
MULTICS TECHNICAL BULLETIN MTB-329 

To: Distribution 

From: A. Bensoussan 

Date: 03/21/77 

A NEW PROPOSAL FOR ACCESSING LARGE FILES 

INTRODUCTION 

This document explains why the Multi-Segment approach to large 
files implementation is inefficient and proposes an alternative 
that would eliminate the basic causes of the current overhead. 
The new proposal calls for a reorganization of the file structure 
and a new programming protocol for accessing a file. 

This document deals with what a file would look like to a 
programmer who would write vfile-like programs, and how he could 
access it. It also gives the list of the new ring zero 
primitives that would be made available to him, with a 
description of what they do for him. The description of how they 
do it will be given in a subsequent document. 

The following topics are discussed: 

o C~rrent organization and access of large files 
o Overhead of the current method 
o Bases of the new solution 
o Pathname of a file 
o Logical to physical address mapping 
o Volume assignment and quota 
o Access Control 
o File accessing protocol 
o Advantages of the new method 
o File Control Module primitives 
o Disk organization 
o Coexistence of files and segments in one volume 
o Coexistence of old files and new files 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 



Page 2 MTB-329 

CURRENT ORGANIZATION AND ACCESS OF LARGE FILES 

In the current Multics System, files larger than 256K words are 
organized into "multi-segment files" (MSF). By convention, a 
file whose pathname is F is represented by the directory with the 
pathname F and a collection of 256K segments with the pathnames 
F>O, F>1, F>2 ... F>n. The file can be viewed as being the 
juxtaposition of all these 256K segments in the order of their 
increasing entry names. 

A word in a file is uniquely specified by the component number 
(i.e. the entry name of the 256K segment in which it resides) and 
its relative word number within this component. In order to 
~ccess a word whose address is (compno, wordno) it is necessary 
to i~itiate the segment whose pathname is F>compno. Let segno be 
the segment number assigned to the component. The referen~e 

(segno, wordno) will cause the component to be activated (if ~c: 
already active), that is, a 256-entry page table is allocated and 
initialized with the disk addresses read from the VTOCE entry of 
that component. 

OVERHEAD OF THE CURRENT METHOD 

The method just described is not particularly efficient for very 
large files, i.e. files that would be made of hundreds or 
thousands of segments, especially when these files are accessed 
randomly. I believe two basic reasons to be the cause of this 
overhead: 

1. Each time a page which does not have a PTW in core is 
referenced, a lot of energy is spent to activate the entire 
256K segment in which the referenced page resides, providing 
a PTW for 256 pages with the assumption that they have a 
good chance to be needed soon since they are part of the 
same segment. Actually, when large files are accessed 
randomly, the probability for another page of the same 
segment to be referenced while the segment is still active 
is almost zero. And the time, space and I/O spent to 
activate the not-needed 255 pages is wasted. 

2. A large amount of data is used to map the logical address 
within a file into a physical address, causing additional 
page faults and processing. Included here are: the 
directory for the MSF, all branches and VTOC entries needed 
to describe the various components of the file, all KST 
entries and all SDW's for those components that happen to be 
initiated. Although some may argue that branches do not 
contain any physical attributes, it is clear that the 256K 
components of a file do not represent any logical entity 
with respect to the file. Their entry names are sequential 
numbers, their access rights are identical and their size 
has been set by convention. The only purpose of this 



MTB-329 Page 3 

organization into MSF is to allow the virtual memory manager 
to take care of the mapping between (component number, word 
number) and the physical address. 

The MSF technique is definitely attractive in the sense that it 
requires no additional mechanism. It uses the entire existing 
Multics virtual memory apparatus: .directory control, segment 
con~rol, access control, vtoc manager, page control with its disk 
allocation mechanism and quota checking, back-up system and 
salvager. Unfortunately, it is too expensive, particularly when 
files are very large and are accessed randomly; this is why a 
different approach is considered as an alternative to the c1rre~t 
MSF implementation. 

THE BASES OF THE NEW SOLUTION 

The new solution attempts to eliminate or minimize the overhead 
due to each of the 2 causes mentioned above. 

1. With the strong belief that the most common way to access 
large files is randomly, we want to optimize access to a 
single page. Each reference to a page which is not in core 
will cause the fault handler to do just what is necessary to 
make this particular page accessible to the process, witho11t 
concern for the preceding or following pages. 

In the most common case one will arrange for a given page to 
be accessed by the hardware through a one-word page table, 
as if it were a one-page segment. 

In some special cases, when the user knows that he has to 
make random access within a set of n logically contiguous 
pages of the file, one will arrange for these n contiguous 
pages to be accessed by the hardware through an n-word page 
table as if these pages were an n-page segment (n ~ 256 of 
course). 

It is clear that if a process is to reference randomly every 
single page of a file, it will not be possible to provide 
for a one to one mapping between segment numbers and pages 
of the file since the hardware does not support such a large 
size for the descriptor segment. The (vfile) programmer 
will have to multiplex segment numbers among pages and 
remember the logical page number(s) of those pages described 
by a given segment number at a specific time. 

2. A file is no longer organized into segments. It is merely a 
collection of logically contiguous pages. There is no 
longer a directory for the file, no longer a branch a~d a 
VTOCE for each component. Furthermore, disk records are no 
longer allocated one at a time but a group (hopefully large) 
at a time, so that for a set of logically contiguous pages, 



Page 4 MTB-329 

the disk addresses are also contiguous and can be calculated 
from the first one. 

The rest of the document describes in more detail how a large 
file would be organized and accessed, and gives the list of the 
new ring zero primitives available to the user, with a 
description of what each primitive is supposed to do. 

PATHNAME OF A FILE 

The pathname of a file leads, in the directory hierarchy, to a 
ring zero segment referred to as the File Definition Segment. 
This ring zero segment could be regarded as a large branch. It 
is not implemented as a branch in a directory so that no change 
is required to directory control. The primary purpose of this 
ring zero segment is to provide the file map and the ~ccess 
control information for the file. 

LOGICAL TO PHYSICAL ADDRESS MAPPING 

The logical address that we are concerned with here is the page 
number. A file is a collection of logically contiguous 1024-word 
pages, numbered sequentially from 0 to N, N being limited only by 
the disk capacity. The physical address of a page consists of 
the pair (physical volume id, record number). It is expected 
that the file map may contain a small number of entries although 
the number of logical pages may be very large. 

This will be achieved by organizing the file into sections, for 
which contiguous logical addresse~ will be mapped into contiguous 
disk addresses. The disk space is no longer allocated on a page 
by page basis, as it is in the current system, but by groups of 
contiguous disk records, these groups being as large as possible. 

The number of records in a section can be as large as the number 
of records available in a single physical volume. It is left to 
the owner of the file or to the database manager to decide how 
many physical records should be allocated in a given section. 

It is conceivable that users of large files may take advantage of 
that feature by making an entire disk a single section. By doing 
so, they minimize the time spent in allocation, they minimize the 
overhead to access the file since the file map is so small that 
it can be kept in core, and finally they may use it as a physical 
placement control since they can cause some data to reside in a 
particular location of the disk by giving it the appropriate 
logical address. 



MTB-329 Page 5 

"' _,- VOLUME ASSIGNMENT AND QUOTA 

r 

In which physical volume(s) should or can a file be stored and 
how is the quota managed? 

One can keep the policy that the new storage system uses for 
segments. A file with the pathname DIR>F could be stored in any 
physical volume that is a member of the son's logical vol ,lffie 

associated with the directory DIR. Allocation of disk records 
for this file is permitted provided it does not cause an overflow 
of the quota cell to which all pages of non-directory segments 
directly inferior to DIR are charged. Such a policy is 
homogeneous with what is done for segments and would not be 
difficult to implement. 

However, one may wonder if this is a realistic policy for files 
that use 50 or 100 disk packs? Any comment or suggestions on 
that subject will be greatly appreciated. 

ACCESS CONTROL 

The same access control features as those currently available for 
MSF files will be available in the new proposal, with the same 
guarantee of being enforced. 

What is available today is the standard ACL mechanism. All 
components of the same MSF have the same ring brackets and the 
same ACL. 

In the new file organization the File Definition Segment is a 
ring zero segment, with read and write permission for every user, 
while operating in ring zero. This segment also has an extended 
ACL and extended ring brackets which represents the ACL and ring 
brackets of the file itself with respect to the users. Any SDW 
manufactured in a user process and describing any portion of a 
given file will have the ring brackets and access mode specified 
by the extended ring brackets and the extended mode specified for 
the user in the extended ACL associated with the ring zero File 
Definition Segment. 

A mechanism to support immediate access revocation will be 
provided. It will be possible to invoke it unconditionally each 
time the ACL of the file is modified. However, my opinion is 
that it is not desirable to make this policy the standard policy, 
which no one could bypass. In many cases, the user who removes 
access to a file from another user is willing to let this other 
user terminate whatever he may currently be doing with the file 
ctt the time the ACL is modif.ied. The reason being that more 
ddrrLtf!:fJ eould be dune lt) the f'Lle by immediately revoking access 
from somebody using it than by pusLponing the revocation. 



Page 6 

I would suggest that both forms of ACL 
one with immediate revocation and 
taking effect as soon as the user from 
through using the file. 

FILE ACCESSING PROTOCOL 

MTB-329 

modification be available, 
the other with revocation 
whom access is revoked is 

The (vfile) programmer will have to become familiar with a new 
protocol to access a file, and with a new kind of special 
segments which have no branch, no ACL, no VTOCE and that one will 
be referred to as "window segments". 

The first step in the protocol is to call a ring 0 primitive to 
"initiate an N-page window segment for a file F and get back its 
segment number S". At this point, it is agreed between the users 
and the supervisor, that segment S will be used to describe any 
window of N contiguous pages in file F. However, segment number 
S cannot be used yet since the position of the window is still 
undefined. 

The next step in the protocol is to call another ring zero 
primitive to "position the window segment S to a particular 
window starting at page number P of the file". At this point, a ~ 
hardware reference using the address (S,i) in the user process 
will cause the word 1024*P + i of the file to be accessed, 
provided that O ~ i < 1024*N. 

The programmer can move the window segment to look at another 
portion of the file by calling again the ring zero primitive to 
"position the window s~gment S to page P1". At this point, 
segment S describes a new region of the file and the address 
(S,i) will cause the word 1024*P1 + i of the file to be accessed. 
Se~eral window segments may be initiated for the same file. The 
programmer may position them at different regions of the file. 
He may keep some of them pointing at a given position if he knows 
he will need to access again this portion of the file, while he 
may reposition the others to various parts of the file. It is 
legitimate to have 2 different window segments describing the 
same region or overlapping regions of the file. 

This new access method can be illustrated by showing how vfile 
would use it for large indexed files. Since the index is 
organized into individual pages, without any meaning for page 
sequentiality, it is an ideal candidate to be accessed by one 
page window segments. Thus, the vfile programmer would initiate 
a few (3 or 4) one-page window segments to access the index. He 
would position one of them to the page containing the root of the 
B-tree and would keep it positioned to that page while the file 
is opened. Since the root needs to be accessed for any index 
operation, he would position the others to the various pages of 
the index that has to be accessed during a given index operation. 
In addition, he could use an n-page window segment that he would 



MTB-329 Page 7 

position to the record that must be copied from or to the user 
area, n being derived from the maximum or the average record 
size. Note that he could also use a one-page window segment that 
he would position to the page where the record starts and that he 
would reposition to the following page if the record crosses the 
page boundary and so on until he reaches the end of the record. 
The size of the window segment he should use will depend on the 
price to pay in CPU time for repositioning a window segment 
versus the price to pay in wired core memory for a large window 
segment. 

ADVANTAGES OF THE NEW METHOD 

The first advantage, of course, is that a greater efficiency can 
be expected for the reasons explained earlier. If we assume 
that, for random access to large files, most of the time a 
reference to a new page causes a segment fault in the current 
system, then it is fair to say that this segment fault will be 
replaced by a call to the position primitive in the new system. 
The position primitive will be much faster than a segment fa~lt 
on a 256K segment because the following items do not need to be 
accessed since they do not even exist: the KST entry for the 
component, the branch of the component, the MSF directory, its 
lock during activation, the VTOC entry of the component, the VTOC 
entry of the component that has to be deactivated. In addition, 
the position primitive will use its own locks for synchronization 
while the segment fault causes more contention on the directory 
lock table, the AST lock, the VTOC manager lock, and the page 
control lock. Also, there is no need any longer to try to guess 
what is the best candidate for deactivation since the caller of 
the position primitive expresses very clearly that he is no 
longer interested in those pages described by the window segment. 
This information communciated by the user can also be valuable in 
making a better choice than page control for selecting file pages 
to be removed from core. And finally, all page faults on file 
pages will not be handled by page control any longer and 
therefore can be processed in parallel with the page fault 
handling for segments since a different lock will be used, to 
protect databases that are independent of those used by page 
control. 



Page 8 MTB-329 

The second advantage, which has not yet been mentioned but which 
is very significant, is that this method scales up gracefully 
when files become very large, while in the MSF approach the size 
of the file may be limited by the number of entries that a 
directory can hold, or by the number of entries that the KST can 
hold or by the number of segments that the descriptor segment can 
hold. With the new method, growing a file is accomplished by 
adding a new "section", that is adding a new entry to the file 
map. 

FILE CONTROL MODULE PRIMITIVES 

The File Control Module consists of a set of new ring zero 
procedures and databases needed to support the new file access 
and organization. This paragraph gives the list and 
specification of those procedures that are available to the ~ser 
as new ring zero gates. 

o Create_file (pathname) 

Creates the File Definition Segment with the specified 
pathname. This segment is~ ring zero segment with rw *·*·* 
in the regular ACL. The extended ring brackets are 
val,val,val and the extended ACL has rw for the user of the 
current process. This segment is initialized with the 
appropriate initial value, as required by the 
implementation, showing that the file is empty, i.e. has no 
disk record allocated to it. 

o Open_file (pathname, fileno) 

The only purpose of this primitive is to return a file 
number (fileno) that the user must use to refer to the file 
in the other primitives. 

o Initiate_window_segment (fileno, npages, segno) 

Returns to the user a segment number "segno" that was not 
used yet, and that the user can now use to describe any 
"npages" contiguous pages of the file defined by ":~:.::..e::,:;-". 
Initializes the SDW showing that the position of the ri~e 
that it describes is yet undefined. The file number must 
designate a file which is currently open (with respect to 
the file control module) in this process. The number of 
pages must be between 1 and 256. 

o Position_window_segment (segno, pageno) 

Takes necessary action so that the window segment "segno" 
describes as many contiguous pages as it has been initiated 
for, in the file that it has been initiated for, starting at 
the page number "pageno" of the file. In addition, it 



MTB-329 Page 9 

initializes the SDW for the window segment with the access 
rights the user has to this file. 

o Allocate_disc (fileno, pageno, npages) 

Causes "npages" contiguous pages of the file defined by 
"fileno" and starting at page number "pageno" to be 
allocated contiguous disk addresses. The volume in which 
these disk records are allocated and the quota checking reJst 
conform to whatever policy will be chosen for large files. 

o Free_disk (fileno, pageno, npage) 

Causes the disk records that were allocated to the "npages" 
consecutive pages of file "fileno", starting at the page 
"pageno" to be freed. Also causes any subsequent attempt to 
access these pages to fail. 

o Close_file (fileno) 

Causes the file number "fileno" to be no longer associated 
with the file it currently defines, and all window segments 
initiated for this file to be terminated, i.e. their segment 
numbers become unused. 

o Delete_file (pathname) 

Causes the file specified by the pathname to be deleted. 
That is, all disk records allocated to this file must be 
freed and the ring zero File Definition Segment deleted. 

o Recompute_access (pathname) 

Causes all users that are currently using the file to have 
their access rights for this file recalculated in order to 
reflect the latest AGL modification. 

DISK ORGANIZATION 

A file is made of one or more sections. Each section corresponds 
to a set of contiguous logical addresses mapped into contiguous 
physical addresses. A section is entirely contained in the same 
disk. It is defined by the following items: 

(pageno, number of pages, pvid, recordno) 

A file may be made of any number of sections, in any number of 
physical volumes. All those sections that reside in the same 
volume are described by VTOC entries in this volume. A VTOCE can 
describe up to 64 sections; if the file has more than 64 sections 
in the same volume, additional VTOC entries will be used as 
needed to describe all the sections. 



Page 10 

The file map of a file really 
Definition Segment, where a list of 
Each of these VTOCE pointers points 
to 64 sections of the ·file. 

MTB-329 

begins in the ring zero File 
VTOC entry pointers is found. 
to a VTOCE that describes up 

A VTOCE is expected to be 192 words long (like a VTOC entry for a 
segment) in such a way that it can be accessed using the current 
VTOC manager. The header may contain the same kind of 
information it does for a segment, whenever it is relevant. The 
file map portion of a VTOCE, instead of containing an array of 
256 record numbers, will contain an array of 64 section 
descriptors (pageno, recordno, number of records), the pvid being 
the pvid of the volume in which the VTOCE resides. The trailer 
portion of the VTOCE may contain the same kind of information it 
has for a segment, and, in particular, may point back to the File 
Definition Segment. 

The volume has a label, like any other volume, and also a vol,.ime 
map, which consists of one bit per record. It is possible, by 
reading the VTOC portion of a disk to determine what files are 
stored in the volume, and more precisely, what sections of what 
files are stored in the volume. It is also possible to 
remanufacture the volume map from the VTOC portion of the disk. 

The general philosophy used in the new storage system whereby a 
disk must start by its table of contents, has been the dominant 
idea in defining how a volume containing files should be 
organized. 

COEXISTENCE OF FILES AND SEGMENTS IN ONE VOLUME 

One would like to be able to store files as well as segments o~ 
the same physical volume. The disk organization just described 
has been chosen in order to make the coexistence possible. It is 
clear that the major program that would be affected by this 
coexistence is the physical volume Salvager. Also page control 
and file control would have to be synchronized when allocating 
disk records. 

It is possible however to have a first version of the system 
where files and segments are forced to be in different vol~mes so 
that no change to the Salvager and no change to page control 
would be needed. Such a version would be useful to demonstrate 
the feasibility of this new access method without having to 
change the Salvager; it may also be useful to run benchmarks even 
though the changes to the Salvager are not made yet. 



MTB-329 Page 11 

COEXISTENCE OF OLD FILES AND NEW FILES 

It is desirable that all existing MSF files can still be used 
even when the new type of file is available. In fact, the MSF 
type could be used for files that are not very large (a few 256K 
segments) or for files that are known to be accessed only 
seq~entially such as pl1 listings. 

The plan is to give the user a way to express what kind of fi~e 
he wants to create, and to have vfile capable of dealing with 
both kinds. 

It is also possible to convert an old file into a new file by a 
trivial transformation. 

CONCLUSION 

It seems clear 
for handling 
much tuning is 
pools. 

to everyone that the MSF technique is not adequate 
large files such as the IRS files, no matter how 
done with the size of the various page table 

The method presented in this document is a reasonable compromise 
between the conventional buffer manager techniques where the file 
is not directly accessible by the user, and the current Multics 
technique, where the entire file can be directly accessible by 
the user at any given instant. It provides a way for the user to 
have, at any given instant, some portions of the file directly 
accessible and to choose, at any given instant, what portions of 
the file he is interested in making directly accessible. 

The basic primitives and the new protocol have 
with the vfile expert, since vfile would be the 
this facility. It appears that they are adequate 
could be made to work using this protocol, 
rewriting of the vfile programs. 

been discussed 
primary user of 
and that vfile 
without a major 

My recommendation would be to prepare a document describing the 
implementation to the level of detail required to do a reasonable 
performance evaluation, and, if satisfactory, to prepare another 
document describing the amount of work required to get the job 
done, to the level of detail that would be sufficient to make a 
reasonable prediction as to how many man-years it would take. 


