
Multics Technical Bulletin MTB-425 

To: Distribution 

From: Richard J.C. Kissel 

Date: 08128119 

Subject: General User Interfac~ to Multics File Transfer 
Facilities 

• 
Send comments to: 

Kissel.Multics on MIT or System M 

or call: 
617-492-9319 or HVN 261-9319 

INTRODUCTION 

This MTB proposes a general user interface to be used by any 
file transfer facilities implemented on Multics. It is modeled 
after the queued user interfaces on Multics such as those for 
absentee, retrieval requests, daemon requests, etc. However, 
interactive use must also be an integral part of a file transfer 
interface and so, it too, is provided for. 

The remainder of this MTB describes the general features 
which must be in a file transfer interface and specific proposals 
for implementing these features on Multics. MPM style 
documentation for the proposed interface is given in Appendix A. 
Information necessary for a system administrator to set up the 
proposed facility at a site is given in Appendix B. 

GENERAL FEATURES 

A general interface for file transfers must be able to · 
support such diverse underlying protocols as: the Level 6 FTF 
(File Transfer Facility), the LFT (Logical File Transfer) 
prc~ocol defined in HDSA, the Arpa file transfer protocols, and 
user defined protocols (perhaps operating on a bisync or X.25 
communications line). 

The goal of this MTS, then is to define the features 
necessary for an abstract file transfer facility, and then define 
the Multics user interface to this abstract facility. In 
i~plementing a specific file transfer protocol the programmer 
must map the features of the specific facility co the features of 
the abstract facility. 

Multics Project internal ~ork~ng documen~atio~. 
Not to be reproduced or d1str1buted outside tne Multics Project. 

08128119 page 1 



MTB-425 

Interactive or Queued Use · 

The user interface must provide for requesting file 
transfers to happen interactively (in the user's process) or by 
queuing the request (for later action by a daemon process). The 
rest of the user interface for these two modes of operation 
should be identical to avoid user confusion and programmer 
maintainability problems. 

Authenticated or Unauthenticated Use 

Users should be able to provide the information necessary 
for a foreign host to authenticate their file transfer. Also, 
Multics should allow file transfers to or from a foreign host for 
authenticated or unauthenticated users (the latter must be 
restricted in some fashion). 

File Names 

The user must specify two file names to do a file transfer: 
the file name on the local host, and the file name on the foreign 
host. The foreign file name is only of interest to the foreign 
host and should not be restricted by the user interface. The 
local file name will be a Multics pathhame. An interesting 
extension to consider would be to allow the local file name to 
specify a device, or perhaps, an attach description. This would 
allow, for instance, the transfer of a tape file directly, 
without first copying it into a segment. 

Host Identification 

The user must be able to specify the foreign host that is to 
participate in the file transfer. They may also want to specify 
a particular physical connection, if there is more than one 
between the local and foreign host, and the particular file 
transfer protocol to use if more than one is available. 

This concludes the description of the features which must be 
in the abstract file transfer interface. What follows are 
specific proposals and issues involved in implementing this 
abstract file transfer interface on Multics. 

IMPLEMENTATION PROPOSALS 

Transferring files in the user's process is conceptually "" 
simple. The program for doing the requested transfer just runs 
in the user's process and does the transfer while the user waits; 

page 2 08128179 



MTB-425 

Queuing requests for later processing by a daemon gives rise 
to a large number of issues which must be solved. The first step 
in solving these issues is to model the queuing after queued 
facilities already on Multics, i.e. absenteei This essentially 
solves the user interface problems: how requests are identified 
after they are queued, how the user can assign priorities to his 
requests, and in fact, the general syntax of the user commands. 

The remaining difficult problems are how the queues are 
arranged and what the daemons that process them look like. From 
the user's point of view the file transfer takes place to or from 
a foreign host, and perhaps, over a particular physical 
connection and using a particular protocol. This would seem to 
argue for a separate set of priority queues for each host, 
connection, and protocol combination. However, this seems 
unwieldy, leading to a possibly very large number of queues. 

Another approach might be to have a set of priority queues 
for each physical connection. Since a transfer must take place 
over a physical connection it must be possible to map the user's 
view into physical connections. This works fairly well for 
"hardwired" connections, al though queues must be added and 
removed as connections come and go. It can also be made to work 
for "dialout" connections, although the daemon which processes 
the requests associated with a "dialout" connection must be able 
to handle transfers for arbitrary foreign hosts using some 
arbitrary set of protocols. 

Another possibility is to have a set of queues for each 
different. protocol. This works fairly well except that it is 
hard to map the user's view of foreign hosts onto protocol 
queues. For instance, a user might want to list all of his 
transfer requests for a particular foreign host, in general, this 
would involve looking at all of the queues, which could be a time 
consuming operation. 

Another approach is to have a set of queues per foreign 
host. This might lead to a very large number of queues because 
of the essentially unlimited number of possible foreign hosts 
(i.e. at least all of the current Arpanet hosts). 

I currently favor· a single set of priority queues for all 
file transfer requests. This is easy to implement and it makes 
the system administrators job easy. Further, the arrangeme~t of 
qu~ues should not be a user visible interface so that changes can 
be made as experience with the simplest implementation is gained. 

At least two issues associated with this implementation ~ust 
be resolved: 

1) How are multiple processes allowed to access a single 
message segment? 

08/28/79 page 3 



MTB-425 

2) How can the access of a user process which is running a 
protocol and needs access to the queues be restricted 
so that he can not destroy the queues? 

The first issue could be resolved by adding a conditional 
update function (somewhat like stacq) to the message segment 
primitives. Suggestions for the resolution of the second issue 
·are welcome. 

We can now look at the daemons that process thes~ queues, 
and the general framework in which they will run. 

Each daemon will be responsible for-implementing a specific 
file transfer protocol. There may be more than one daemon 
running at a site implementing some file transfer protocol if it 
is a heavily used protocol. When a daemon begins operation it 
will be given a set of logical connections that it is responsible 
for, and a set of foreign hosts for which it is to process 
requests. 

Daemons will simply scan the queues looking for a file 
transfer request for a host for which it is responsible using the 
appropriate protocol. A request may be entered for a host with 
no required protocol, in which case any daemon which is 
responsible for that host may service the request. 

A host table will be necessary to map the site specifiable 
host names into actual addresses on some network. The host table 
will also need to specify the default protocol or "don't care 11 

for each host. The host table is also the mechanism by which 
hosts are mapped to queues if it becomes necessary to implement 
more than one queue. 

The last points I will discuss are motivated by the problems 
of transferring (iles to or from a foreign host by an 
unauthenticated user on the .foreign host. Transferring files 
from the foreign host is analogous to the problem of reading in 
card decks. In both cases the best solution seems to be a system 
pool where files are put for later pickup by authenticated users. 
In order to prevent the proliferation of system pools with the 
attendant problems of creation, management, and quota assignment, 
I propose there be a single system pool to be used by card input, 
file transfer, and any other facilities that need this type of 
storage. The existing pool manager entries would be used to 
manage this system pool. There seem to be two equally good 
structures for this system pool: 

1) >System_Pool>AIM_LEVEL>FUNCTION>USER ID>ENTRY NAME 

2) >System_Pool>AIM_LEVEL>USER_ID>FUNCTION>ENTRY_NAME 

page 4 08/28/79 



MTB-425 

AIM LEVEL represents a quota directory for each AIM level as 
req~ired by the rules of AIM. FUNCTION represents a directory 
for each different function, for example, card input or 
file transfer. USER ID is the registered user id of the user to 
whom-the segments specified by ENTRY NAME bel~ng. The user is 
given s access to his directory and -r access to his segments. 
The major difference in these structures is that in case 1 the 
system maintai~s the FUNCTION level of directories while in case 
2 the user (probably using system code) manages these 
directories. 

The transfer of files from the local host to a foreign host 
by an unauthenticated user on the foreign host can be handled by 
giving that user the same access to the files as the daemon 
process which is implementing the protocol. 

Finally, the transfer of files by authenticated users, 
whether on a foreign host or the local host, is controlled by the 
normal access control methods of the local host. 

08/28/79 page 5 



0 

APPENDIX A 

What follows is MPM style documentation for the proposed 
user commands. The commands are: 

enter file transfer request, eftr 
cancel file transfer request, cftr 
list file transfer request, lftr 
move=file=tran~fer=request, mftr 

The syntax of each command follows, [] enclose optional 
arguments, alternatives are separated by : • 

08128119 A-1 MTB-425 



enter file transfer request enter file_transfer_request 

Name: enter _file_ transfer _request, eftr 

This command requests a file transfer to take place either 
by queuing the request for later service by a Daemon process or 
interactively in the user's process. 

Usage 

eftr <source> <destination> [<control args>] 

where: 

<source> ::= [-name : -nm] <from path> [-at <host id>] 
is the source of the-file transfer. <from path> must 
be preceded by -name or -nm if it begins with a "-" 
It must be enclosed in quotes if it contains spaces 
or special characters. It must be followed by "-at 
<host id>" if the file does not reside on the local 
host. The <host id> is the site specifiable name of 
a foreign host. 

<destination> ::= [-name : -nm] <to path> [-at <host id>] 
is the destination of the file transfer: It has the 
same syntax and restrictions as <source>. 

<control args> can be any of the following: 

-queue N, -q N 
specifies the priority queue in which the request is 
to be placed. This may not be specified if 
-interactive is specified. The default is queue 3. 

-interactive, -i 
specifies that this request is 
interactively in the user's process. 
specified if -queue is specified. 

to take place 
This may not be 

-protocol STR, -prot STR 
STR specifies the protocol to be used for the file 
transfer. STR must be quoted if it contains spaces 
or special characters. The default is specified by 
the system administrator in the host table. 

-user STR 

MTB-425 

STR specifies the user on whose behalf the file 
transfer is to be done. This may be used by the 
foreign host for authentication of the file transfer. 
The default is the user id of the user who submitted 
the request. 

A-2 08120119 



enter_file_transfer_request enter_file_transfer_request 

-password STR, -pw STR 
STR is a password that may be used by 
host to authenticate the file transfer. 
default. 

the foreign 
.There is no 

-force, -fc 

08128179 

specifies that the destination file is to be written 
even if it already exists. The default is not to 
overwrite existing files. 

A-3 MTB-425 



cancel_file_transfer_request cancel file transfer request 

Name: cancel_file_transfer request, cftr 

This command cancels a file transfer request that has been 
queued by the eftr command. 

Usage 

cftr <request_identifier> [<control_args>] 

where: 

<request_identifier> is one of the following: 

<from path> [-host <host id>] 
- is the full or relative pathname of the source of the 

file transfer. If the source is not on the local 
host the "-host <host id>" argument must be 
specified. 

{-entry : -et} <from entry> [-host <host id>] 
identifies the request to be 
<from entry>, the entryname portion 
file pathname. The star convention is 

cancelled by 
of the source 
allowed. 

-id <request id> identifies the request to be cancelled by 
its riquest identifier. See the MPM Reference Guide 
for a description of Request identifiers. 

<control args> can be any of the following: 

-queue N, -q N 
specifies that queue N contains the request to be 
cancelled, where N is a decimal integer specifying 
the number of the queue. If this control argument is 
omitted, only the default queue is searched. This 
control argument is incompatible with the -all contol 
argument. 

-all, -a 
searches all ffiority queues for the request starting 
with the highest priority queue and ending with the 
lowest priority queue. This control argument is 
incompatible with the -queue control argument. 

-brief, -bf 
suppresses 
identifier 
cancelled 
argument. 

MTB-425 

messages telling that a particular request 
was not found or that requests were 

when using star names or the -all control 

A-4 08/28/7 9 



-----------··------
cancel file transfer request cancel file transfer_request 

-user <user id> 

08/28/79 

specTfies the name of the submitter of the request to 
be cancelled, if not the group identifier of the 
process. The <user id>. may ~e specified as. 
Person id.Project id, Person id, or .Project id. 
Extended access -to the queue are required. ~his 
control argument is primarily for operators and 
administrators. -Both r and d extended access to the 

\ . queue are required. 

A-5 MTB-425 



• 

list_file_transfer_request list file transfer request 

Name: list_file_transfer_request, lftr 

This command lists file transfer requests that have been 
queued by the eftr command. 

Usage 

lftr [<request_identifier>] [<control_args>] 

where: 

<request_identifier> is the same as described for the cftr 
command. 

<control_args> can be any of the.following: 

-absolute pathname, -absp 
prTnts the full pathname of each selected request, 
rather than just the entryname. 

-admin [<user id>], -am [<user id>] 
selects the requests of all users, or of the user 
specifed by <user id>. If the -admin control 
argument is not givin, only the user's own requests 
are selected. 

-all, -a 
searches all queues and prints the totals for each 
non-empty queue wherher or not any requests are 
selected from it. If the -all control argument is 
not given, the default queue is searched. This 
control argument is incompatible with the -queue 
control argument. 

-brief, -bf 
· suppresses the printing of the state of the request. 

This control argument is incompatible with the -long 
and -total control arguments. 

-long, -lg 

MTB-425 

prints all of the information about each selected 
request including the long request identifier and the 
full pathname. If this control argument is not 
given, only the short request identifier, entryname, 
and state are printed. The -long, -brief, and -total 
control arguments are incompatible. 

A-6 08/28/79 



list_file_transfer_request list file transfer request 

-long id, -lgid 
- prints the long form of the request identifier. If 

this or the -long control argument is not given, the 
short form of the request identifier is printed. 

-position, -psn 
prints the position within its queue of each selected 
request. When used with the -total control argument, 
it prints a list of all the positions of the selected 
requests. 

-total, -tt 
prints only the total number of selected requests and 
the total number of requests in the queue plus a list 
of positions, if the -position control argument is 
given. If the queue is empty, it is not listed. 
This control argument is incompatible with the -long 
and -brief control arguments. 

-user <user id> 
selects only requests entered by the specified user. 

08/28/79 A-7 MTB-425 



move file transfer request move file transfer request 

Name: move_file_transfer_request, mftr 

This command moves file transfer requests to a different 
priority queue, host, or makes them interactive. 

Usage 

mftr <request_identifier> [<control_args>] 

where: 

<request_identifier> is the same as described for the cftr 
command. 

<control_args> may be any of the following: 

-queue N, -q N 
specifies that queue N contains the request to be 
moved, where H is an integer specifying the number 
for the queue. If this control argument is omitted, 
only the default queue is searched. This control 
argument is incompatible with the -all control 
argument. 

-all, -a 

-to 

searches all queues for the requests to be moved. 
This control argument is incompatible with the -queue 
control argument. The target queue is not searched 
by the -all control arguemnt. 

host <host id> 
specifies that 
host specified 
argument is not 
is used. 

the request should be moved to th~ 
by <host id>. If this control 

given, the-original destin~tion host 

-to queue N, -to q N 
is a required control argument specifying which queue 
to move the request to. 

-brief, -bf 
suppresses messages telling the user that a 
particular request identifier was not found or that 
requests were moved when using star names or the -all 
control argument. 

-user <user id> 
specifies the name of the submitter of the requests 

MTB-425 A-8 08/28/79 



--------------------
move_file_transfer_request move file transfer_request 

08/23/79 

to be moved. The default is to move only requests 
entered by the user executing the command. The 
<user id> can be Person id.Project id, Person id, or 
.Project id. This control argument is primarily for 
the operator and administrators. Both r and d 
extended access to the queue are required. This 
control argument causes the command to use privileged 
message segment primitives which preserve the 
original identity of the submitter. If the process 
has access isolation mechanism (AIM) ring one 
privilege, the AIM attributes of the original 
submitter are preserved. Otherwise, the AIM 
attributes of the current process are used. 

A-9 :·1TB-425 



.. 

APPENDIX B 

Documentation for the system administrator on how to set up 
the file transfer Daemons, how to set up the request queues, and 
how t9 set up the system pool directories is to be supplied. 

08/28/79 3-1 MTB-425 


