-328 Page 3

Another MRDS extension will allow the use of arithmetic
expressions within the -where clause. This will allow -where
clauses such as:

-where (x.salary + x.commission) > 10000

A third modification will allow scalar functions to be used
within the -where clause. There will be a set of pre-defined
functions available, and the capability for user-defined
functions will also be provided. User-defined functions will be
declared via a new entry, dsl_$declare_fn. An example of this
new capability is:

-where (index (x.addr "Arizona")) R= O

The above -where clause would return all tuples in which the
address attribute contains the string "Arizona".

Three new keywords will be added: -inter, -union, and
-differ. These correspond to the set operations intersection,
union, and difference, respectively. They may be placed between
range-select-where blocks within a selection expression. This
feature allows set operations to be performed on sets of selected
data. For example:

-range (x Phoenix_phone_book)
-select x
-union
-range (x Tucson_phone_book)
-select x

selects the union of the two phone books. With the addition of
this feature, the MRDS becomes relationally complete.

In the original specification of the MRDS, provisions were
made for universal quantifiers, and for complex ranges, i.e. the
capability to have a single tuple variable range over unions,
intersections, and differences of several relations. However,
these features were not implemented in the initial release of
MRDS. Since then, experience has shown that the class of queries
in which universal quantification would be useful is extremely
small. Hence, universal quantification will not be implemented
in MRDS. In fact, explicit user specification of existential
quantification will no longer be required. Also, complex ranges
will not be implemented. The capability to specify set
operations on selected data is equivalent in power, and is
simpler for users to comprehend.

Page 4 MTB-328

~ Documentation

The following comprises the user documentation for LINUS.

MTB-328 Page 5

~: linus

This command invokes the Logical Inquiry and Update System
(LINUS) which is a powerful, yet easy to use, facility for
accessing a Multics Relational Data Store (MRDS) data base.
LINUS provides a complete data base management capability
including both retrieval and update operations. Data to be
selected is specified via the LINUS Language (LILA) which is a
high level, non-procedural language capable of being understood
and used by individuals who are not necessarily computer
specialists.

Usage

linus {macro_path} {optional_args}

where:

1. macro_path
is an optional argument and, if present, specifies
the pathname of an ASCII segment from which LINUS is
to take its initial instructions. Such a set of
instructions is referred to as a macro. If
macro_path does not have a suffix of linus, then one
is assumed. However, the suffix linus must be the
last component of the name of the segment.

2. optional_args
are character strings to be 2~bstituted for special
strings in the macro segment. An optional argument
may be specified only if a macro_path is also given.

If macro_path is provided, LINUS exe~utes the reciuests
contained in the specified segment and then waits for the user to
type further requests. If macro_path is omitted, LINUS waits for
the user to type a request. A discussion of LINUS macros is
provided in the section, Macro Facilities.

Notes

While most users interact with LINUS through the terminal,
this facility is designed to accept input through the user_input
I/O switch and to transmit output through the user_output I/O
switch. These switches can be controled, via the io call
command, to interface with other devices/files in addition to the
user's terminal. For convenience, the LINUS description assumes
that the user's input/output device is a terminal.

Page 6 MTB-328

LINUS recognizes and handles the program_interrupt
condition. Thus, the user may interrupt any request and resume
the LINUS session by using the Multics command,
program_interrupt. After the program_interrupt command, LINUS
waits for the user to type further requests.

MTB-328 Page 1

Selection Langyage

Several of the LINUS requests (e.g. modify, delete, print)
operate on well defined subsets of a data base. These data base
subsets are selected via expressions in the LINUS Language
(LILA). LILA is a dialect of SEQUEL (1,2] and is designed for
use by individuals who may not be computer programmers. The user
views the data base as a set of tables containing rows and
columns of data. LILA allows the selection algorithm to be
specified as a series of table look-up operations, very similar
to the way an individual would manually scan a set of tables for
information. For example, one can envision a telephone directory
as being a table with three columns of information: name,
address, and phone number. This table contains one row of
information for each individual listed in the directory.
Normally, if one wishes to find the phone number for John C.
Smith, one scans the name column for the name "Smith, John C.",
and then takes the value from the phone number column in the same
row. In LILA, this operation is described as:

select number
from phone_book
where name = "Smith, John C."

Various features of LILA will now be introduced via examples
referencing a data base consisting of five tables which describe
the operation of a department store:

emp (name, emp_no, dept, mgr, sal, comm)
sales (~, ~' vol)
supply (supplier, .1..tfilr!, vol)
loc (~, floor)
class (.1.t.filn, type)

The emp table contains a row for every employee, giving his name,
employee number, department, manager number, salary, and
commission for the last year. The sales table gives the volume
of sales for every item within each department. The supply table
provides the volume of each item supplied by every supplier. The
loc table gives the floor on which every department is located,
and the class table specifies the type of each item.

In each of the above tables, the underscores denote key
columns. Every row in a table is uniquely identified by its
values in the key columns. The LINUS user need not be concerned
with the key column concept except when using the modify and
define_temp_table requests discuss.ed later.

The basic component of LILA is the select-from-where
which is used to select column values fJ:.Qm one or more
where rows of the tables satisfy certain conditions. It
be noted that the indentation of the following examples

block,
tables
should
is for

Page 8 MTB-328

readability only, and is not required in actual usage. In fact,
the entire LILA expression may be contained in one line.

The select clause and the from clause must always be
specified in a select-from-where block. The where clause of a
block may be omitted, in which case all rows are returned.

Example 1: List all departments from the emp table.

select dept
from emp

A select clause may contain one or more column names, as in
the previous example; or may contain a *, indicating that all
columns from qualifying rows are to be selected.

Example 2: List all information pertaining to every employee
whose salary is greater than $8,ooo.

select *
from emp
where sal > 8000

More complex conditions may be specified in the where
clause, as shown in the following examples. Specifically, a
where clause may contain one or more terms. Each term consists
of a column name or an arithmetic expression; followed by a
relational operator; followed by a column name, arithmetic
expression, or constant. Allowable relational operators are:

>
<
<=
>=
=
=

greater than,
less than,
less than or equal to (or not greater than),
greater than or equal to (or not less than),
equal to,
not equal to.

Terms within the where clause must be separated by logical
operators, and may be grouped using parentheses to explicitly
specify order of evaluation. Allowable logical operators are:

&
I
I
~

logical conjunction ("and"),
logical inclusive "or",
logical negation ("not").

Character string constants within terms must be enclosed within
quotes. If a quote is to appear within a character string, a
double quote must be specified.

Example 3: Find the names and salaries of employees in the toy
department who work for Anderson, whose employee number
is 1423.

MTB-328

select name sal
from emp
where dept = "Toy" & mgr = 1423

Page 9

Example 4: Find the names of employees who are either in the
Admin department or whose sum of salary and commission
exceeds $10,000.

select name
from emp
where dept = "Admin" I sal + comm > 10000

It is possible to specify more complex table look-up
operations by using a select-from-where block as the last
component of a term in the where clause. This indicates that the
comparison specified in the term is to be performed for every
value selected by the inner block. All inner select-from-where
blocks must be delimited by braces({}).

Example 5: Find all items sold by departments located on the
second floor.

select item
from sales
where dept = {select dept

from loc
where floor = 2}

One can apply set functions to the results of a
select-from-where block, as shown by the following examples.
Allowable set functions are: min, max, count, avg, sum, and
user-defined functions. These are discussed in the section,
Builtin Functions. User-defined functions are discussed in the
description of the declare request.

Example 6: Find the average salary of employees in the shoe
department.

avg {select sal
from emp
where dept = "Shoe"}

Example 7: Find all employees whose salary is greater than that
of any employee in the shoe department.

select name
from emp
where sal > max {select sal

from emp
where dept = "Shoe"}

A select clause can also contain an arithmetic expression,
as shown in the following example.

Page 10 MTB-328

Example 8: Find each employee in the shoe
with his deviation from the
department.

department, together
average salary of that

select name sal - avg {select sal
from emp
where dept = "Shoe"}

from emp
where dept = "Shoe"

Set operations can be applied to the results of
select-from-where blocks. In LILA the set operations are union,
differ, and inter, which correspond to the union, difference, and
intersection operations as normally defined. That is, the union
of two sets consists of all items which belong to one or both of
the sets. The intersection of two sets consists of those items
belonging to both sets. The difference of two sets consists of
those items which belong to the first set, but not to the second.
For example, assume set A contains the letters a, b, and c; while
set B contains the letters c, d, and e. Then A union B is a, b,
c, d, and e; A inter B is c; and A differ B is a and b, while B
differ A is d and e.

Example 9: Find those items which are supplied by Levi and sold
in the men's department.

select item
from supply
where supplier = "Levi"

inter

select item
from sales
where dept = "Men"

It is possible to nest select-from-where blocks in order to
specify quite complex selection criteria.

Example 10(a): Find the total volume of items of type A sold by
departments on the second floor.

sum {select vol
from sales
where item = {select item

from class
where type = "A"}

& dept = {select dept
from loc
where floor = 2}}

It is also possible to bypass the block notation and use
table names to qualify column names (including *) within the

MTB-328 Page 11

select clause and where clause. This qualification is
accomplished by prefixing a column name with a table name
followed by a dot (.). Using this approach, the previous
expression becomes the following.

Example 10(b):

sum {select vol
from sales
where sales.item = class.item & class.type = "A"

& sales.dept = lac.dept & lac.floor = 2}

Finally, it is possible to specify variables which assume
rows of a designated table as values. In certain complex
queries, such row designators are required to resolve ambiguity.
A row designator is associated with a table by adding a prefix to
the table name in the from clause. The prefix consists of the
row designator name followed by a colon (:). Several row
designators may be associated with a single table. The row
designator is used in the select clause and where clause like a
table name to qualify a column name. Row designators are global
within a LILA expression. Therefore, a row designator which has
been associated with a table in one select-from-where block can
be referenced in another such block by associating the row
designator with a table name of * in the from clause of the
referencing block.

Example 11(a): For
managers,
manager.

all employees who earn more than their
select the employee's name and that of his

select x.name y.name
from x:emp y:*
where x.mgr = {select y.emp_no

from y:emp
where x.sal > y.sal}

Alternatively, experienced users may wish to forego the
block notation and specify the same query as follows.

Example 11(b):

select x.name y.name
from x:emp y:emp
where x.mgr = y.emp_no & x.sal > y.sal

The preceding description is an introduction to the basic
features of LILA. The information in this section is sufficient
to allow the reader to formulate LILA expressions to satisfy a
large class of data selection requirements. However, users
should read the section, Syntax and Semantics of LILA, for a
precise description of the complete LILA capabilities.

Page 12 MTB-328

LINUS Reguests

The following is a summary of LINUS requests arranged in
functional order. The remainder of this section contains a
detailed description of each request ordered alphabetically.

open, o
opens a specified data base or data
processing by LINUS.

submodel for

declare, dcl
allows the user to declare user-written functions for
later invocation within LILA expressions.

set_scope, ss

lila

defines the current scope of access within a shared data
base.

invokes the data selection mechanism to process the LILA
expression and to select the specified data for
manipulation by a subsequent LINUS request.

print, p
specifies that the selected data is to be retrieved and
printed on the terminal in default format.

write, w

set

specifies that the selected data is to be retrieved and
written to a file in the storage system or to a formatted
report.

specifies that the selected data is to be
that the retrieved values are to be
designated variables.

retrieved, and
assigned to the

modify, m
specifies that the selected portion of the data base is to
be modified.

delete, d
specifies that the selected data is to be deleted from the
data base.

define_temp_table, dtt
specifies that the selected data is to form a new,
temporary table, known only to the process, but which can
be accessed by the process for retrieval in the same
manner as data base tables.

MTB-328 Page 13

store, s
adds new rows to specified tables in the data base.

del_scope, ds
deletes all or a portion of the current scope of access in
a shared data base.

invoke, i
executes the requests in the designated LINUS macro
segment.

execute, e
passes the remainder of the command line to the Multics
command processor for exec1 '~ion.

close, c

help, h

quit, q

closes the currently open data base, making it unavailable
to the process until it is again opened.

provides information on designated LINUS requests to the
user at the terminal.

terminates a LINUS session.

Page 14 MTB-328

Request: close, c

This request closes the currently open data base, making it
unavailable to the process until it is again opened.

Usage

close

MTB-328 Page 15

Request: declare, dcl

This request. allows the user to declare a non-standard
function which may be invoked in a subsequent LILA expression. A
non-standard function is any function not included in the
section, Builtin Functions, and may be user-written or may be
provided by the local installation. Two types of functions may
be declared: set functions which operate on multiple sets of
values, e.g. sum { ••• }, and scalar functions which operate on one
occurrence of a set of values.

Usage

declare fn_name fn_type -control_args

where:

1. fn_name

2. fn_type

is the name of the function being declared. The
fn_name must be the name of an object segment which
can be found using the search rules currently in
effect.

is the type of the function being declared. Two
types are permitted, "set" or "scalar". A set type
function operates on multiple sets of selected
values, whereas a scalar type function operates on
one set of specified values. An example of a set
function type is:

avg {select salary
from emp}

while a scalar function example would be:

substr (name 1 5)

3. control_args
are two arguments, both of which must be specified.

-input_type declarations, -it declarations
specifies the type declarations of all input
arguments to the function, in the order in which the
arguments are specified in the LILA expression. Type
declarations are specified in PL/I syntax. Each
declaration is assumed to be one character string.
Thus, if a declaration contains spaces, it should be
enclosed in quotes.

Page 16

Notes

MTB-328

-return_type declaration, -rt declaration
specifies the type declaration of the return value.
Return_type declarations are specified in the same
manner as input_type declarations, with the
additional type of "logical" allowed. A logical
return_type indicates that the function is a
truth-valued function, returning the values true or
false.

Input type declarations may contain a * length, indicating
that lengths are to be determined from data descriptions within
the data base. Any data conversions necessary to resolve
differences between the data base and the functions are performed
automatically by LINUS according to PL/I conversion rules. The
user must refer to the function documentation to determine the
appropriate type declarations.

Scalar functions can accept as input column values from only
one table, if no row designators are used. If row designators
are specified, column names must all be qualified with the same
row designator. ~

Several builtin functions are provided as a standard part of
LINUS. See the section, Builtin Functions, for a description of
these functions. It is not necessary to declare builtin
functions. If a declared function has the same name as a builtin
function, the declared function, rather than the builtin
function, will be invoked when the function name is referenced.

Examole

Find the department average sales volume of all items made
of cotton. Assume that the item code contains encoded
information indicating the material of which an item is made, and
that the user-defined scalar function, material, returns this
information. Also assume that there is a user-defined set
function, dept_avg, which calculates the desired average, which
is the total volume divided by the number of departments. (The
"end" following the LILA expression merely serves to indicate the
termination of the expression.)

declare material scalar -input_type "fixed decimal (8)"
-return_type "character (12)"

declare dept_avg set -input_type "character (*)" "fixed ~
binary (17)" -return_type "fixed binary (17)"

lila
dept_avg {select dept vol

MTB-328 Page 17

from sales
where material (item) = "cotton"}

end

Page 18 MTB-328

Request: define_temp_table, dtt

This request causes the selected data to be placed into a
temporary table which can then be referenced as any other table
in the data base for retrieval purposes. This feature is useful
from an efficiency standpoint, since multiple retrievals of the
same data can be avoided. This request must immediately follow a
lila request.

Usage

define_temp_table table_name key_columns

where:

1. table_name
is the name of the temporary table. Subsequent
references to this table must use this name. If a
temporary table of this name already exists, it will
be redefined.

2. key_columns

Notes

are one or more column names specified in the
associated LILA select clause which are to become key
columns in the temporary table. Key columns uniquely
determine the rows of the temporary table, i.e. the
concatenation of the values of all key columns must
be unique for each row of the temporary table.
Duplicates are automatically eliminated.

The select clause of a LILA expression associated with a
define_temp_table request cannot contain an expression. Only
column names {qualified or unqualified, including *) are allowed.

All key columns must be
associated select clause, i.e.
those specified by a *·

explicitly specified in the
a key column cannot be one of

Temporary tables cannot be updated, but can be accessed for
retrieval only.

Normally, a temporary table is created for the purpose of All\
simplifying LILA expressions when data is to be selected from
several tables in the data base.

MTB-328 Page 19

Example

If it were necessary to retrieve information from the
department store data base about employees based upon the floor
on which they are located, the following temporary table would be
useful.

emp_loc (.Il.fil!'jg, emp_no, mgr, sal, comm, floor)

Such a temporary table would be created by:

lila
select name emp_no mgr sal comm floor
from emp loc
where emp.dept = loo.dept

end
define_temp_table emp_loc name

The LILA expression necessary to find the average salary of all
employees located on the second floor would then be:

avg {select sal
from emp_loc
where floor = 2}

as opposed to the following, if the temporary table were not
available:

avg {select sal
from emp
where dept = {select dept

from lee
where floor= 2}}

Page 20 MTB-328

Heauest: del_scope, ds

This request deletes all or a portion of the scope of access
declared by a previous set_scope command. This request is
applicable only for shared (non-exclusive) opening modes.

Usage

del_scope table_namel {permit_opsl prevent_opsl
table_namen permit_opsn prevent_opsn}

...

where:

1. table_namei

2.

3.

is the name of a non-temporary table within the data
base for which all or a portion of the scope of
access is to be deleted. If table_namel is a *, then
no additional arguments need be specified, and all of
the user's current access scope is deleted.

permit_opsi
is a character string indicating
permitted operations are to be
access scope.

which
deleted

currently
from the

prevent_opsi
is a character string
operations currently
processes can be deleted

indicating which of
being prevented for
from the access scope.

the
other

See the description of the set_scope request for a
definition of the operation codes, and for a more detailed
discussion of the scope mechanism.

Examoles

Remove modify permission for the employee table and allow
other processes to perform store, modify, and delete operations
on it.

del_scope emp m smd

MTB-328

Delete all of the current scope of access.

del_scope *

Page 21

Page 22 MTB-328

Request: delete, d

This request deletes selected rows from a single table
within the data base. The data base must be open for update or
exclusive_update and, if open for update, the affected table must
be within the scope of access for delete. This statement must
immediately follow a lila request.

Usage

delete

Notes

The select clause of the associated LILA expression must
specify columns from only one table, and all columns from that
table must be specified (use of* is recommended). The affected
table cannot be a temporary table.

Example

Joe Smith has just been fired. Delete his employee record.

lila
select *
from emp
where name = "Smith, Joe"

end
delete

MTB-328 Page 23

Request: execute, e

This request is used to invoke the Multics command processor
without exiting from LINUS. Whenever an execute request is
recognized, the remaining characters in the request line are
passed to the Multics command processor. The execute request can
be followed by any legal Multics command line. However, the user
should not invoke LINUS while in LINUS since LINUS is not
recursive.

Usage

execute command_line

where command_line is any legal Multics command line.

This request allows the user to make full use of Multics
facilities external to LINUS. Specifically, data may be
retrieved and written to a Multics segment by the write request.
Then a Report Generator Language (RGL) object segment may be
invoked via the execute request to create a formatted report from
the retrieved data. Other frequently used facilities are text
editors and the sort command.

Example

Retrieve the name, department, and salary
and create a formatted report containing
Assume that an RGL object segment, emp_report,
desired report.

lila

end

select name dept sal
from emp

write emp_data
execute emp_report emp_data

of every employee,
this information.
will create the

Page 24 MTB-328

Request: help, h

This request prints information regarding a designated LINUS
feature on the terminal. The information available via the help
request is concise reference material and is not intended to be
tutorial in nature.

Usage

help {feature}

where feature is an optional argument designating a specific
feature or request about which information is desired. If
omitted, a list of features for which information is available is
printed.

Examples

Print a list of features for which information is available.

help

Print information about the write request.

help write

MTB-328

Request:

This
designated
optionally
capnbility

Usage

Page 25

invoke, i

request specifies that the requests contained in the
macro segment are to be executed. Arguments may

be passed to the macro. This feature provides the
to invoke a pre-defined series of LINUS requests.

invoke macro_path {optional_args}

where:

1. macro_path

2.

Notes

is the pathname of the ASCII segment containing the
LINUS macro. If macro_path does not have a suffix of
linus, then one is assumed. However, the suffix
linus must be the last component of the name of
macro_path.

optional_args
are character strings to be substituted for special
strings in the macro segment.

Upon acceptance of the invoke request, the macro segment is
read and executed, line-by-line. Argument substitution also
takes place on a line-by-line basis, after the line is read and
prior to its execution. After all lines in the macro segment
have been processed, LINUS waits for the user to type further
requests on the terminal. See the section, Macro Facility, for a
complete description of the LINUS macro capability.

Example

Execute the requests contained in the segment
get_salary.linus, passing the argument "Smith, John".

invoke get_salary "Smith, John"

Page 26 MTB-328

Request: lila

This request invokes the LILA processor. All text following
the "lila" and prior to the "end" is assumed to be a LILA
expression. A lila request must immediately precede all print,
set, write, modify, delete, and define_temp_table requests.

Usage

lila LILA_expression end

where LILA_e:)ression is an expression in LILA which selects data
from the data base. See the sections Selection Language and
Syntax and Semantics of LILA for a detailed description of a LILA
expression. The words lila and end serve as delimiters for the
LILA_expression.

Example

See the examples for the print, set, write, modify, delete,
and define_temp_table requests.

MTB-328 Page 27

Request: modify, m

This request modifies selected data in the data base. Data
to be modified must be contained within one table, and key
columns cannot be modified. The data base must be open for
update or exclusive_update. If open for update, the table being
updated must be within the current access scope for the modify
operation. New values may be specified within the request line,
or they may be entered interactively, in response to LINUS
prompting. In both cases, the user is asked to verify the new
values before the modification takes place, unless the
verification mode is explicitly turned off. This request must
immediately follow a lila request.

Usage

modify {column_values} {-control_arg}

where:

1. column_values
are optional arguments and, if present, specify the
new values that are to replace the current values of
the data selected by the associated LILA expression.
The column_values must be specified in the same order
that the associated column names are listed in the
select clause. If not present, LINUS will request
the column_values individually by name.

2. control_arg

Notes

may be either -brief or -bf which specifies that
verification of column_values is not to be done. If
not present, LINUS will print a list of selected
column names, together with the column values as
entered by the user, and request that the user verify
the correctness of the column_values before the
modification operation proceeds. If the verification
is negative, the modification does not take place.
The user may reenter the modify request without again
specifying the associated LILA expression.

New column_values may be specified in two forms: as
constants or LINUS variables which have previously been set, or
as arithmetic expressions combining constants, LINUS variables,
and column names specified in the select clause of the associated

Page 28 MTB-328

LILA expression.

The select clause of the associated LILA expression must
specify columns from only one table, and only non-key columns may
be selected. The select clause associated with a modify request
may not contain arithmetic expressions, but is restricted to
simple or qualified column names.

Examples

Give every employee a 10 per cent raise.

lila

end

select sal
from emp

modify sal + .10 * sal

sal = sal + .10 * sal
OK? yes

Al Jones has transferred to the shoe department. Update his
employee record to ·indicate his new department and manager.

lila
select dept mgr
from emp
where name = "Jones, Al"

end
modify

dept?
mgr?

Shoe
1234

dept = Shoe
mgr = 1234
OK? yes

Update the data base to indicate that the shoe department
has moved to the third floor.

lila

end

select floor
from loc
where dept = "Shoe"

modify 3 -brief

MTB-328 Page 29

Reauest: open, o

This request opens a specified MRDS data base with the
designated opening mode. The data base may be designated either
by the pathname of the data base itself, or by the pathname of a
data submodel associated with the data base. Only one data base
may be open at any given time.

Usage

open data_path mode

where:

1. data_path

2. mode

is the pathname of a MRDS data base or of a data
submodel associated with a MRDS data base. A data
submodel is a user's view of the data base which may
differ from the actual data base definition. See the
MRDS Reference Manual for a more detailed discussion
of data models and data submodels.

is the usage
opened. Modes
names or by
valid opening

mode for which the data base is to be
may be specified either by their full
their abbreviations. The folowing are

modes.

retrieval, r
indicates that the user wishes only to retrieve data
from the data base and will allow concurrent access,
for both update and retrieval, by other users.

update, u
indicates that the user wishes to both
update information in the data base
concurrent access, for both update and
other users.

exclusive_retrieval, er

retrieve and
and will allow
retrieval, by

indicates that the user wishes only to retrieve data
from the data base, but that concurrent access by
other users for update is to be prohibited.

exclusive_update, eu
indicates that the user wishes to both retrieve and
update information in the data base, and that no
concurrent access by other users is to be permitted.

Page 30 MTB-328

Notes

If the designated data base is already open for another user
in a mode that conflicts with the mode designated in the open
request, the open request will be denied.

Several data bases may be opened during a LINUS session, so
long as each one is closed prior to opening the next.

Example

Open the department store data base for non-exclusive
retrieval.

open dept_store retrieval

i""""

MTB-328 Page 31

Bequest: print, p

This request specifies that selected data is to be retrieved
and printed on the user's terminal. The selected columns are
printed side-by-side with optional column headers. The user may
specify that a limit be placed on the number of rows to be
printed. This request must immediately follow a lila request.

Usage

print {-control_args}

where control_args may be one or more of the following.

Notes

-max n
where n is a positive integer, specifies that no more
than n rows of information are to be printed. If not
present, all retrieved data is printed.

-no_header, -nhe
specifies that column headers are not to be printed.
If not present, column headers consisting of column
names are printed if columns are selected. If an
expression is selected, the column header will be
f(name), where name is the first column name in the
expression.

The columns are printed side-by-side. The width of each
column is determined from the data descriptions in the data base.
Each column is separated from the next by one blank. There is no
pagination.

Example

Print the names of all employees in the shoe department,
together with the sums of their salaries and commissions.

lila

end
print

select name sal + comm
from emp
where dept = "Shoe"

Page 32

Smith, John
Jones, Al
Anderson, Carol
Johnson, Betty

f(sal)

10000
12000
8000
11000

MTB-328

MTB-328 Page 33

Reauest: quit, q

This request terminates the LINUS session. If a data base
is open at the time of this request, it is automatically closed.

Usage

quit

Page 34 MTB-328

Request: set

This request specifies that selected data is to be retrieved
and the retrieved values assigned to designated LINUS variables.
This capability allows information obtained from one retrieval to
be used in subsequent data base accesses. The LINUS variables
can also be passed as arguments to LINUS macros.

Usage

set variable_list

where variable_list is a list of one or more variable names.

Notes

A variable name is an alphanumeric character string, from
one to 32 characters in length, which begins with an exclamation
mark (!). The underscore (_) and hyphen (-) may also be
included, but the exclamation mark may not appear elsewhere in
the name. The specification in a set request is the only
declaration required. If the same variable is specified in
several set requests, its value is reset in each of those set
requests. Variable names and values are preserved across data
base openings and closings.

lt should be noted that variables specified in the set
request are unrelated to row designators in LILA.

Variables represent character data. The length of the
character string represented by a variable is dependent upon the
data base description of the data item being assigned to the
variable.

Retrieved data is assigned to variables in the variable_list
in the order that it is retrieved. Retrieval ceases when all
selected data is exhausted or when all variables in the
variable_list are exhausted, whichever occurs first.

Variable names are global within a LINUS session, i.e. like
variable names occurring in different LINUS macros will refer to
the same variable, if the macros are used in the same LINUS
session.

Example

MTB-328 Page 35

Find the names and total compensations for those employees
whose total compensations are more than 50 per cent below average
or are more than 50 per cent above average.

lila

end

avg {select sal + comm
from ernp}

set ! av g_comp
lila

end
print

select name sal + comm
from emp
where sal + comm < .5 * !avg_comp

: sal +comm> 1.5 * !avg_comp

Page 36 MTB-328

Request: set_scope, ss

This request allows the user to define his current scope of
access to the data base for non-exclusive opening modes. This
request and the del_scope request are the means through which the
user defines his requirements to the LINUS concurrent access
control mechanism. Every table which the user wishes to access
for a given period must be included within the user's scope of
access for that same period.

For every table to be included in the current scope, the
user specifies the types of access he will require, and also
those types of access which are to be prohibited to other users.
The scope of access is a dynamic entity, and may be varied to
reflect the user's changing requirements during the life of a
LINUS session. In order to prevent deadlock situations, however,
the current scope must be set to null with the del_scope request
prior to issuing a set_scope request.

Usage

set_scope table_namel permit_opsl prevent_opsl { •••
table_name.n permi t_opsn· prevent_ops.n}

where:

1. table_namei
is the name of a non-temporary table within the data
base which is to be included in the current scope of
access.

2. permit_opsi
is a character string indicating which types of data
base operations are to be permitted the user for the
corresponding table. The character string is the
concatenation of the codes for all operations to be
permitted. See notes below for a description of the
operation codes.

3. prevent_opsi

Notes

is a character string similar to that for permit_opsi
indicating which types of data base operations are to
be denied other users for the corresponding table.

MTB-328 Page 37

Codes for operation types to be permitted or prevented are
as follows:

Operation Code

retrieve r
store s
delete d
modify m
null n

It is recommended that users declare the minimu~ access
scope necessary for any given operation, and that the scope be
maintained for only as long as it is needed. Declaration of
unnecessarilly large scopes is discouraged, as other users may be
needlessly locked out of the data base.

The set_scope request will be denied if the user currently
has a non-null scope in force. Therefore, all of the user's
access scope must have been deleted with a del_scope request
prior to issuing a set_scope. The set_scope request must then
specify the entire scope of access required by the user for a
block of operations. This is in contrast to the del_scope
request, where portions of the current scope may be deleted. If
another user has a conflicting scope in force, the set_scope
request will also be denied.

Example

Jim Jones, the manager of the shoe department, has retired
and will be replaced by Al Smith. Update the employee table to
reflect these changes, while ensuring that no other users access
inconsistent data.

set_scope emp r n
lila

end

select emp_no
from emp
where name = "Smith, Al"

set !smith no
lila

end

select emp_no
from emp
where name = "Jones, Jim"

set !jones_no
del_scope *
set_scope emp drn rdms
lila

select mgr

Page 38

from emp
where mgr = !jones_no

end
modify !smith_no -brief
lila

end

select *
from emp
where name = "Jones, Jim"

delete
del_scope *

MTB-328

MTB-328 Page 39

Request: store, s

This request adds new row~ ' J a designated table in the data
base. The data base must be open for update or exclusive_update.
If open for update, the table being stored must be within the
curre~t access scope for the store operation. Values being
stored may be specified in one of three ways: directly within
the request line, interactively in response to LINUS prompting,
or by placing the values in a Multics file and supplying the
pathname as a control argument in the store request line. Using
the first two methods, only a single row may be stored with one
store request, whereas the third method (file input) allows the
storing of multiple rows. Also, if the new row is being entered
from the terminal (as opposed to file input), the user has the
option of verifying the values prior to their being stored into
the data base.

Usage

store table_name {column_values} {-control_args}

where:

1. table_name

2.

3.

is the
added.
table.

column_ values

name of the table to which rows are being
This must be the name of a non-temporary

are optional arguments and, if present, specify the
column values comprising the new row being added.
The column_values must be specified in the same order
that the corresponding columns appear in the data
base or the data submodel, whichever is applicable.
Also, exactly one value must be specified for every
column defined in the data base or data submodel.

control_args
may be one or more of the following.

-brief, -bf
specified that verification of column_values is not
to be done. If not present, and if the -file control
argument is not present, LINUS will print a list of
column names, together with the column_values entered
by the user, and request that the user verify the
correctness of the column_values before the store
operation proceeds. if the verification is negative,
the store does not take place, and the user must

Page 40 MTB-328

Notes

reenter the store request.

-file pathname, -f pathname
specifies that the column_values are to be taken from
the Multics file designated by pathname. This
pathname must designate a Multics file suitable for
processing by vfile_ in the stream_input opening
mode. See notes for a detailed description of the
input file.

-delimiter char, -dm char
specifies that each column_value, in the file
specified via -file, is separated from the next by
the character, char. This control argument has
meaning only if specified together with -file. If
not present, each column_value is assumed to be
delimited by one or more blanks.

If column_values are not present in the request line and
-file is not specified, then LINUS will request each column_value
individually by name.

If -file is specified, the input file
column values for more than one row. The input for
terminated by a newline character. In all cases,
are separated by blanks unless another delimiter is
-delimiter.

Examples

Add a new supplier to the supply table.

store supply Acme 10 200

supplier = Acme
item = 10
vol = 200

OK? yes

may contain
each row is
column_ values
specified via

Another way of performing the above operation is:

store supply -brief

supplier? Acme
item? 10
vol? 200

MTB-328 Page 41

Several rows could be added to the supply table by first
creating the following file with a text editor:

Acme,10,200
XYZ, 12, 150
J. Smith,10,100

and then entering the following request:

store supply -file supply_file -delimiter ,

Page 42 MTB-328

Request: write, w

This request specifies that the selected data is to be
retrieved and written to the specified Multics file. The output
file is a text file created by vfile_ in the stream_output mode.
If the file already exists, it may optionally be extended,
although normally it would be truncated. An option to invoke a
RGL object module as an I/O appendage to the report_ I/O Module
is also provided. This latter option provides the capability to
directly create formatted reports from selected data. This
request must immediately follow a lila request.

Usage

write {outfile} {-control_args}

where:

1. outfile
is optional and, if present, is the pathname of a
Multics file into which the selected data is to be
written. If the file does not currently exist, it
will be created. If the file currently exists, it
will be truncated unless -extend is also specified.
If this argument is not present, -report must be
specified.

2. control_args
may be one or more of the following.

-extend
specifies that if the outfile exists, it is to be
added to, rather than truncated.

-delimiter char, -dm char
specifies that each selected value is to be delimited
by the character, char, in the outfile. If not
present, each selected value is delimited by one
blank.

-report arg_string, -rp arg_string
specifies that the data is to be written using the
report_ I/O Module with the argument string,
arg_string. Arg_string is a character string which
must begin with the name of the desired RGL object
module, and must also contain any arguments required
by the RGL object module. The output switch is
attached via report_ and is opened in the
stream_output mode. Each set of selected values is

MTB-328 Page 43

Notes

Each
The
well

written as
value is
outfile is
If -report

a line through report_. Each selected
delimited as specified by -delimiter. If
not specified, -report must be present.
is not present, outfile must be specified.

The output file is a text stream file created by vfile_.
set of selected values is delimited by a newline character.
output file is suitable for processing by a text editor, as
as other Multics facilities which process ASCII text files.

Examoles

Create a text file consisting of the name and salary of
every employee.

lila

end

select name sal
from emp

write salary_file

Create a formatted report containing the name,
and salary of every employee. Assume that the
segment, emp_report, will create the desired report.

lila

end

select name dept sal
from emp

write -report emp_report

department,
RGL object

Page 44 MTB-328

Duiltin functions

The following is a list of builtin functions available in
LINUS. Each of the functions is subsequently described in
detail.

abs
after
avg
be fore
ceil
concat
count
floor
index

FUNCTION: abs

max
min
mod
reverse
round
search
subs tr
sum
verify

This is a scalar arithmetic function and a reference to this
function has the form:

abs (X)

The result of this function is the absolute value of X. X must
be a numeric data item. If X is real, the result has the same
data definition as X. If X is complex then

abs (X + Yi) = +sqrt (X ** 2 + Y ** 2)

FUNCTION: after

This is a scalar string function and a reference to this
function has the form:

after (S1 S2)

The result is that portion of S1 which occurs after the leftmost
occurrence of S2 within S1. If S2 is a null string, the result
is S1. If S2 does not occur within S1, the result is a null
string. For example:

after ("abcde" "be") = "de"
after ("abcde" "") = "abcde"
after ("abcde" "f") = ""
after ("10101"b "10"b) = "101"b

MTB-328 Page 45

FUNCTION: avg

This is an arithmetic set function and a reference to this
function has the form:

avg {select X
from ••• }

The result is the average (mean) of all X values selected. For
example:

avg {select sal
from emp
where dept = "Shoe"}

is the average salary of all employees in the shoe department.

FUNCTION: before

This is a scalar string function and a reference to this
function has the form:

before (S1 S2)

The result is that portion of
occurrence of S2 within S1.
is a null string. If S2 does
is S1. For example:

S1 which occurs before the leftmost
If S2 is a null string, the result

not lie within S1, then the result

before ("abcde" "be") = "a"
before ("abcde" "") = ""
before ("abcde" "f") = "abcde"
before ("10101"b "10"b) = ""b

FUNCTION: ceil

This is a scalar arithmetic function and a reference to this
function has the form:

ceil (X)

where X must be real. The result is the smallest integer (I)
such that

I >= X

For example:

Page 46

ceil (20.5) = 21
ceil (-14.6) = -14
ceil (12) = 12

FUNCTION: concat

MTB-328

This function is a scalar string function and a reference to
this function has the form:

concat (S1 S2)

The result is the concatenation of S1 and S2. For example:

concat ("abc" "de") = "abcde"
concat ("101"b "01"b) = "10101"b

FUNCTION: count

This is an arithmetic set function and a reference to this
function has the form:

count {select Xl X2 .••
from ••• }

The result is the number of sets of Xi which are selected. For
example:

count {select name
from emp
where dept = "Shoe"}

is the number of employees in the shoe department.

FUNCTION: floor

This is an arithmetic scalar function and a reference to
this function has the form:

floor (X)

where X is real. The result is the largest integer (I) such that

I <= X

For example:

MTB-328

floor (20.5) = 20
floor (-14.6) = -15
floor (12) = 12

FUNCTION: index

Page 47

This is a scalar string function and a reference to this
function has the form:

index (S 1 S2)

The result is an integer that is the position of the beginning of
the leftmost occurrence of S2 within S1. If S2 is not in S1 then
the result is O. If S2 is a null string, the result is O. For
example:

index ("abcde" "be") = 2
index ("abcde" "f") = O
index ("abcde" "") = O

FUNCTION: max

This is an arithmetic set function and a reference to this
function has the form:

max {select X
from ••• }

The result is the largest X value selected. For example:

max {select sal
from emp
where dept = "Shoe"}

is the highest salary paid to any employee in the
department.

FUNCTION: min

shoe

This is an arithmetic set function and a reference to this
function has the form:

min {select X
from ••• }

The result is the smallest X value selected. For example:

Page 48

min {select sal
from emp
where de~t = "Shoe"}

MTB-328

is the lowest salary paid to any employee in the shoe department.

FUNCTION: mod

This is an arithmetic scalar function and a reference to
this function has the form:

mod (X Y)

where X and Y are real. The result is X modulus Y, i.e.

if Y = 0 then mod (X Y) = X - Y * floor (X I Y)
if Y = 0 then mod (X Y) = X

For example:

mod (42 5) = 2
mod (129.2867 25) = 4.2867
mod (1 0 O) = 1 0

FUNCTION: reverse

This is a scalar string function and a reference to this
function has the form:

reverse (S)

The result is a string which is the reverse of the value of s.
For example:

reverse ("abcde") = "edcba"
reverse ("a") = "a"
reverse ("") = ""
reverse ("10110"b) = "01101"b

FUNCTION: round

This is a scalar a~1thmetic function and a reference to this
function has the form:

round (X Q)

MTB-328 Page 49

The result is a rounding of the value of X. When a value is
rounded to n digits, the digits after the nth digit are dropped,
and the nth digit is increased by 1 if the (n+1)th digit is 5 or
greater for decimal, or 1 for binary. If X is float, then Q must
be positive and the mantissa is rounded to Q digits. If X is
fixed, it is rounded to a value that has Q fractional digits.
For complex values, the function is defined by:

round (X + Yi Q) = round (X Q) + round (Y Q)i

For example:

round (183.629e6 4) = 183.6e6
round (183.629 2) = 183.63
round (183.629 -1) = 180
round (21.56 + 6.21i 0) = 22 + 6i

FUNCTION: search

This is a scalar character string function and a reference
to this function has the form:

search (C1 C2)

The result is an integer value that is the position in C1 of the
leftmost occurrence of any character contained in C2. If C1 does
not contain any character in C2, the result is O. For example:

search ("abode" "b") = 2
search ("abode" "") = O
search ("abode" "f") = O
search ("abode" "be") = 2

FUNCTION: substr

This is a scalar string function and a reference to this
function has one of the forms:

substr (S I J)
substr (S I)

The result is that portion of S which begins with the Ith
character and has length J if J is present, or is that portion of
S which begins with the Ith character and continues to the end of
S if J is not present. For example:

substr ("abode" 3 2) = "cd"
substr ("abode" 3 0) = ""
substr ("abode" 3) = "cde"

Page 50 MTB-328

substr ("10101"b 3) = "101"b

FUNCTION: sum

This is an arithmetic set function and a reference to this
function has the form:

sum {select X
from ••• }

The result is the total of all selt .::ted values. For example:

sum {select vol
from sales
where dept = "Shoe"}

provides the total sales volume of the shoe department.

FUNCTION: verify

This is a character string scalar function and a reference
to this function has the form:

verify (C 1 C 2)

The result is an integer value that is the position of the first
character of C1 that does not occur in C2. When C1 contains only
characters that are in C2, the result is o. For example:

verify ("xyz" "abc") = 1
verify ("xyz" "xyz") = O
verify ("abcde" "cba") = 4

MTB-328 Page 51

Macro Facility

LINUS provides
requests contained in
to as a LINUS macro
must have a suffix of

the capability to execute a series of
a text segment. Such a segment is referred
segment. The name of a LINUS macro segment
linus.

A LINUS macro may be invoked in one of two ways: (1) via
the linus command line or (2) via the LINUS invoke request.
Invokation via the linus command line is as follows:

linus macro_path argl ••• argn

which is equivalent to the following sequence:

linus
invoke macro_path argl ••• argn

A LINUS macro segment contains a series of LINUS requests in
the same format as if they were entered at the terminal.
Comments may appear in a LINUS macro segment in the same manner
that they may appear in a PL/I source segment. It is possible to
specify arguments to the LINUS macro in a method analogous to the
specification of arguments to a Multics exec com. In a LINUS
macro, strings of the form %i% are interpreted as dumCTy arguments
and are replaced by the corresponding optional_args in the invoke
request or in the linus command line. For example, optional_argl
is substituted for the string 11% and optional_arg10 is
substituted for the string 110%. Substitutions are also made
within quoted strings. If a % is to be included in a string, %%
should be specified.

The following is an example of a LINUS macro which prints
the sales volume, given a department name and item code.

open dept_store retrieval /* open data base */
set_scope sales r n /* allow read only, no prevents */
lila /* specify the data */

end

select vol
from sales
where dept =

print ~no_header
del_scope *
close
quit

"%11" & item = %2%

I* no need for header */
I* clean up */

Assume the above macro resides in the segment volume.linus.
Then, in order to obtain the sales volume for item 20 in the shoe
department, the user types:

Page 52

linus volume shoe 20

and the resulting where clause reads:

where dept = "shoe" & item = 20

MTB-328

MTB-328

Syntax .s..n.Q. Semantics of LILA

The following is a formal syntax for LILA.

<lila_expr>

<set_ value> . . -. . -
<set_value> : <lila_set>

<set_fn> {<lila_set>}

<set_fn> ::= <set_builtin> : <user_set_fn>

Page 53

<lila_set> ::= <lila_block>
: {<lila_set>}

<lila_set> <set_op> <1ila_block>

<set_op> ::=union l inter l differ

<lila_block>

<select_list>

.. -. . -

. . -.. -

select <select_list> from <from_list>
select <select_list> from <frorn_list>
where <conditional>

* : <select_item_list>
dup <select_item_list>
unique <select_item_list>

<select_item_list> ::= <select_item>

<select_item> .. -.. -
: <select_item_list> <select_item>

<table_name>.* : <row_desig>.* : <expr>

<expr> ::= <column_spec> : <scalar_fn> (<arg_list>)
<expr> <arith_op> <arithmetic_constant>
<expr> <arith_op> <set_value>
<expr> <arith_op> <expr>
(<expr>)

<column_spec> .. -. . - <column_name>
<table_name>.<column_name>
<row_desig>.<column_name>

<scalar_fn> ::= <scalar_builtin> : <user_scalar_fn>

<arg_list> ::= <arg> : <arg_list> <arg>

<arg> ::= <expr> <constant> <set_ value>

<arith_op> ::= + - : * : I

<from_list> ::= <table_name> : <table_list>

<table_list> ::= <row_tab_pair> : <table_list> <row_tab_pair>

<row_tab_pair> ::= <row_desig>:<table_name> : <row_desig>:*

Page 54

<conditional> ::= <term> I <conditional> <bool_op> <term>
A(<conditional>) I (<conditional>)

<term> ::= <expr> <rel_op> <atom>

<rel_ op> : : = = : A= I > I < I > = I < =

<bool_op> ::= & : l

MTB-328

<atom> ::= <expr> <constant> I <set_value> {<lila_block>}

<constant> .. -.. - <arithmetic_constant>
<bit_string_constant>
<character_string_constant>
<linus_variable>

<linus_variable> : := !<identifier>

<table_name> ::=<identifier>

<row_desig> ::=<identifier>

<column_name>

<user_set_fn>

.. -.. -

.. -. . -
<user_scalar_fn>

<identifier>

<fn_name>

.. -.. - <fn_name>

A <set_builtin> is one of the set builtin functions
described in the section, Builtin Functions. A <scalar_builtin>
is one of the scalar builtin functions described in the same
section. A <user_set_fn> and a <user_scalar_fn> must be declared
according to the specifications contained in the declare request
description.

<lila_set>s within a <lila_set> may optionally be grouped by
braces{} to explicitly specify the order of evaluation. If not
explicitly specified, evaluation proceeds from left to right.

The <set~op>s union, inter, and differ correspond to the set
operations union, intersection, and difference respectively.

If the where clause is omitted from a <lila_block>, all rows
within the <from_list> qualify.

A <select list> of * indicates that all column values from
the row are to be selected. If the <select_list> is a *, then
the <from_list> must be a <table_name>.

A specification of dup within a <select_list> indicates that
duplicate sets of selected values are not to be eliminated,

MTB-328 Page 55

whereas a specification of unique indicates that duplicates are
to be eliminated. If neither is specified, the default rule will
apply. The default is dup if a <set_fn> is to be applied to the
selected values, and is unique otherwise.

A <select_item> of <table_name>.* or <row_desig>.* indicates
that all columns from the row are to be selected. A <table_name>
is the name of a previously defined temporary table or of a table
defined within the data base. A <row_desig> is a row designator
which has been associated with a <table_name> in a <from_list>.

All <column_spec>s within an <expr> or <arg_list> must refer
to column values from the same row.

Items within an <expr> may optionally be grouped by
parentheses () to explicitly determine the order of evaluation.
If not explicitly specified, all multiplications and divisions
are performed before any additions or subtractions.
Multiplications and divisions are performed from left to right,
as are additions and subtractions.

A <row_tab_pair> is used to specify the association of a row
designator with a table. A <row_tab_pair> consisting of
<row_desig>:* indicates that the row designator is associated
with a table in another select-from-where block.

Items within a <conditional> may optionally be grouped by
parentheses to explicitly specify the order of evaluation. If
the order is not explicitly specified, the evaluation proceeds
from left to right.

The items <arithmetic_constant>, <bit_string_constant>, and
<character_string_constant> are as defined in Multics PL/I. An
<identifier> is as defined in Multics PL/I with the exceptions
that the dollar sign ($) is not allowed, and the hyphen (-) is
allowed, so long as it is not the first or last character of the
<identifier>. A <fn_name> is the same as the LILA <identifier>
except that the hyphen (-) is not allowed.

Page 56 MTB-328

Writing Non-Standard Functions

This section provides information necessary for the creation
of non-standard functions. These functions may be written in any
language which can accept and process a standard Multics argument
list. It is assumed that these functions will be written by
experienced programmers.

Scalar functions will be passed a complete
argument list containing argument pointers
pointers for both the input arguments and the
The call is equivalent to:

standard Multics
and descriptor
return argument.

return_val = fn_name (in_argl, ••• , in_argn);

Set functions are called a bit differently in that they are
called several times and that two procedure entry points are
required. The first entry point is the calc entry, which is
called one time for each set of selected values. This entry is
passed a complete standard Multics argument list containing
argument pointers and descriptor pointers for all of the declared
input arguments. The purpose of the calc entry point is to
calculate (or accumulate) the value for the set function. The
call to the calc entry is equivalent to:

call fn_name$calc (in_argl, ••• , in_argn);

The second entry point of a set function is the assign
entry. This entry is called after the calc entry has been called
for all sets of selected values. The purpose of the assign entry
is to actually assign a return value for the set function. The
call to this entry is equivalent to:

return_val = fn_name$assign ();

It is obvious that this method of operation requires that
the set function value is to be calculated in static storage.
Hence, the assign entry must also reset the function value after
the assignment takes place, so that subsequent calls will operate
correctly.

A function return type declaration of logical is implemented
as a bit (1) unaligned value which is set to "1"b to indicate
true, and "O"b to indicate false.

MTB-328 Page 57

Bibliography

1. Astrahan, M. M. et al. System R: Relational Approach To
Database Management. A.Q.t1 Transactions .Q.!1 Database Systems.
Vol. 1, No. 2, June 1976, pp. 97-137.

2. Chamberlin, D. D. and Boyce, R. F. SEQUEL: A Structured
English Query Language. Proc. ACM SIGFIDET Workshop, Ann
Arbor, Mich., May 1974, pp. 249-264.

