
Multics Technical Bulletin MTB-359

To: Distribution

From: J. A. Weeldreyer

Date: April 5, 1978

Subject: Enhancements to the Multics Data Base Manager

Introduction

With the advent of MR6.0, the Multics Data Base Manager
(MDBM) reached a significant milestone. Namely, most of the
basic functionality required to make the MDBM a viable database
management package has been implemented. (The major exception is
the interface to the vfile journalization and concurrent usage
control features planned for MR7.0.)

However, there are several things which can be done to
improve this product. This MTB provides an overview of our
perception of the future direction of MDBM development efforts.
This perception is based to a large extent on customer feedback
and marketing requirements. Our plans for database
restructuring, for database security, and for concurrent usage
control are described in separate MTB's. Unless otherwise noted,
items discussed in this MTB are planned for MR7.0. Please mail
comments and suggestions to Weeldreyer.Multics on System M, or
call (602) 249-7244 or HVN 341-7244.

The reader is assumed to be familiar with relational and
CODASYL data base terminology. The MRDS Reference Manual (Order
No. AW53) and the MIDS Reference Manual (Draft) can provide
enlightenment where the assumed familiarity is lacking.

New Data Base Architecture

Since the MDBM was initially released in June 1976, several
factors have caused a re-evaluation of the current architecture.
Among these factors are:

a. enhancements to
capability and
features,

vfile , including the
the forthcoming concurrent

select/exclude
usage control

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-359

b. the marketing requirement for a CODASYL database capability
with increased performance to better provide a growth path
for GCOS IDS users, and

c. recent articles in the literature indicating that significant
performance improvements can result for relational databases
when implemented using a more traditional, highly structured
architecture.

Currently, an MDBM database (MRDS or MIDS) is implemented in
a very straight-forward manner using vfile • In a Multics
Relational Data Store (MRDS) database, -each relation is
represented by a keyed sequential file, and every tuple within
the relation is a record within the file. The primary key of the
relation is the key of the file. It is possible to specify
secondary indexes to a relation, and these are implemented using
the more sophisticated vfile control orders for index
manipulation.

A Multics Integrated Data Store (MIDS) database is a special
case of an MRDS database. A record type is implemented as an
MRDS relation, and a set type is also implemented as an MRDS
relation associating the primary keys of the owner and member
record occurrences to form set occurrences.

There are several disadvantages of this current
architecture, some of which are listed below.

a. The new vfile concurrent usage control mechanism requires
that an additional six words (for a total of eight words) of
control information be stored with each record in the file.
In a typical database, tuples average only 50 to 100
characters in length. The requirement for 32 characters of
control information for every 50 to 100 characters of data,
strictly for concurrent usage control, is prohibitively
expensive for large databases.

b. Recent articles in the literature suggest that the tuple is a
finer than optimum level of granularity for concurrent usage
control.

c. If the primary key of a tuple is known, an average of from
two to three page faults is required to access the tuple,
assuming a node height of three with the root node and some
second level nodes resident in main memory. It is estimated
that this type of access could be performed in an average of
about 1.3 page faults using a hashing scheme, based upon
information from the developers of a database manager using
such an access method.

d. There is no way for a Data Base Administrator to structure a
database to ''cluster" tuples of different relations, which
are frequently referenced together, so as to minimize page

MTB-359 Page 3

faults. Also, it is not possible to explicitly "link" such
tuples, other than through the use of secondary indices.
Assuming typically sized relations (node height of three),
the secondary index is from two to three times as expensive
in terms of I/O operations as a direct link would be.
According to our observations, clustering and linking would
be applicable in over one~half of all customer queries.

e. The current architecture does not provide a good foundation
for large CODASYL databases. Keyed sequential access methods
do not provide efficient "calcing" or set implementations.

The preceding discussion leads to the following proposal for
a new database architecture.

a. Remove the one-to-one correspondence between a vfile keyed
sequential file and a relation. Instead, introduce the
concept of a database ''file" which corresponds to the CODASYL
concept of an area. Two different types of files will be
allowed, "blocked" and "unblocked". (Note: The use of the
terms blocked and unblocked is unfortunate because of the
possibility of confusion with vfile blocked files. However,
they do precisely describe the primary difference between the
file types. Any suggestions for less confusing terminology
would be appreciated.) Unblocked files will contain exactly
one relation much like the current architecture, whereas
blocked files may contain multiple relations. Both types of·
files are implemented as vfile keyed sequential files.
Hence, a database will consist of ~ne or more blocked and/or
unblocked files, each containing one or more relations.

b. For blocked files, remove the one-to-one correspondence
between a vfile record and a tuple in a relation. Instead,
introduce the -concept of a file "block", which contains one
or more tuples which may be from different relations. The
file block is implemented as the data portion of a vfile
record. The size of a block must be an integral multiple of
the Multics page size (allowing for vfile control
information) and will begin on a page boundary. Thi Multics
area manager will be used to manage the space within a block.
The block corresponds to the IDS-II concept of a "page", and
is the level of granularity at which concurrent usage will be
controlled for blocked files. Unblocked files, on the other
hand, will retain the correspondence between a vfile record
and a tuple. Concurrent usage for unblocked files will be
controlled at the tuple level.

c. Introduce the concept of a "tuple-id", which is a 36 bit
identifier unique for each tuple in a database. The tuple-id
will consist of a file number concatenated with a record
number local to the file. From the record number, it is
possible to determine the location of a given tuple. The
tuple-id remains constant for the life of a tuple, and

Page 4 MTB-359

corresponds in concept to the CODASYL ''database key".

d. Within blocked files, organize all tuples within each
relation into a threaded list, such that each tuple is
threaded to the (physically) nearest tuples within the
relation. Currently, tuples are ordered physically according
to the time they were stored, which does not necessarily
correspond to the logical ordering as determined by primary
key sort order.

e. Provide a method to explicitly link related tuples in
different relations using tuple-ids.

f. For relations which are not link ''children" and which reside
in blocked files, implement primary keys via a hashing scheme
rather than a vfile index. For all other relations, primary
keys will continue to be implemented as vfile_ indexes.

g. Retain the capability to specify secondary indexes into
relations, but utilize the select/exclude vfile control
orders to reference these indices more efficiently. In
addition, place all indexes for a file within the same vfile
index, as opposed to using separate vfile files which is
done currently.

Implications of the New Architecture

There are many ·improvements which will result from the
implementation of the new architecture, however there are also
several disadvantages. Most of the advantages are in the areas
of enhanced retrieval performance and CODASYL compatibility.
Increased complexity and the reduced flexibility inherent in
blocked files are the primary drawbacks.

The primary advantage is anticipated to be significantly
improved performance resulting from the minimization of page
faults. This improvement will be most noticeable for large
databases. The reduction of page faults results from the use of
several features of the new architecture. (Note: the following
discussion assumes medium to large sized relations such that
under the current architecture, the vfile index node height
would be three.) For example, the hashing scheme available with
blocked files should reduce page faults by a factor of 1.5 - 2.5
when accessing tuples by primary key. The use of links will
reduce page faults by a factor of 2 - 3 when clustering is not
used, and by a factor of 3 4 when clustering is used, in
comparison to the current use of secondary indices to provide
this capability. Finally, sequential searches through relations
residing within blocked files will be somewhat more efficient
because tuples will be examined in physical sequential order,
eliminating the "skipping" from page to page which currently

MTB-359 Page 5

~ occurs when a relation has not been stored in ascending primary
key order.

A second advantage of the new architecture is that it
provides a far better foundation upon which to build a
CODASYL-compliant interface to the MDBM than does the current
architecture. The actual implementation of such an interface is
not planned tor MR7.0, but will be accomplished in a subsequent
release. However, an efficient implementation requires such
capabilities as hashing, links, and clustering, none of which are
provided by the current architecture.

Another benefit is that the blocked file in the new
architecture more efficiently utilizes the vfile extensions for
concurrent usage control. Although there is actually a higher
overhead using blocked files for very large tuples (blocking
factor of less than 7), for average-sized tuples (resulting in a
blocking factor of more than 30 per one-page block) there is a
savings of over 50 percent in storage overhead required for
concurrent usage control. Also, there will be additional savings
resulting from the fact that concurrency is controlled at a more
efficient level of granularity, i.e. the block level rather than
the tuple level.

There are also some disadvantages to the new architecture.
The internal structure of a database, particularly the blocked
file structure, will be considerably more complex than is
currently the case. This additional complexity must be managed
entirely within the MDBM, possibly resulting in the requirement
for additional code. However, for large databases, it should be
advantageous to spend some additional processor time in order to
significantly reduce paging. It is also possible that database
update operations will be slightly slower than they are
currently, but this should not be significant.

Secondly, the additional database complexity will cause
database restructuring to be somewhat more difficult than it is
now. Currently, it is possible for users to utilize other
Multics commands to restructure a database without completely
recreating it. The additional complexity will necessitate the
development of a specialized restructuring utility. However,
this is not a severe disadvantage, since customers have already
requested such a utility for current databases.

Also, the Data Base Administrator will be faced with many
more options when defining a database than is currently the case.
Thus, there will be more opportunity for error. It also may be
more difficult for individuals to define and maintain private
databases, although this problem is alleviated to a large extent
by providing intelligent defaults and by the unblocked file
capability.

Page 6 MTB-359

Finally, the hashing algorithm will require that blocked
files be pre-allocated and pre-formatted when the database is
created. This will require a database designer to estimate the
maximum size of those relations residing in blocked files at
database definition time. Such a requirement is particularly
distasteful in the Multics environment where file sizes have
traditionally been dynamic. Also, retrieval performance for
frequently updated blocked files will degrade as the amount of
contained data approaches the pre-allocated size of the file,
necessitating file reorganization. However, the capability to
define unblocked files will allow the database designer to avoid
these problems·for applications not well served by the highly
structured blocked files.

Hence, although there are numerous disadvantages, it is felt
that the potential performance improvement together with the
better CODASYL interface foundation justifies the implementation
of the new database architecture.

User Interface Changes for the New Architecture

Databases of the new architecture will be assigned a new
version number. The MDBM will continue to function with
old-version databases with no changes in the user interface.
There are some differences in the user interface for new-version
databases. All changes, with the exception of one, are upward
compatible. The incompatible change is that the maximum
(indexed) primary key and secondary index lengths will be reduced
from 256 characters to 252 characters. This reduction is
necessitated by the placement of all indexes for a file in the
same vfile index, requiring that identification information be
carried witEin the keys to differentiate among logically separate
indexes. Since it is highly unlikely that any customers
currently have any 256-character indexes, this incompatibility
should have no impact. Other changes include additional MRDS
data sublanguage subroutines, applicable only to new-version
databases, which are discussed in MTB-361, MDBM Recovery and
Concurrency Control. There are also some additional capabilities
which can be specified in the create mrds db source segment, and
these are discussed below. - -

There will be an optional -max tuples argument which may be
specified with the definition of a relation residing in a blocked
file. This allows the Data Base Administrator to specify the
maximum number of tuples to be allowed in the relation. If not
specified, the default value will be 1000.

An optional file statement will be provided to allow the
Data Base Administrator to explicitly specify the associations
among the various relations and files within the database. Also,
certain file characteristics may optionally be specified. If no

MTB-359 Page 7

file statement is present, each relation is assumed to reside in
an identically named unblocked file. The file statement is as
follows:

file: <file_spec>[, <file_spec>, •••];

<file spec> ::= <file name> (<rel name> [<rel name> •••])
[-blocked [<n>] [(h>l]] [-unblocked]

where <file name> is the name of the file being defined,
<rel name> Is the name of a relation residing in the file. If
-blocked is specified, <n> is the number of Multics pages per
block, and <h> is the number of hash bucket headers per block
. It is possible to specify multiple headers per block (<h> >
1, = 1) or one header for several blocks (<h> = 1, > 1).
The default is <h> = = 1. The default for block size is <n>
= 1. If -unblocked is specified, then the file is de1ined to be
an unblocked file. In this case, only one <rel name> may be
designated. The -blocked and -unblocked arguments are mutually
exclusive. If neither is specified, the default fil~ type is
determined as follows. If multiple <rel name>s are present~ the
file will be blocked with the default-values for <n>, <h>, and
. If only one <rel name> is present, the file will be
unblocked.

Finally, an optional file statement within the
create mrds dsm source segment will be provided to allow the user
to specify database files. The syntax is:

file: <dsm file name> [= <dm file_name>][, <dsm file name>
[= <dm_fiTe_name>], •• :];

where <dsm file name> is the data submodel name of the file and
<dm file name> Is the name of the file within the data model. If
a -<dsm-file name> is specified without a corresponding
<dm file name>, it is assumed that the data model file name is
the same as the data submode! file name. If the file statement
is omitted, an identically named file is assumed for every
relation specified in the data submodel.

Other Enhancements

In addition to the new database architecture, there are
several other enhancements planned for the MDBM. Several of
these, namely database restructuring, attribute-level security,
and concurrent usage control are discussed in separate MTB's.
There are other, more minor, changes which are briefly discussed
below.

The capability for
pre-translated selection

an application
expressions will

program to use
be provided. This

Page 8 MTB-359

feature will provide a slight increase in performance by allowing
the user to translate an MRDS selection expression and save the
resulting tables in a segment. The pre-translated selection
expression may then be invoked in a dsl entry call by specifying
a selection expression consisting of:

-path <seg_path>

where <seg path> is the pathname of the segment containing the
pre-translated selection expression tables. If the database has
been restructured since the selection expression was translated,
it will be automatically re-translated. A command to initially
translate a source selection expression will be provided.

The Data Base Administrator will be given the capability to
specify various · types of integrity checking within the data
model. It will be possible to specify foreign key relationships
among relations, and to specify various types of value integrity
checking for domains within the database.

The foreign key relationships will be implemented as links,
and are specified via a foreign key statement in the
create mrds db source segment. The syntix of the foreign key
statement is: -

foreign_key: <fk_spec>[, <fk_spec>, •••];

<fk_spec> .. -.. - <prel name> (<pattr name> [<pattr name> ••.])
<crel-name> (<cattr-name> [<cattr-name> •••])
[-cluster]

where <prel name> is the name of the parent relation, <crel name>
is the name-of the child relation, <pattr name> is the name-of an
attribute within a candidate key of the parent relation, and
<cattr name> is the name of an attribute within the child
relation which is to be matched with the corresponding
<pattr name>. The <cattr name>s must correspond in order and
quantity with the <pattr-name>s, and corresponding <cattr name>s
and <pattr name>s must -range over the same domain.- The
<pattr name)s must comprise a candidate key of (must uniquely
determine tuples within) the parent relation. The -cluster
argument specifies that the child tuples are to be clustered as
closely as possible to their parent tuples. This is applicable
only if both parent and child are contained in the same blocked
file and is in error otherwise. Also, two relations can be
clustered on the basis of only one foreign key definition.

The integrity constraint provided by the foreign key concept
is that a parent tuple may not be deleted if it has dependent
children. Conversely, a child tuple cannot be added if there is
not a corresponding parent already in existence. Hence, this
facility provides a method to enforce inter-relation
dependencies.

MTB-359 Page 9

Domain integrity is specified via added arguments within the
domain statement of the create mrds db source segment. The

-check <boolean_expression>

argument specifies a boolean expression to be satisfied whenever
a new value is assigned to an attribute which ranges over the
corresponding domain. The

-check proc <path> <entry>
-encode proc <path> <entry>
-decode=proc <path> <entry>

arguments specify procedures which are to be invoked whenever a
new value is assigned to an attribute which ranges over the
corresponding domain. The -check proc specifies a value
integrity checking procedure, the -encode proc specifies a
procedure to encode data values stored into-the domain, and the
-decode proc specifies a procedure to decode data values
retrieved from the domain.

Finally, there will be a change in the manner in which
variable length string attributes are stored within a database.
Currently, varying strings are ~tored exactly as defined in the
MPM Reference Guide, i.e. the maximum length is reserved and the
string is preceded by a word containing the current length. In
the future, varying strings will occupy only that space actually
required to contain the current value, plus a word to indicate
the current length. This change will drastically reduce the
storage requirements for variable length text attributes.

Future Trends

As has been previously mentioned, there is a marketing
requirement for a better performing, more complete
CODASYL-compliant interface to the MDBM. This requirement played
a large part in determining the necessity for the new database
architecture. Currently, this capability is planned for MR8.0.
However, this will not be a mere "fleshing-out" of MIDS.
Instead, a MIDS-II will be developed to interface to the database
in parallel with MRDS. The old MIDS will be unchanged, and
probably will die from lack of use. The MIDS-II interface will
be designed to be efficiently callable from a host language (e.g.
COBOL, FORTRAN) runtime package, as opposed to the MIDS interface
which was designed to be directly callable by user application
programs.

The parallel existence of MRDS and MIDS-II will provide a
highly desirable capability with some very interesting
byproducts. Namely, a given database (whether originally defined
via MRDS or MIDS-II) will be accessable via both interfaces.

Page 10 MTB-359

Hence, LINUS will serve as an end user facility for both MRDS and
MIDS-II databases, as will ROBOT if it is implemented. (ROBOT is
a natural language database query facility developed by the
Artificial Intelligence Corporation. The possibility of
interfacing ROBOT to MRDS is currently being investigated and
looks very promising.) Also, any end user facility designed for
MIDS-II .databases could reference MRDS databases. Some
possibilities for such a facility would be MDQS (to provide GCOS
compatibility) or the CODASYL end user facility (currently being
specified by the CODASYL EUF Committee). These features would
make the MDBM one of the most powerful and flexible database
management packages available.

