
r
MULTICS TECHNICAL BULLETIN MTB-371

To: MTB Distribution

From: Gary c. Dixon

Date: July 31 , 1978

Subject: Goals and Policies of a New Edi tor

This MTB attempts to take a step backward in the process of
designing a new editor. I have long felt that the goals of a new
editor are not well understood by many people interested in its
design. This MTB attempts to state boldly the goals which have
been implied in previous editor MTBs (MTB-334, MTB-339 and
MTB-368).

Although work on a new editor has been tabled for the
present, I have gathered together my thoughts on editor
objectives, goals and policies for reference in future editor
design projects.

If you disagree with the goals or
MTB, or if you can suggest further goals
to comment by Multics mail to:

GDixon.Multics (System M)

- 1 -

policies stated in this
or policies, feel free

MTB-371 Editor Goals and Poli~i•s

POTENTIAL USERS OF A NEW EDITOR

We begin by defining the potential users of the new editor,
for it is their needs which motivate the design of a new editor.

*

*

*

*

secretaries, typists and other potential Multics users
who are unfamiliar with computers
who are unfamiliar with timesharing and online editing
who need a simple, easy to teach/learn/use editor which
provides a moderate set of editing functions, and full
protection of the novice user from his mistakes

beginriing programmers
who are unfamiliar with
online editing
who need a simple, easy
provides a moderate set
protection from mistakes

Multics and with timesharing and

to teach/learn/use editor which
of editing functions, and some

made by the user

intermediate programmers and typists
who have used editors to some extent
who have a lot of editing to do and are concerned about
amount of work involved in editing and total time editing
will take
who need
complete
functions

a fairly
editing

sophisticated editor
functions and simple

sophisticated programmers

which prov7,.des
edit programming

who are skilled in use of editors and writing of editing
programs (request files)
who want an editor which is easy and fast to use, and
which provides a comprehensive set of editing and editor
programming functions

Multicians have much experience with intermediate and
sophisticated programmers so they understand the needs of these
users fairly well. However, we have not had much experience with
secretarial users, or beginning programmers and typists.
Consequently the needs of these users are not well understood.
Suggestions about what such users need/want (or don't need/want)
in an editor would be welcomed.

- 2 -

Editor Goals and Policies MTB-371

GOALS OF A NEW EDITOR

To meet the needs of the potential users listed above, a new
editor must meet the following goals.

Goal 1. The editor should provide a user interface which is
adaptable (tailored) to the needs of each class of user
named above.

Goal 2. Basic editing should be easy to teach and to learn.
The time required for a novice to begin practical
editing tasks should be minimized.

Goal 3. The editor should provide functional editing and edit
programming capabilities comparable to those available
in edm, qedx, ted and teco.(1)

Goal 4. The editor should by as easy, fast and safe to use as
possible.

Goal 5. The editor should provide reliable editing services.

Goal 6. The editor should be as efficient as possible, to have
the smallest possible impact on total system load.

Goal 1. The editor should take full
and software features of
functions.

advantage of the hardware
Multics in performing its

Goal 8. The editor should be designed and implemented in a way
which permits/encourages functional extension of
editing capabilities as new editing needs are
identified. It should be easy/fun to add new features
to the editor.

Goal 9. The editor should interface well with the existing
Multics command environment, and incorporate the
various features of this environment in its functional
capabilities. In other words, it should be well
integrated with existing Multics features and
facilities.

Goal 10. The editor should provide a subroutine interface, to
allow it to be used within other subsystems (such as
the mail command, etc).

Goal 11. The basic editor interface should manipulate only
single-segment, stream-oriented files.

(1) The interfaces to these capabilities will probably differ in
any new editor, especially in cursor-controlled editors which
provide a different editing environment to the user.

- 3 -

MT0-371 Editor Goals and Policies

Goal 12. To the extent possible, it should be easy to change
from one of the existing Multics editors (qedx, ted,
teco) to the new editor. Some retraining of habit
patterns may be required, but it should be possible to
accomplish such retraining within one month's editing
usage.

Little attempt has been made to justify the goals stated
above. ·Hopefully, justification for them is self-evident.
However, it is important that all parties interested in the
design of a new editor agree on the goals of that editor before
undertaking the design process.

CURSOR-CONTROLLED EDITING VERSUS TTY-ORIENTED EDITING

In recent years, the attention of the timesharing industry
has been directed to inexpensive (to build, purchase and operate)
video terminals (also called CRT terminals, scope terminals, TV
terminals, etc). While some of these terminals have a true
graphics capability with operations for drawing vectors and conic
sections on the screen, the least expensive models provide only
ASCII text display capabilities. Characteristics and features of
these terminals vary.

1. Most use TV type screens that must be constantly refresh~d
from a local character buffer. Some use static storage tube
screens that involve no local buffer but which cannot be
dynamically updated without erasing and redisplaying the
entire screen.

2 . Displays come in a variety of sizes.
display only four 32-character lines,
forty-five or more 80-character lines.

Some terminals can
while others display

3. Most provide a cursor which indicates where the next letter
will appear when the user types or the computer prints.
Usually, function keys are provided to move the cursor to
the right or left by one character, and up or down by one
line. Movement of the cursor causes special cursor move
characters to be transmitted by the terminal to the system
in some terminals. In other terminals, cursor movement is a
local function hidden from the system.

- 4 -

Editor Goals and Policies MTB-371

4. Some terminals transmit each character to the system as it
is typed. Most TTY terminals do this, and such terminals
are identified as a class by the name video TTY terminals
(vtty).

Others store characters in their local buffer memory as they
are typed, and transmit only when a special TRANSMIT key is
typed. Such terminals are referred to as video information
processing terminals (vip). TRANSMIT causes some vip
terminals to send only a line of data, specifically the line
which the cursor points to. In some cases, only the
characters which precede the cursor on that line are
transmitted. TRANSMIT causes other vip terminals to
transmit the entire screen (the entire local buffer). This
allows the user to use local editing functions provided by
the terminal to properly shape the data before it is
transmitted to the system. TRANSMIT causes still other
terminals to transmit only the data fields which have been
modified since the system last printed the screen contents.
This feature allows the system to print a form on the screen
which the user will fill in. TRANSMIT causes still other
terminals to send all data fields on the screen which have
not been protected by system-controlled protecting
characters included by the system when the screen was
originally printed. Many terminals provide several of these
transmission techniques, allowing the user or the system to
choose which is most appropriate for the current
application.

5. Some of these terminals provide special function keys
(besides ESC and CTRL) which are mapped into ASCII control
characters. Some even allow the user to specify what
character or character sequence is to be transmitted when a
particular function key is typed.

With such a variety of video terminals in the marketplace,
and especially with the increasing word processing marketplace,
it behooves us to consider making the new editor a
cursor-controlled editor.

Experiments with a variety of cursor-controlled editors
indicate that cursor-controlled editing is often faster than
tty-oriented, request-controlled editing. Also,
cursor-controlled editing is usually easier to learn than
tty-oriented editing.

- 5 -

MTB-371 Editor Goals and Policies

However, the developer of a cursor-controlled editor faces
significant difficulties. The most obvious is that
cursor-controlled editing is usually designed to be done on vtty
terminals. Assuming this is true for a Multics cursor editor, a
significant portion of the existing Multics community (having
hardcopy terminals) would not be able to gain the full advantages
of cursor editing. Thus, development of a cursor-controlled
editor would not fulfill the goals hardcopy users have for a new
Multics editor.

Second, too little is known about the variety of video
terminals out in the marketplace, or even about the video
terminals used by our current customers. Significant terminal
research would have to be carried out before we could begin to
design an editor which would match the characteristics of most
terminals.

Third (and even more significant), we Multicians do not have
enough experience with cursor-controlled editing to design a good
editor (or even to judge such a design). Significant research
into existing cursor-controlled editors(1) is required before we
try to design our own. Otherwise, we may miss the boat in the
marketplace, or worse, design a cumbersome editor which is
difficult to learn and use.

It should be clear from the discussion above that it will be
several years before we can provide a demonstratably excellent,
cursor-controlled editor. However, we must have an editor which
is. simpler than qedx and more powerful than edm in the near
future to meet the needs of the editor users listed above.

I propose that we continue the research into
cursor-controlled editing to gain experience and user feedback
with experimental cursor editors; at the same time, we should
take advantage of our existing expertise in TTY-oriented editing
by developing a simpler, enhanced TTY-oriented editor.

The remaining sections of this MTB expand
editor goals stated above, based upon experiments
of TTY-oriented editors. A series of policies are
might be followed to help achieve some of these
these policies were envisioned in the context of
editor, many of them could also be applied to the
a cursor editor.

on some of the
with a variety
outlined which
goals. While

a TTY-oriented
development of

(1) An example of such research is Bernie Greenberg's
experimental EMACS editor which is a Multics implementation
of an existing cursor-controlled editor developed by the MIT
Artificial Intelligence Laboratory. The Multics EMACS
experiment is described in MTB-373.

- 6 -

Editor Goals and Policies MTB-371

CONCEPT-ORIENTED EDITOR

Difficulties in learning to use an editor come from the
number of concepts which the user must understand to be able to
use the facilities of the editor. Although use of the ted editor
has become widespread, only a few people understand all of the
concepts embodied in this editor. Because many of the concepts
are implemented by ted requests unfamiliar to most users, a
simple typing error can cause the user to perform some unknown
operation on his file. This makes the ted editor too dangerous
for many users to use.

To meet the goals for tailored user interfaces (Goal 1), for
minimizing the teaching/learning time for basic editing (Goal 2),
and for ease and safety in editing (Goal 4), the editor must be
designed in such a way that users can quickly learn a small
amount of information about basic editing and immediately begin
using the editor. Then, as the need arises, and their ability
and confidence improves, users can add new/advanced editor
concepts at their own pace of learning.

Let us enumerate some of the concepts involved in editing,
based upon the goal of providing editing capabilities similar to
those of qedx, ted and teco (Goal 3).

Editor Syntax
mode of entering input lines
mode of entering edit requests
basic syntax of editor requests.
basic editing operations which are supported.
syntax of nonconforming (idiomatic) editor requests.
scenario of user interactions (prompting, queries, command
invocation, etc)

Line-Oriented Editing
basic operations for manipulating text on a single line or
for printing/reading/writing an entire file.
multi-line text manipulation operations (line addressing).
escaping Multics commands from editor request level

Context-Oriented Editing
simple contextual searching. (no special characters in search
expressions).
~pecial characters in search expressions.
multi-component addresses (eg, /abc/+3).

Macro-Operation Editing
line movement operations within a sirigle buffer.
macromanipulation operations such as the qedx substitute,
global and exclusive requests.
partial line editing (character addressing).

- 7 -

MTB-371 Editor Goals and Policies

Multiple-Buffer Editing
multi-buffer line movement operations (buffer addressing).
editing several files at once.
buffer copying

Edit Programming
buffers containing edit requests (edit subroutines, edit
functions)
executing edit requests in a buffer (invoking edit
subroutines)
file and buffer attribute expressions (buffer length, file
pathname, file writability, etc)
logical variables, expressions and operations
conditional execution of edit requests
arithmetic variables, expressions and operations
looping through edit requests
passing arguments to edit subroutines
returning a value from an edit function
invoking ~nd using the result of an active function
using canned edit programs to create a special editing
environment (edit request files)
programmed recovery from user errors
error diagnostics

Special Editing Facilities
tab insertion and deletion; elementary table formatting.
upper- and lowercase shifting operation.
underlining operation.
speedtype expansion of input.
use of abbreviations in edit requests.
character translation.
buffer sorting.
buffer composing.
caller-provided extensions and tailoring of editor
subroutine
user-provided extensions to the basic editor

Some of the concepts above are fundamental to all editors of
a given type. For example, Editor Syntax and Line-Oriented
Editing concepts specify the fundamental ways in which a
line-oriented editor is used and the types of editing that can be
performed. A cursor-controlled editor would have a different
editor syntax and mode of operation than a line-oriented editor.
These fundamental concepts must be understood by all users of the
editor before any editing can be performed.

- 8 -

Editor Goals and Policies MTB-371

Other concepts need not be understood to perform basic
editing functions. Macro-Editing, Multiple-Buffer Editing and
Edit Programming are examples of concepts which can be added to
the fundamental editor concepts as the user's confidence grows
and her editing abilities increase. Because there are so many
different concepts, these concepts should probably be grouped
together in clusters of similar (or equally-useful, or equally
comprehensible) concepts. The clustering shown in the partial
list of concepts above is only one of several possibilities, and
is probably not the most useful clustering.

During the period when (the fundamental or added) concepts
are new to the user, the editor must carefully watch for mistakes
in using the new concepts, giving thorough diagnostic messages
when definite mistakes are found and querying the user when
possible mistakes might cause drastic actions (such as deleting
the entire buffer or substituting for every character in the
line) to be sure the specified action is intended. As the user
becomes accustomed to the new concepts, the number of queries and
verboseness of error diagnostics should decrease, but additional
error diagnostic information should be available on request.

The following policies are defined to summarize the features
of the concept-oriented editor described above.

Policy 1. Documentation and teaching of editing should be
organized around the clusters of editing concepts.

Policy 2. Documentation and teaching should begin with the
fundamental editing concepts. By learning these
fundamental concepts, the user should be able to
perform basic editing functions.

Policy 3. Additional concept clusters should be documented
separately from the fundamental concepts, and should
be learned by the user only when he is ready to begin
using them.

Policy 4. Additional concept clusters should be independent of
one another, so that they can be learned and used in
any order. Any dependencies which are absolutely
necessary should be clearly identified in the
documentation. The editor should diagnose attempts
to use a cluster without its dependent cluster. Of
course, these additional concept clusters will be
dependent upon the fundamental editing concepts.

- 9 - -

MTB-371 Editor Goals and Policies

Policy 5. The user should have the ability to specify when a
new cluster of concepts should be added to his
editing interface, and what that cluster will be.
While the concepts are new to the user, the editor
should give verbose error diagnostics and warn. the
user of potential mistakes.

Policy 6. The user should have the ability to specify when she
is comfortable with a concept cluster. At this
point, brief error diagnostics should be given with
additional information available as needed. The user
should be warned of fewer potential mistakes.

EDITOR REQUESTS

The heart of any editor is its request language. The syntax
of requests can make it easy or difficult to learn a new editor,
and will strongly affect how easily and how fast a particular
editing task can be accomplished.

The goals for minimizing the teaching/learning time for
basic editing (Goal 2), and for ease and speediness of use (Goal
4) suggest several policies affecting the request language. Much
of the justification for these policies stems from the results of
my experiments in editor writing. Techniques for emphasizing
Goal 4 (and to a lesser extent, Goal 2) played a major part in
the experimentation. I hope that the results of this
experimentation can be applied in the design of the new editor.

Simple Syntax .•.

The first result of the experimentation was that the basic
syntax of all editor, requests should be simple. Simpler syntax
involves fewer concepts to be learned, thus shorting the learning
time for basic editing.

Uniform Syntax ••.

Of equal importance for short learning times is the need for
a uniform request syntax used by all editor requests. Fewer
concepts must be learned when only a small number of request
formats (preferably only 1) are employed in the syntax of
requests.

- 10 -

Editor Goals and Policies MTB-371

Smaller Set of Requests ...

The total number of requests also affects the time required
to learn the entire editor request language. This will primarily
affect the speed and ease of use of the advanced editor user,
since the novice user will not need to learn the entire request
language in order to begin editing (Policy 2).

The number of requests tends to increase as additional
functionality is added to an editor. This has been especially
true in ted, were most of the letters of the alphabet (both
upper- and lowercase) and printing symbols have been used for
request names. This plethora of requests is one factor which
makes ted so difficult and dangerous to use.

One way to offset the request explosion is to note that many
different requests do about the same thing, but in a slightly
different way. In ted for example, the 'p' request prints lines
while 'P' prints lines preceded by line numbers. 'P' can be
eliminated by applying ~ "with line numbers" modifier to the 'p'
request (eg, 1,5pl) as long as the syntax of requests requires
that white space separates one request from another. This
approach of request modifiers was proposed for the Kissel editor
(MTB-339). However, because of the many different types of
modification involved, the number of modifiers incr,ases almost
as fast as the number of requests in ted. What's more, all
modifiers are not applicable to every request, so the user is
stuck with the significant task of learning which modifi~rs go
with each request.

One possible escape from the request/modifier explosion is
to initially design a more powerful set of requests for the
essential editing functions (so that fewer requests are
required). The key to this approach is to make requests perform
double duty. This approach was used to some extent in Kissel's
editor, where a generalized addressing scheme allowed the 'a',
'c' and 'i' requests to append, change or insert lines in any
buffer, not just the current buffer. Recent design experiments
carried out with Jim Falksen indicate that this approach can be
carried even further, to obtain a rather elegant functionality
from a minimal number of _requests. This approach should be
strongly considered for the new editor.(1) -

Another way to minimize modifiers may be to provide
user-settable options which control the way requests work. For
example, a "with line numbers" option which caused the 'p'
request to always print with line numbers might eliminate the
need for a "with line numbers" modifier.

(1) These design experiments are described in a forthcoming MTB
written by Jim Falksen.

- 11 -

MTB-371 Editor Goals and Policies

Experience with ted has shown that the number of requests
increases dramatically as more specialized functions are added to
the editor. Examples include: inserting and removing tabs;
shifting from upper- to lowercase; dumping buffer cont~nts in
octal; testing, conditional branching and looping facility;
etc. Many of these facilities have proved highly useful in ted,
and should probably be considered for the new editor. However,
instead of implementing them directly inside the editor with
single-letter request names, it might be better to implement them
as a library of external editor functions which have longer, more
mnemonic names. This is probably feasible since these functions
are not often used. The editor function library concept also
allows the user to write his own editor functions, and thus
provides a user~extensible editor request language.(1)

Requests such as testing, conditional branching and looping
requests which must be implemented directly in the editor
because they control the execution of edit programs should
probably have longer, more familiar and mnemonic names. Since
these functions are used in edit programs, they don't have to be
typed often. We can afford more keystrokes in such cases for the
sake of-edit program clarity, and ease of learning/using these
functions.

The following policies are defined to summarize the
discussion of edit requests described above.

Policy 7. The general syntax of all edit requests should be
simple.

Policy 8. A uniform syntax should be used for
requests. Idiomatic request formats
avoided whenever possible.

all edit
should be

Policy 9. The total number of essential editing requests should
be minimized. A library of mnemonically-named
editing functions may be provided to supplement these
basic editing requests.

Policy 10. If request modifiers are used, they should be few in
number and they should be defined in a way which
makes it obvious which modifiers can be used with
which requests. Editing options should be considered
as an alternative to modifiers.

(1) This idea was originally
Vanvleck and others, and has
of completeness.

proposed by Jim Falksen, Tom
been included here for the sake

- 12 -

Editor Goals and Policies MTB-371

Policy 11.

Policy 12.

The set of essential editing requests should be as
powerful and as elegant (in the sense of APL operator
elegance) as possible.

Nonessential editing requests which must be
integrated into the editor (rather than being editing
functions) should have longer, more mnemonic names.
These requests should follow the uniform request
syntax whenever possible.

SPEED AND SAFETY OF EDITING

The goal for an editor which is easy,
(Goal 4) suggests several more policies
request language.

Minimizing Keystrokes .••

fast and safe to use
affecting the editor

To accomplish a particular editing sequence as quickly and
easily as possible, the user should have to type as little as
possible. However, care must be taken lest a policy for a
minimum-keystroke editor produce an obscure, difficult to learn
editor. Many people feel that qedx and ted h~ve minimized
keystrokes to the great detriment of understandability and ease
of learning. Clearly, a carefully considered compromise is
required in this area.

Upper/Lowercase Shifting Failures •••

Whenever a user is trying to perform some sequence of
operations quickly, the likelihood of typographical errors
increases. The editor request syntax must provide the user some
safety from the potential ravages of typos. One of the most
common typos involves a failure to properly shift from upper- to
lowercase at the appropriate time.

Several steps can be taken to protect the users from case
shifting errors. The most obvious is to min~mize the number of
case shift operations required in performing editing functions.
This policy stems from the idea that the us~r will make fewer
errors if given fewer chances to do so. ·

- 13 -

~~-------------------

MTB-371 Editor Goals and Policies

Another step which can be taken is to reduce the importance
of shift failures in the editor request syntax. Whenever possi
ble, upper- and lowercase characters appearing on the same key
should have the same meaning to the editor. ·This is easily
accomplished for alphabetic letters, since the upper- and lower
case versions of t~ese letters appear on the same key on all key
boards. This policy is more difficult to implement for numbers
and special characters, since such characters are paired differ
ently on different keyboards. However, giving upper- and lower
case alphabetics a common meaning in the editor request syntax
has a beneficial affect (as shown is several editors including
teco). This policy should be strongly considered for any editor.

Minimizing Use of Easily-Mistyped Request Sequences •••

The most frequent typos involve mistyping a single letter or
duplicating a letter (because of typewriter key switch bounce,
etc). Ill affects from such typos can be avoided by limiting the
number of single character request names. Single character
requests which make some change to the file should require some
special surrounding context (in addition to their single letter),
or should query the user before making the change. We may want
to consider using two letter request names for requests which are
not ·surrounded by a context. The delete request in qedx is a
good example. Perhaps this request should be 'dl' or 'delete'
rather than just 'd'.

It is clearly important to separate requests from one anoth
er and from their operands. Keyboard switch bounce could cause
'dd', which qedx would interpreted as "delete 2 lines". qedx
would interpret 'ww' as "write into file w". If white space were
required between requests, 'dd' would be diagnosed as an invalid
request. Similarly, if delimiters were used to surround
pathnames (eg, w/path/), then 'ww' would be diagnosed as an
error.

Minimizing Special Case Letters .••

Another problem which makes an editor difficult to use
involves misuse of special-cased letters becuase the user didn't
know or had forgotten that these characters were special. For
example, the '·' and '*' special characters in qedx regular
expressions occur far too frequently in the text being edited.
They are bad choices for letters which have a special meaning by
default, and which must be escaped to gain their usual meaning.

- 14 -
._.. ______________________________ ~

Editor Goals and Policies MTB-371

Clearly, the number of such special characters used in the
editor should be minimized. When speeial characters are
required, they should be chosen from the set of letters which
occur least frequently in the text to be edited. Perhaps the
user should have the option to change these letters to be more
appropriate to his particular editing. He should certainly have
the option of turning off the special meaning of such letters (by
turning off a concept/option/etc).

The following policies are defined to summarize the discus
sion of editing speed and safety given above.

Policy 13. To make editing fast, the number of keystrokes
required to perform the most frequent editing
sequences should be minimized. Care should be taken
when applying this policy to prevent the editor
request syntax from becoming obscure.

Policy 14. Extremely powerful requests in the editor language
should have longer names which are difficult to mis
type, or should be required to appear in an elaborate
context which is unlikely to occur in a mistyped
sequence of characters, or should query the user for
permission to drastically modify the file.

Policy 15. The number of case shifting operations should be
minimized in frequent editing operations.

Policy 16. Uppercase and 'lowercase letters should have the same
meaning in the editor request language. In addition,
any other sets of characters paired together on most
keyboards should have the same meaning in the editor
request language, especially if one of these charac
ters appears before or after a case shift in editor
requests.

Policy 17. Editor requests should be separated from one another
by some delimiter. Operands of editor requests
should be separated from the request name by some
delimiter, especially operands which follow the
request name.

- 15 -

MTB-371 Editor Goals and Policies

Policy 18. A minimum number of letters should have a special
meaning in editor requests or input strings (outside
of the ordinary meaning letters typically have in
that context). Letters chosen to have a special
meaning should occur infrequently in the contexts in
which they are typically used.

Policy 19. The should should be able to specify which letters
have a special meaning in particular contexts, or
should be able to turn off the special meaning of
such characters (temporarily by escaping the meaning,
or permanently by turning off an option or concept).

EDITOR SUBROUTINE INTERFACE

The goal for a subroutine interface to the editor (Goal 10)
is intended to allow the new editor to be used from a subsystem.
Examples of existing subsystems which could use an editor
subroutine interface are: the mail command (to edit mail being
sent and incoming letters); the merge asc11 command (to edit
pieces of the multiple input files being merged); the various
special-purpose editors used for system administration (eg,
ed mgt, ed installation parms, edit proj, edit reqfile, etc);
thi fast, afast and liiius subsysteis (which eiploy editors to
edit their special files).

In addition, an editor subroutine could be used for a vari
ety of new applications: in the abbrev processor (allow a mis
typed or invalid command line to be edited); in an I/O switch
auditing I/O module (to edit previously-typed input lines and
resubmit them as new input, or to edit output lines for use as
subsequent input lines, etc); in the new bug file maintenance
tools soon to be proposed (to allow editing of a single record in
the bug file, or editing of a single field within a record, or
scanning of a single field in all records for a contextual match,
etc); in specialized word processing subsystems such as a forms
editor, a simple paragraph-by-paragraph letter editor or a docu
ment management subsystem (to allow editing of a particular field
in a form, paragraph in a letter or document part without expos
ing other fields/paragraphs/parts to accidental destruction).

I am sure other applications will come to mind; I have giv
en the brief list above to identify a range of applications so
that the implications of subsystem editing on the editor design
can be explored.

- 16 -

Editor Goals and Policies MTB-371

,.... The advantages of sharing a common editor interface in all
Multics subsystems should be obvious. Users of many different
subsystems will not have to learn a new editor for each
subsystem. The subsystems will share editor code, so development
and maintenance costs and introduction of bugs will be minimized.
If a flexible, easy-to-use editor subroutine interface can be
designed, the disadvantages of such an interface will be minimal.

Editing a Window .••

One obvious implication of providing an editor for
subsystems such as merge asc11, SysAdmin editors and a bug file
editor is that it must be possible for the editor subroutine
interface to edit a piece of a segment (a window looking into
part of the segment) without exposing the remainder of the seg
ment to the user.

One implementation might copy the window into a separate
editor buffer, invoke the editor subroutine with just that buff
er, and then copy back the result.

A more efficient implementation might copy the entire seg
ment into an editor buffer (assuming that many parts of the buff
er would be edited using different windows throughout the editing
session), and then define a pseudo-buffer which overlays the win
dow in the original buffer (without copying the viewed data).
For example, in merge asc11 the various input files could be
treated as read-only editor buffers. The pieces of these input
buffers to be merged at any given time could then be overlaid
with windowing pseudo-buffers. The merge ascii editor could then
make only these windows available to the user whenever editing is
required; the user could then select pieces from one/all of
these windows plus type in original input lines, perform substi
tutions, etc to create the merged output window. The merged 6ut
put window would then be appended to the output segment
merge ascii is building.

It should be noted that this scheme has the advantages of
standard editor buffer referencing conventions and full editor
request language which the current, specialized merge~ascii edi
tor lacks.

(1) On the other hand, you may want to allow the reader to read
(all or part of) another segment for use in the merged out
put.

- 17 -

MTB-371 Editor Goals and Policies

Limiting Request Language .••

Another obvious implication for subsystem editors is that
not all requests defined for the standard segment editor will
have meaning in a subsystem context. For example, read and write
requests may not have meaning in a merge ascii context, where the
segments being merged are specified only-in the command line.(1)

Some mechanism must be available for the subsystem to con
trol which editor operations are allowed (and perhaps to what
extent iuch operations are allowed). This could be specified by
some editor ~ode set~ing or by a control structure in the editor
subroutine interface. I

Extending Request Language .••

The complement of a subsystem limiting the editor request
language is its extension to include specialized functions
required by the subsystem. For example, the audit I/0 module
editor needs a function to resubmit a set of lines as input. A
bug file editor needs the function of performing a keyword search
through a particular field in some/all records to find a record
containing some or all of the given keywords.

It should be possible for the subsystem to provide the edi
tor with an interface which can be called when an unknown (or
disallowed) request is encountered so that the subsystem can
implement its own specialized functions. The subsystem would
then have the option of implementing the request in its own way
or of diagnosing the request as a real error.

The interface should have the ability to accept an address
range, the name of the request found by the editor (using its
standard rules for parsing the editor request language), and the
remainder of the request line (to obtain other operands).

Making Editor Utility Functions Available •••

It should be clear .from the above discussion that a full set
of editor utility routines must be available to the calling
subsystem so that it can construct buffers and pseudo-buffers,
implement specialized editing functions, and interface cleanly
with the editor.

- 18 -

t
!

Editor Goals and Policies MTB-371

The set of available utilities should include: buffer defi
nition and manipulation routines; addressing routines; buffer
contents changing routines; error message printing routines;
help routines; segment read/write routines; request operand
parsing routines; input line reading routines; plus
higher-level editor request functions such as a global substitu
tion function, etc.

Policy 20. The editor should provide and support buffer window
ing functions and window pseudo-buffers.

Policy 21. The editor should provide a way to limit the requests
defined in the request language. This limiting mech
anism should probably be available as an editor
request for use in editor macros.

Policy 22. The editor should provide a mechanism which allows
the subsystem to provide specialized requests which
extend (or replace) the functions provided by the
standard editor.

Policy 23. The editor's utility
for use by calling
editor functions.

EDITOR OPERATIONAL STRATEGIES

functions should be available
subsystems and by user-written

The remainder of this MTB describes several different buffer
manipulation strategies which might be used to implement a new
editor. While this topic may not be of interest to all readers,
the work undertaken in this area of internal editor
implementation deserves to be documented and considered, for each
of the existing Multics ed~tors has chosen a different buffer
manipulation strategy. The paragraphs below try to describe
these various strategies, highlighting their relative advantages
and disadvantages, in the hope that some insight can be gained
into the type of strategy most appropriate for a new ed~tor.

Since editors are the most frequently used Multics commands
and are the commands active for the longest ~ime in the average
process, it is important that the load generated by the new edi
tor on the total system resources be as small as possible. The
editor must be as efficient as possible (Goal 6) and must make
the best use of Multics hardware and software features (Goal 7)
if it is to provide optimal performance (fast response) using a
minimum amount of system resources.

- 19 -

MTB-371 Editor Goals and Policies

In analyzing editor performance, it is useful to identify
the steps involved in processing a typical editing operation.
The general format of an editing request in qedx or ted(1) is:

<address range> <operation> <operand>

For example, take the request to change a group of lines:

.,/abc/c The new
input which replaces the
changed lines.
\f

Such a request is processed by performing the following steps:

1. Determine the range of lines (or characters) to be operated
upon by the request (ie, evaluate the address range of the
request).

2. Branch to the code which processes the named operation.

3.

This code must validate the address range as one which is
sensible to use with this request.

Obtain any operand(s) required to perform
may involve reading input lines from the
pair of substitution strings, or there
required.

the request. This
user, or reading a
may be no operands

4. Perform the requested operation on the given address range
using the given operand(s).

Steps 1, 2 and 3 above are reasonably straight-forward. The
steps involve fairly well-defined algorithms with little choice
in their implementation beyond a selection of an efficient coding
style and reasonable representations for the data involved. Of
the three, step 1 offers the most chance for optimizing efficien
cy sir.ae determination of the address range may involve searches
of la~e parts of the buffer (to determine absolute line numbers
or to vsearch for a string). Efficiencies in step 1 come from
reducing the amount of the buffer which must be examined to
reduce the working set of this code. For example, buffer
scanning can be reduced when absolute line numbers are given in
the address range by maintaining the line number of the cJrrent
location as various operations a.re performed on the buff er, , rath
er than recomputing it whenever ari· absolute line number is given •

. h 1·d·. . -
-i..-·J ~-:"f~Pt:·• ." ·~. . _

(1) Other editors such as teco or edm ·m·~:'ii'~~,. .. ~~ different /format
for their requests, but the requests are. processed 'by per
forming steps similar to those described for qedx and ted
above.

- 20 -

Editor Goals and Policies MTB-371

Step 4 offers the greatest possibility for optimization
because of the many possible algorithms which can be used to
implement an operation on the buffer. Of the four major Multics
editors (edm, qedx, ted and teco), each uses a different
algorithm for operating on the buffer. The discussion which fol
lows will describe each of these algorithms and highlight the
advantages and disadvantages of each. My experimental editor
uses a fifth algorithm which implements certain editor operations
more efficiently. This algorithm will also be described and
compared with the other algorithms.

Introduction of Buffer Management Strategies ••.

We begin by describing the basic kinds of buffer operations
which can be performed. We can then show, for each of the five
algorithms, how this operation is achieved.

A given buffer is conceptually divided into two parts by the
pointer to the current location in the buffer. This current
location may be a particular line (the current line) in the buff
er, or ,it may be a particular character (the current character)
in the buffer. edm, qedx, and ted line-mode employ current line
pointers, while teco and teco string-mode employ current charac
ter pointers. This situation may diagrammed schematically, as
shown below.

current loc. -->

A: text before &
including the
current loc.

B: text following
current loc.

- 21 -

MTIJ-371 Editor Goals and Policies

The first step in processing a request is to identify the
address range to be operated upon. This address range may or may
not be related to the current pointer (eg, .,.+5 is related to
the current pointer but 1,5 is not). Determination of the
address range conceptually divides the buffer into three parts,
as shown below.

C: text preceding
addr range

address range {
D: address range

E: text following
addr range

All operations leave parts C and E untouched. A particular
operation: (1) may leave part D untouched as well (eg, 4,6p);
(2) may modify part D while leaving its size in characters
unchanged (eg, 4,6s/abc/def/); (3) may modify part D and reduce
its size in characters (eg, 4,6d); or (4) may modify part D and
increase its size in characters (eg, 6a ••• \f). These possibili
ties are illustrated below.

CASE 1
4,6p

D unchanged

same c

same D
-->

same E

CASE 2
4,6s/abc/def/

New D, same

same c

new D
same

--> s i z_e_

same E

CASE 3
4,6d

New D, smaller

same C

-->
same E

- 22 -

CASE 4
6a
\f

New D, larger

same C

new D
larger

-->

same E

Editor Goals and Policies MTB-371

The main reason why there are so many different algorithms
for changing buffers is the restriction in PL/I that, when a
character string is assigned to another character string, the
storage occupied by the two strings may not overlap. We will see
that techniques for avoiding the overlapping string problem usu
ally lead to maintaining two copies of the buffer, a
before-the-change copy and an after-the-change copy.

qedx Buffer Management ..•

qedx employs the simplest buffer management algorithm. It
maintains a before- and after-the-change copy of a buffer.

Before Copy

A
-->

B

After Copy

(empty)

Each time the buffer is changed: part C (from the diagrams
above) is copied from the before-copy to the after-copy; the new
version of part D is appended to the after-copy; finally, part E
is appended to the after-copy; then pointers~to the be~ore- and
after-copies are interchanged. The same kind of copying occurs
for CASES 2, 3 and 4 above.(1) No copying occurs for CASE 1, in
which the buffer is not changed.

(1) Jim Falksen informs me that qedx and ted (when not in -safe
mode) both perform the request 2,5d (CASE 3) totally inside
the Before Copy without using the After Copy; however,
2,5s/abc/a/ is performed as shown above. Even though the
string movement for 2,5d involves overlapping source and tar
get strings (a violation of PL/I language rules) 1 the code
generated by PL/I works in this case of a smaller New D.

- 23 -

MTB-371

qedx - CASES 2, 3, 4

IS CHANGED TO

New After Copy

(empty)

-->

Editor Goals and Policies

3,4c

••. New D ...

\f

After Copy

(empty)

After Copy

same C

new D

same E

New Before Copy

same C

new D

same E

It should ·be obvious that this algorithm avoids the
overlapping string problem by insuring that the source and target
strings are in different segments. It also has the advantage
that, in global requests (eg, 1,$s/abc/defg/), a single after
copy can be built incrementally as changes are made on many dif
ferent lines. Also, the buffer is never in an inconsistent
state; the currently-used buffer reflects either
before-the-change or after-the-change, never any state in
between.

- 24 -

Editor Goals and Policies MTB-371

This algorithm has a very significant disadvantage. It has
a basic working set whictt averages twice the size of the current
buffer (size(before-copy) + size(after-copy)). We will see below
that this working set size is larger than it needs to be,
producing slowed editor response and a greater load on total sys
tem resources.

ted Buffer Management •.•

ted uses the qedx buffer management algorithm, but goes one
step further by optionally placing the buffers in a
user-specified directory, rather than in the process directory.
Thus, in the event of a process or system failure, editing in
progress can be restarted using the saved buffers. Taking advan
tage of the always consistent nature of the buffers, the user
will lose, at most, the last operation in progress when the
system/process failed, even if the buffer has never been written
into the original file. This has proved to be a very safe method
of editing which is much used and much in demand.

Of course, ted shares qedx's disadvantage of a large working
set.

teco Buffer Management ..•

teco is a character-oriented editor. It maintains a~ointer
to a current character, irrespective of line boundaries. teco
uses two segments to contain the current buffer: segment A con
tains part A of the current buffer, stored at th~ beginning of
the segment; segment B contains part B of the cur~ent buffer,
stored at the end of the segment. This buffer management system
is illustrated below.

-->

Segment A

A

unused
space

.

I
- 25 -

Segment B

unused
space

B

MTB-371 Editor Goals and Policies

Movement of the current character pointer involves copying
characters from the end of part A to the beginning of part B, or
vice versa. This algorithm is illustrated below.

-->

-->

teco - CASE 1

Segment A

c

unused
space

Segment A

c

same D

unused
space

{

IS CHANGED TO

- 26 -

2LT$

Segment B

unused
space

D

E

Segment B

unused
space

E

Editor Goals and Policies MTB-371

A change involves appending, changing or deleting the char
acters at the end of part A (since all additions to the buffer
occur immediately after the current character), and/or deleting
characters at the beginning of part B. This is illustrated
below.

{

teco - CASES 2, 3, 4

Segment A

c

D

unused
space

Segment A

c

new D
(if any)

IS CHANGED TO

--> 1-------t

unused
space

- 27 -

{

-2K2Ki/ •........•.
••. New D •..
1$

Segment B

unused
space

.D

E

Segment B

unused
space

E

MTB-371 Editor Goals and Policies

The teco algorithm has an advantage over the qedx/ted
algorithm. While is does use two segments, it involves a smaller
working set than qedx/ted (size(old D) + size(new D), for the
worst case).

However, the teco algorithm has many disadvantages. It
causes characters to be moved for the common case of moving the
current pointer. It uses the end of Segment B, forcing the use
of a 255K AST entry.(1) Operations which straddle the current
pointer are more difficult to implement since they must be done
in two pieces. The teco buffers are inconsistent during the
period in which modifications are underway. These disadvantages
are rather significant.

edm Buffer Management .••

edm is a line-oriented editor, but it uses a two-buffer man
agement scheme similar to qedx, plus a separate buffer to hold
the current line. edm uses its buffer segments as follows: the
From Copy holds part A (including the original version of the
current line) and part B; the To Copy holds just part A. This
scheme is illustrated below.

From Copy

A

-->

B

Cur. Line

To Copy

same A
minus
cur line

(1) teco could be optimized to use the smallest possible AST
entry size for Segment B, and could use larger sizes only
when necessary. However, this would involve the poor coding
practice of building a knowledge of AST entry sizes into
teco.

- 28 -

,..

Editor Goals and Policies MTB-371

Moving the current line forward involves storing the current
line buffer at the end of the To Copy, moving the current line
pointer of the From Copy to the appropriate line in part B,
copying lines passed over (excluding the new current line) from
the From Copy to the To Copy, and copying the new current line
into the current line buffer. These steps are illustrated below.
Moving the current line backwards involves moving the current
line pointer of the From Copy back to the appropriate line,
removing the lines passed over from the To Copy (the new current
line is removed, but the old current line was never in the To
Copy so could not be removed), and copying the new current line
into the current line buffer.

edm ~ CASE 1 n 2

From Copy To Copy

c Cur. Line D
{ D

E

IS CHANGED TO

From Copy To Copy

same c same C

same D Cur. Line same D

-->
- c..u_r ln

same E

- 29 -

MTB-371 Editor Goals and Policies

Changing the current line (CASE 2) involves changing only
the current line buffer. No change is made in either the From or
To Copies. The following request is an example of CASE 2:

c /abc/defgh/

Changing several consecutive lines (CASES 2, 3, 4 special
cased) involves moving to the first line to be changed (as
described above for CASE 1), making changes in the current line
buffer to this lihe, copying the current line buffer to the To
Copy, moving forward to the next line to be changed, and repeat
ing the process. An example of these special CASES 2, 3, and 4
is:

n 2
c 4 /abc/defgh/

Deleting lines below (including) the current line (CASE 3)
involves moving the current line pointer in the From Copy without
copying passed over lines to the To Copy, and then copying the
new current line into the current line buffer. This is
illustrated below.

IS CHANGED TO

From Copy To Copy

same C

same D
Cur. Line

--> same E

- 30 -

Editor Goals and Policies MTB-371

Similarly, appending lines below the current line (CASE 4)
involves copying the current line buffer to the end of the To
Copy, adding the new lines to the end of the To Copy, and copying
the final new line into the current line buffer. This is
illustrated below.

{

-->

edm - CASE 4
Input .

.

. • . New lines
Edit.

From Copy To Copy

c Cur. Line

D

E

IS CHANGED TO

From Copy

same c

Jiam_e D

same E
Cur. Line

Uast line I

To Copy

same C

same D
+ all

new lines
b 1 s

It should be obvious that edm shares many of the advantages
and disadvantages of the teco buffer management strategy. edm
has a small working set for most operations. Often, the working
set is limited to the current line buffer. At worst, it includes
the current line buffer, plus the size of the From address range
(size(old D)) and the size of the new part of the To Copy
(size(new D)).

- 31 -

MTB-371 Editor Goals and Policies

edm shares teco's disadvantages of causing character move
ment when the current pointer is moved; of having buffers in an
incomplete/inconsistent state during the period when modifica
tions are underway; and of having operations complicated by data
straddling two segments. Even worse than teco, edm has data
straddling three segments. These are significant disadvantages.

Experimental Editor (ed) Buffer Management ...

The experimental editor (ed) which I have developed is a
combination line- and character-oriented editor similar to ted.
However, it employs an entirely different buffer management
strategy. Whereas all of the other editors avoid the overlapping
string restriction of PL/I by using two segments, ed avoids it by
not using PL/I to move its strings. Instead, it calls the appro
priate entry point of an ALM procedure to perform an MRL or MLR
hardware instruction, depending upon the direction in which the
string is being moved. Given two strings, X and Y, of equal
length as shown below:

string X

an MLR instruction can safely
string X. Similarly, an MRL
string X info string Y.

} string Y

move the contents of string Y into
can safely move the contents of

The ALM procedure which performs this movement does not push
a stack frame (it shares its callers stack frame) and does not
require argument descriptors. Therefore, its basic cost of invo
cation is the cost of storing pointers to its arguments in an
argument list. Thus, it can be invoked cheaply to perform the
desired buffer movement operation.

- 32 -

Editor Goals and Policies MTB-371

As with qedx and ted, no copying is required to move the
current pointer (CASE 1) using ed's buffer strategy.

Each time the
to accommodate the
is inserted into
illustrated below.

buffer is modified, part E is moved up or down
new size of part D; then the new D (if any)

the space which was made. This strategy is

ed - CASES 2, 3, 4 3,4c
•.. New D •..
\f

c same C

{ D IS CHANGED TO
new D

E -->
same E

As mentioned above, this buffering strategy avoids the
overlapping string problem by using an ALM MLR/MRL procedure to
move overlapping strings. It has the advantage of a smaller
working set than qedx or ted (size(E) + size(new D)). Also,
since the entire file is contained in a single buffer, coding of
editor operations is simpler than that of edm or teco.

The main disadvantage of ed is that its buffer is not always
in a consistent state, as are the buffers of qedx and ted. Dur
ing the period of a modification, part E may be damaged if a
system/process failure occurs while it is being moved. Failure
after part E has been moved but before the new Part D has been
inserted may result in incorrect data for part D. Though these
periods of inconsistency are short, they do exist and prevent
this strategy from being totally safe across system/process fail
ures. Also, ed's algorithm sometimes has a larger working set
than that of edm or teco, especially when making modifications at
the beginning of a very large file (when part Eis very large).

- 33 -

MTB-371 Editor Goals and Policies

Conclusion of Buffer Management Strategies •..

It is difficult to judge which of the buffer management
strategies described above is best for the new editor. In fact,
it is doubtful that an optimum strategy for all types of editing
even exists. For example, editing that involves selectively
printing lines without modifying the segment can be implemented
and performed most efficiently using the experimental editor's
(ed) buffer management technique. On the other hand, editing
which involves many changes and additions to the segment can be
performed most efficiently using the split buffer technique of
teco (as modified to minimize the AST entry size of the buffers)
or of edm. If many changes are to be made to the current line
(perhaps by a novice users who makes a changes and prints the
line, then makes another change, etc), then the current line
buffer technique of edm is most efficient.

It is tempting to avoid the coding complexities of the split
buffer technique in an already complicated editor design. Howev
er, use of split buffers could significantly reduce the working
set of the editor. This would have a significant affect upon the
total system load generated by editing. Since editing is a sig
nificant part of the workload at most sites, the proper buffer
management strategy could improve overall system performance and
response.

I am not going to choose a particular buffer management pol
icy in this MTB. Instead, I ask for your comments in this area.
All of the buffering techniques can be coded in such a way that
editing can be restarted after a process/system failure with con
sistent buffers and minimal data loss.(1) Therefore, the basic
question is one of performance, of types of editing to be
optimized, and of coding complexity. Your comments would be
appreciated.

(1) The experimental editor (ed) buffer strategy cannot guarantee
consistent buffers if the process/system failure occurred
while the buffer was being modified. However, since the
periods of modification are short, the likelihood of failure
during such periods is small. Note that, in input mode, the
buffer is not modified until the end of input mode is encoun
tered. The input lines are then added to the buffer as a
whole.

- 34 -

'

