
Multics Technical Bulletin MTB-446

To: Distribution

From: S. H. Webber

Date: April 14, 1980

Subject: Menu Management Software

Purpose

This MTB describes the current state of what has been called
the menu management software. It also proposes several additions
that should be made so that a complete and consistent product can
be produced. A final section proposes further enhancements that
I believe are reasonable, but need not be done before the system
is made available as a product. The assumption is made that the
current software will indeed be turned into an official product
in the near future.

Menus in General

For years menus have been used by many computer systems as a
means for presenting the various options available to a user of
the system at a given time. There are many formats that menus
can take but most have been designed with a video terminal in
mind.

Basically, a menu is a visual presentation of a set of
options available to the user. This set of options is a small
finite number at any time and hence all options can be, and are,
named on the screen or paper for the user. The basic sequence
is: display the set of options; the user selects one; and the
associated action is performed.

This technique has as its main strength its simplicity. The
users can easily figure out (or be trained) how to use a menu
system. From that point on, the user is limited only by specific
preset options provided to him in the application he is using.

Many menu systems have dynamic menus, i.e., menus which are
generated "on-the-fly" as a function of the data available at the
instant the menu is displayed. Emacs presents many such menus in
the mail, directory editor, and other subsystems supported. The
current menu manager supports such dynamic menus in only a
primitive way. Extensions to this are proposed in "What is
"Needed" below.

Multics ProJect internal working documentation. Not to be
reproduced or distributed outside the Multics project.

MTB-446

Even without fully dynamic menus, a very useful and
effective interface can be presented. I would propose we try to
take what we have now and turn it into a product and defer most
enhancements to a second or subsequent release.

Advantages of Menus

As mentioned above, one advantage of a menu interface is its
simplicity. Other features include:

m The user need not remember anything. This includes
command names, formats, control argument names, or
system specific constructs.

The user need not type very much. This is made
possible by creating more output in the display of the
menu-~which for slow line speeds can be time-consuming.
Note that the trend is for line speeds to increase.
User typing speed is not increasing.

Menus are less error prone. Typing in erroneous
requests nor data is much less likely to cause trouble.

Menus can be used as a convenient packaging means for
tying together many functions. The abbrev processor
combined with exec com are other examples of such
packaging as any sophisticated Multics user can attest.
Menus provide such "macro" facilities to the totally
naive user.

Menus can be (and in the current implementation are)
associated with an effective "help" mechanism to assist
all users.

Menus are easy to learn how to use and easy to use once
it is learned how to use them.

With menus, a consistent interface can be presented to
a very large class of application programs. No longer
need the user know how to quit out of a given
subsystem--all subsystems can be presented in the same
way.

The same user interface can • be presented on many
different operating systems. This way turn out to be
very important in the future as we opt toward more
distributed systems.

Disadvantages of Menus

MTB-446

There are a few problems associated with using menus as the
interface for application software. Two such problems are:

= Menus take time to display. On terminals with low line
speeds, much time can be wasted and the user can become
frustrated as he waits for the menu to display. This
is a problem only with slow line speeds. Solutions
range from faster line speeds to moving much of the
menu management "closer" to the terminal (so that line
speed is not an issue).

By their very nature, menus provide only those options
the application programmer (or designer) thought
appropriate. A knowledgeable user may become
frustrated knowing there is more he can do, but not
being able to "get at" the features not included.

Features of the Current Menu Manager

The programs
capabilities:

developed so far have the following

= It is easy and straight forward to create menus.

= It is easy to use nearly all existing Multics user-ring
software through a menu interface.

It is fairly time-consuming to write the input checking
software needed to check for the validity, consistency,
and format of non-menu-generated input (what is called
"bottom window" input, below).

A very large set of menus can be linked together into a
hierarchial network making "parent-offspring" type
navigation very easy.

A help facility is integrally connected with all menu
options.

= Screen management facilities are provided.

® The menu software depends on break-all mode and other
terminal management facilities developed for emacs.

Terminology

The following terms (underlined as they are defined) were
derived during the development of the menu manager and, hence,
are based on video terminal type menus. A recent printing
terminal capability has been added to the menu manager and the

MTB-446

reader is expected to make the appropriate mappings for printing
terminal use.

The screen is the standard user programmable, visible area
on the CRT of a video terminal. Most screens have 24 lines, each
80 columns wide. The menu manager divides the screen into two
regions, the menu region and the bottom window. The menu region
consists of o---pr more header lines, followed by 1 or more lines
of cations, followed by 0 or more trailer lines. The lines
inclu ing the options are collectively called the ~·

Headers

Menu Menu
Region

Bottom
Window

Trailers

Header 1
Header 2

(O)Option 1
(1)0ption 2

(2)0ption 3

Figure 1. Terminology Used

Menu Input Conventions

screen

Most video terminals have keys called function keys. On
some terminals these have fancy names such as "HOME" or "INSERT",
"TRANSMIT", or "GOTO". But on most terminals they are named
simply "1", "2", etc. or "F1", "F2" .•. (some terminals even
use color coding to."name" function keys). Basically, function
keys are keys usually not found on a typewriter. [It should be
pointed out that some terminals have function keys that only have
a local effect, i.e.,, they do not cause any characters to the
sent over the communications line when pressed. Such keys are
fairly useless and all following discussions will assume fully
functional function keys.]

MTB-446

The menu manager uses function keys to provide the user with
a few simple, universal capabilities. These include:

1. Print help information about an option on the
subsystem.

2. Display the first (top level) menu.

3. Display the parent menu to the current menu.

4. Quit from the menu manager.

5. Escape to full Multics command level.

6. Redisplay the screen (to clean it up) .

On the VIP7801 terminal, these
function key F1 thru F5 and the
respectively.

functions are
CLEAR RESET

provided by
function key

In addition to these general purpose options, the user can
also select an option and have the associated action performed.
This is done simply by typing the number or letter next to the
option.

The cursor associated with a video terminal is used to
indicate to the user what "state" he is in. If the cursor is
next to one of the options in the menu, the user is "in the
menu". Otherwise, the cursor and the user are in "in the bottom
window". When the cursor is in the menu, the only thing he can
do is to select on of the 6 generic functions (tied to the
function keys) or select one of the options. When the cursor is
in the bottom window, either information is being displayed to
the user (help info or output resulting from selecting an option)
or the user has been asked to type in some specific text or data
as a result of selecting an option.

Bottom Window I/O Conventions

When in the bottom window, the user is presented with a
slightly non-standard Multics terminal interface. In particular,
end of screen processing and primitive input line editing
features are provided. [Both of these were added because all I/O
in the bottom window had to be treated specially anyway in order
to prevent the menu from being "scrolled off" the screen.]

MTB-446

The specific editing features are:

® kill and erase are done dynamically

~ word kill is provided

® upper-case word, lower-case word and capitalize word
features are provided

® interchange the last 2 characters

~ redisplay the current line

® clear the bottom window and display the current line
being input at the top pf the bottom windows, and

retrieve the last word or line that
(including the entire previous input line
"killing" was done)

was killed
if no other

The end of screen processing (analogous to what you can.do
when you get "EOP" printed at the bottom of a video terminal)
consists of the following options:

® Continue printing by "scrolling" in the bottom window
(this option requires the "delete lines" capability in
the terminal being used)

Clear the bottom window and continue printing at the
top of the bottom window, and

Abort all output until the next read request (either
from the menu or from some program executing as the
result of selecting an option). [Aborting all output
up to the next read is not a good solutiO'rlin that
event call output and indeecr-simple ready messages will
lost.]

Terminals Supported

The menu manager software was designed to work primarily
with video terminals. A printing terminal capability has been
provided and a "glass tty" capability is being planned. The
printing terminal version expects the backspace function to be
provided. For the video terminals, however, much more
information about the terminal is needed. This additional
information is maintained in a new version TTF (terminal type
file). A new interface to the TTT is provided which the menu
manager uses to figure out how to manage the particular terminal
being used. The new TTF structure and the programs to manage it
(cv_ttf, display_ttt, etc.) will all be described in another

MTB-446 .

MTB. The principal program of interest to the menu manager is
video control which returns the terminal specific escape
sequences needed to effect specific actions for the terminal.

The TTF changes represent a good deal of work and the menu
manager will depend on them.

[These
attempt to
terminals.
facilities.]

TTF changes were started
provide emacs with a
It is expected that

The Basic Strategy of the Menu Manager

by Bernie Greenberg in an
standard way of driving

emacs will use the new

The basic strategy is to intercept all read requests to the
terminal done by the process and to respond to them according to
information found in the compiled screen object segment. In
particular, by the time a read is done a menu has already been
displayed and the user is expected to merely type in the number
of the option he wants executed. This is simple "menu input"
scenario. By responding to an option the user has implicitly
selected a command line to be executed, or as in the case of
subsystems such as read mail, an input string to be returned to
the subsystem. -

In order for this technique to work, it might be easy to
intercept all terminal I/O. This, of course, is the case with
Multics and the user-ring I/O system, iox •

Non menu input capabilities are also required. This is
because application programs must gather information from the
user dynamically about what the user wants done. For this kind
of input, which I call bottom window input,. new software, was
also required. This is because the entire video screen must now
be managed (lines and characters counted, etc.)·' in order to
prevent the menu from being scrolled off of the screen.

[The final version of this bottom window I/O software has
not been written. I believe a new and general-purpose "forms"
mode input program should be written to aid application
programmers but this is not presented here.]

,.. Data Structures and Program Interaction

The following diagram indicates the rough inter-connection
of the programs and data used by the menu manager.

CV Sd

hes

Terminal

t
MM

VIDEO

MTB-446 ""

APPLICATION
SOFTWARE

Figure 2. Data Structures and Program Interaction

The Actual Program Structure

The software developed so far can be broken down into five
categories as follows:

1. The menu_manager itself,

2. The screen definition compiler,

3. The TTF programs,

4. Programs to help "put up" applications with, and

5. Application programs.

I will briefly describe much of the main programs in the
above five areas with the intent of letting the reader see how
they fit together and hence how they can or might be extended.

MTB-446

The menu_manager software •••

menu manager (mm)
- This is a Multics command that accepts one argument,

the pathname of a screen object segment created by
the cv sd compiler. It sets up the process
environment by attaching the standard terminal I/O
switch (user i/o) through the video I/O module. In
so doing this it initializes the input line editing
program (mm line editor) and the program that
interfaces to-the new TTT:

video

Once the appropriate initialization is done it
displays the first menu and awaits input. (The input
must be the selection of some option, or high-level
function-key driven function such as "help".)

The menu manger . command sets up cleanup handlers as
appropriate and cannot currently be called
recursively.

There is an alternate entry point into the menu
manager that does nothing more than attach the I/O
via video . This entry, ring 4 video, can be used to
get the line editing and "more" processing available
in the bottom window by treating the entire screen as
the bottom window. (This feature has been pretty
much obsoleted by Multics-mode in emacs.)

A further entry in the menu manager routine is used
if the terminal being used does not have function
keys. The affect of this entry, mm$no function keys,
is automatically done for "printing" terminals-which
rarely have function keys.

This is an iox I/O module that sets up special
routines for the get line and put chars entry. All
others are passed through. These entries are needed
to avoid scrolling the menu off of the screen when
I/O is done at the bottom of the bottom window.

mm line editor
~his entry is called by video $get line (which is
actually implemented in menu manager). It reads
characters from the terminal,~ in raw and breakall
modes, and does real time editing on the partially
collected input line. When a CR is received, the
input line is returned to the caller of
iox_$get_line.

MTB-446

The screen definition compiler .•

CV sd
This is the compiler for the screen definition source
language. It is implemented with the reduction
compiler and behaves in the standard way compilers
behave on Multics. The error recovery logic is,
however, fairly primitive.

display sd
This command takes the pathname of a screen object
segment and generates a listing of the various
screens defined therein. Two output formats are
available. the first lists the various options for
each screen and the second, gotten by saying
display sd $long, generates a picture of each menu as
it would -appear on the screen--with headers and
trailers filled in appropriately.

The TTT programs ...

CV ttf

[Note that the entire TTF issue is currently being
acted upon by Larry Johnson and that the programs
listed here represent an interim solution only. The
long-term solution will clearly involve most or all
of these programs but the details and functionalilty
provided will be the subject of another MTB.]

Compiles a ttf into a ttt. the major difference
between the new ttf and the old ttf is the inclusion
of video information with each terminal type.
Currently this information includes items such as the
escape sequence needed by terminals of that type to
do, say, a "delete lines" function.

Eventually, the ttf will also include information
keys (how many? program settable? if so, how many
characters?), color, and other video terminal
characteristics.

display ttt, ttt info
Upgraded -to understand and report the new video
information.

video control
This is a new program that interfaces the new ttt.
There are many entries which return the specific
character string needed to effect a particular
behavior on the terminal. For example, to cause a
line to blink (if the terminal ha~ the capability)
one might:

MTB-446

char string= video control $blink();
call-ioa (""a", char_string);

after positioning the cursor to the beginning of the
line -- with another pair of calls to video control
and ioa •

The new video control interface being developed by
Larry Johnson expands upo'n this overly simple
interface to include buffering, padding, and error
reporting.

Programs to help "Put up" applications ...

as sq

Most of the programs used to set up applications are
part of the standard Multics product: exec com,
abbrev, do, and the host of active functions
available. I mention here a few (not so private)
tools used to develop the applications to date.

An association list/look up program. This program is
a very convenient replacement for segment property
lists as well as a simple table lookup mechanism.

setf, valf
These are replacements (standins) for the long
awaited "exec com variables". Some such capability
is needed. The value command has str~ng__limitations.
The MIT memory command may be satisfactory, but the
best solution is an integrated "variable" capability.

gets tr, valid numberp, valid datep, ...
Several new active functions were implemented mainly,
to aid in error checking of user-supplied input but
also for the various side-effects that interacted
with the setf and valf variables.

build segment
A program to collect input
may be extended to be
emacs-like (video) editor.

Application programs ...

into a file. This program
a simple version of an

Most of the application programs used already existed
before pulled into the various menu driven packages.
The most important are read mail, send mail, memo,
lister programs, and various-text editors. [EXL or
even newer versions of some of these were used.] A
few new applications were developed ...

MTB-446

calendar add
A- "day-at-a-glance", "week-at-a-glance",
"month-at-a-glance" type desk calendar program. This
is planned to be expanded to include a multi-calendar
segment scheduling capability. (Problems exist in
that extended access is needed on a more general
class of segments than ring-1 message segments.)

doc-file, doc-file editor

mini

A fairly extensive emacs extension that provides much
of the power of emacs but uses a simpler (same say)
function-key interface. Associated with the emacs
extension is a simple text-formatter that is used to
generate the final printable output as well as
generate "table of contents" and "index" output.

A subset
function
creating
like.

of the doc-file editor, using the same
keys, but for use in reading/sending mail,

and editing simple text segments, and the

Unresolved Problems and Needed Extensions"

The following paragraphs name and briefly describe some of
the important problems that need to be addressed. The list is,
of course, not exhaustive but most of the problems I have
encountered are included.

Performance

Lister

The performance of the menu manager itself, although
not yet measured, is probably not a problem. The
performance of the bottom window input line editing
may well be a problem--it uses breakall mode and
although well coded, much of the function can
probably be moved to ring 0 or the FNP and thereby
improve response time as well as CPU time overhead.

The solution to this breakall mode performance
problem should be applicable to emacs as well. A
study/design project should be initiated as I believe
both emacs (including its extensions) and the menu
manager will be important products in the future.

The lister programs are a very attractive vehicle for
generating many applications. Needed, however, are
several extensions including:

record IDs

active funtion interface

MTB-446

new commands to assign to fields of records
and add records to lister files.

A new interf~ce which uses some version of forms
processing for filling in the fields of a record is
almost a necessity. (A forms interface to MRDS has
been developed by FORD -- this should probably be
looked into.)

New Menu Features

A "GO TO MENU" capability that avoids clear adherence
to the strict hierarchial ordering of menus would be
very useful, particularly on slow speed terminals.

A session metering/logging capability would also be
very valuable to help us determine how menus are
being used, which applications are being used, and
how effective the menu manager is in bringing Multics
to a place where it can solve real-world problems.

The ability to have dynamic menus would be very
useful.

The use of the RETURN key is inconsistent and
continues to cause problems with new users (due to
the type-ahead features of Multics). Other menu
systems have an explicit "EXECUTE" key that might be
better.

The ability to display two menus at once, the first
being a set of "action" options and the second being
a set of "operand" options, would be very desirable.
Several (or none) operands could be selected for a
simple action.

A new way to abort output at "end-of-screen" time (a
problem of Multics in general) is needed. The QUIT
action aborts too much. Possibly, a flag (in the
terminal output data structures) could be provided.
This flag gets turned on at "abort output" time 'and
back off when a subsystem request loop is reentered
(qedx, read_mail, listen_).

It has been proposed that the various options of a
menu be distinguishable depending on whether a new
menu will be displayed if the option is selected.

A method of scroll~ng back output
window is needed. [One solution is
the mini emacs extension.]

in the bottom
with the use of

MTB-446

The current limitation of 2 columns of options should
be removed (the documentation already indicates 4
columns are possible).

Optimizations to the menu redisplay function are
needed.

A better method of "more" processing is needed so
that input typed at end-of-screen is not discarded
(this works now in full Multics).

Although the handles are there,
manger will not operate correctly
are not 24X80 in screen size.

the current menu
on terminals that

Support of "glass tty" ~erminals is needed. These
terminals work much like printing terminals but need
the ability to do "end-of-screen" (more) processing .

. Application Support Systems

Variables in exec com would be extremely useful. Nested
if-then-else clauses and-begin-end constructs would also be quite
useful. An exec_com active function would be very useful.

Many new active functions should be provided to help
application programmers verify the validity of input.

A "FORMS" package is needed both to generate forms and also
for data-base update applications.

A dictionary for spelling checking and hyphenation would be
valuable (the current dictionary is too small).

Extended Support for Video terminals"

A mentioned earlier, a ring-0 or FNP input line editing and
screen management facility is probably needed to satisfy
response-time requirements, as well as to improve performance.
This is, of course, a large design and implementation project -
maybe we can benefit from the CP-6 effort or possible the Level-6
efforts.

Video features that need to be addressed are: redisplay,
scrolling, input editing, erase and kill processing, video
attribute management (blinking, inverse video, low intensity
color, etc.) multiple character sets, protected fields, and many
more.

The above video support might well be in ring
largely in PL/I. It might then be possible to

0 and hence
implement an

MTB-446

inextensible subset of emacs
considerable performance gains.

in PL/I and thereby achieve

Extended Access for Application Data Bases

A version of the ring-1 extended access for message segments
should somehow be made available to lister files and MRDS data
bases. There are many possible solutions the need is
repeatedly pointed out.

