
10/24/80 Multics Technical Bulletin MTB-465

From: W. Olin Sibert

To: MTB Distribution

Date: October 24, 1980

Subject: Subroutines and Tools for Manipulating Disk Partitions.

This MTB describes subroutines and commands for accessing data stored in
Disk Partitions. These are useful today as debugging utilities, and are also
required for a contemplated redesign of Multics Initialization. Comments and
questions should be directed to the author:

By Multics mail at MIT or System-M to:

Sibert.Multics

Or by mail to:

W. Olin Sibert
Cambridge Information Systems Laboratory
HED MA22

HVN 8*261-9353

Multics Project internal working documentation.
distributed outside the project without consent
Multics System Development.

Disk Partition Tools - 1 -

Not to
of the

be reproduced or
author or director,

10/24/80

MTB-465 10/24/80

Introduction:

A Multics File System Disk must contain at least three components: the
Volume Eaader (label, allocation bit maps, dumper bit maps, etc.), the Volume
Table Of Contents (VTOC), and the Paging Region. These are all required for
use with the Storage System. In addition to these components, a disk (volume)
may also have defined on it up to 47 "partitions". A partition is simply a
contiguous region of disk, containing an integral number of records, which is
not part of the volume header, VTOC, or paging region.

Presently, the supervisor makes use of several partitions for functions
for which the normal file system cannot be used. The reason the normal file
system cannot be used for these functions is that they must be available under
circumstances where the integrity of the file system is not assured, and
therefore these supervisor functions must manage their own disk space Examples
of these functions are the LOG partition, used by the syserr logging daemon to
buffer messages, the DUMP partition, used by BOS to write an FDUMP into, and
the HC partition, used by the supervisor to dynamically page from. In
addition~ BOS uses the BOS partition to store the BOS commands and runcoms.

Today, there is no convenient way to manipulate partitions. The BOS
DUMP, SAVE, and TEST commands can be used, and there are special-purpose
functions in Multics (print_syserr_log, copy_fdump) which can access specific
partitions. There is no general mechanism for partition I/O. Additionally,
the only way to learn what partitions are on a particular volume is to dump
the label in BOS, and interpret it by hand, or salvage the volume and look at
the summary report.

This MTB describes a set of subroutine interfaces and commands which use
them to perform various useful functions. Commands are available to list,
dump, and clear partitions; the subroutine interfaces provide an interface to
the partition such that it appears as a continuous array of words. A
subroutine interface for examining a volume label is also provided.

The Implementation:

This implementation described is designed to be adequate without being
overcomplicated. Various niceties such as efficiency and administrative
control have been largely omitted, because the need for them does not seem
very great. These interface will not be used except by system administrators
or system programmers, and not very often at that; therefore, it does not seem
worthwhile to implement complex control or performance mechanisms.

The read/write interfaces are in the hphcs_ gate, because there is no
access control function enforced by the primitives. There is no locking or
protection against simultaneous updates. Any control to be exercised over the
access to partitions must be done in an outer ring, or manually by the users.

10/24/80 - 2 - Disk Partition Tools

10/24/80 MTB-465

In view of the expected uses of this mechanism, the lack of locking and
simultaneous update protection does not seem very important. The mechanism
was implemented primarily to allow Multics System Tapes to be written into
disk partitions (for purposes of subsequent booting therefrom), and this is an
operation which will be performed rarely at most sites, and always by some one
person or closely coordinated group of people who can be trusted not to
destructively interfere. The only other anticipated use of the writing
interface is for performing system repair or maintenance operations, and this,
too, is something which will be the province of a very small number of people.

The volume label reading interface is in phcs_ because it seems
consistent with the concept of phcs_ that a user with access to it should be
able to look at all "system data", of which volume labels are certainly a
form. The partition read interface is not in phcs_ because it provides
unrestricted access to data in any disk partition, which may (though no
partition does so now) contain "user data", which should not be available
through phcs_.

The read/write mechsnism is not very efficient. It requires two disk
I/Os for each page accessed, and two more for each call to the primitives;
therefore, to read a page at a time with the primitives requires four I/Os per
page. Worse yet, the two I/Os per call are to the volume label, which may be
on the opposite end of the disk from the partition, since many partitions are
allocated from the far end. This is not a problem; none of the uses for these
subroutines requires high speed.

Possible Future Enhancements:

The major missing features of this implementation are selective access
control, (primitive access control is, of course, provided by the acl on
hphcs_) locking, and efficiency. None of them would be very complicated to
implement; if the interface turns out to have wider applications than
initially envisioned and the enhancements become more desirable, they should
certainly be implemented.

Access control could be implemented by access control segments. The
ACS's for a volume would be located in a directory whose name is the PV name,
and which itself would be located either in >lv or some subdirectory thereof.
The ACS's and containing directories should be created automatically by
ring one volume management at volume registration or rebuild time. Access
could be controlled either by the primitives themselves in ring zero, or by
another level of interface in ring one.

Locking could also be implemented either in ring zero or ring one;
because there are no present applications for either, it is hard to say which
would be most appropriate. A database somewhat like the dirlock table would
be used to implement locking. Presently, the read/write interfaces are
protected against volume demounting occurring in any single call to the
primitives, but that is as sophisticated as it gets.

Disk Partition Tools - 3 - 10/24/80

MTB-465 10/24/80

The primitives today work by calling read_disk and write_disk. These are
page-at-a-time interfaces which are not very efficient to begin with.
Additionally, the primitives must read the volume label once per call, in
order to locate the desired partition. Efficiency could be improved dramati
cally if the primitives were to construct their own page tables, in the manner
of copy_fdump, and read/write all the requested records at once. Another
possible improvement would be to have some mechanism for specifying partitions
which did not require reading the volume label each time to locate them and
verify the user supplied addresses.

Applications:

The primary application (that is, the reason they were implemented) for
these interfaces is to provide a way to write MST files into disk partitions
to experiment with boot-from-disk technology. This has been incorporated into
a command, write_mst_partition, which takes a file created by generate_mst
-file and writes it into a specified disk partition. The command is not
described in this MTB because it is not part of the general interface, and is
still under development.

The list_partitions command and the read label subroutine answer a need
expressed by several SiteSAs that there should be some convenient way to get
at this information. It is also useful when developing any application which
uses disk partitions._.

The dump_partition and clear_partition commands are primarily useful for
developing applications which use disk partitions. They can also be used to
examine problems with existing applications, such as garbled FDUMPs and
whatnot.

A tool could be written to allow the BOS directory to be updated from
Multics, thus saving much of the bother of editing the CONFIG deck or runcom,
generating a new tape, etc.

If the efficiency problems are remedied, it would be useful to rewrite
copy_fdump to be a largely user-ring program, so that it could be modified
more readily for new and different FDUMP formats.

10/24/80 - 4 - Disk Partition Tools

,...
10/24/80 MTB-465

Interface Documentation:

Documentation for the following commands and subroutines follows; they
are all intended to be documented in Tools (AZ03), save for mdc_$pvna.me_info,
which belongs in the SWG, and is documented in this MTB only because it is
useful, and not presently documented anywhere else.

list__partitions
dump__partition
clear __partition

phcs_$read._disk:__label
mdc_$pvna.me_inf o
hphcs_$read._partition
hphcs_$write_partition

Disk Partition Tools - 5 - 10/24/80

MTB-465

10/19/80: list_partitions

Function: lists the locations and sizes of all the partitions on a
specified physical volume.

Syntax: list_partitions Pvname
I

Arguments:
Pvname

The name of the physical volume whose partitions are to be listed.

Access required:
Access to the phcs_ gate is required.

Output format:

10/24/80

The output consists of a header, which lists the physical and logical
volume names, the PVID and LVID, the size of the volume in pages, the
size of the VTOC in both pages and VTOCEs, the size of the paging
region, and the number of partitions. It is followed by a table listing
the name, first record, and size of all partitions and other regions
on the volume. All numbers in the table are given in both decimal and
octal (in parentheses), and all other numbers in the output are
decimal.

Example:
Volume root2 (740651611731) of logical volume root (225072707470):

38258. total records. 2000. VTOC records, for 10000. VTOCEs.

Volume map (including 4 partitions):
Name First record Size

Volume header o. (0) 5. (5)
VTOC area 5. (5) 2000. (3720)

BOS 2005. (3725) 200. (310)
DUMP 2205. (4235) 2000. (3720)

Paging region 4205. (10155) 34712. (103630)
HC 36917. (110065) 1200. (2260)
ALT 38117. (112345) 141. (215)

10/24/80 - 6 - Disk Partition Tools

10/24/80

10/19/80: dump_partition

Function: displays data from a named disk partition; by default in
octal with four words per line, though other output formats can also
be selected.

Syntax: dump_;partition Pvname Partname Offset {Length} {-control_args}

Arguments:
Pvname

The name of the physical volume on which the partition to be dumped
exists.

Partname

MTB-465

The name of the partition to be dumped. It must be four characters or
less in length.

Offset
The offset at which to begin dumping.

Length
The number of words to be dumped. If not supplied, one word is

. dumped.

Control arguments:
-short, -sh

Outputs data in short form, similar to dump_segment -short.
-long, -lg

Outputs data in long form, similar to dump_segment -long.
-character, -ch

Outputs data including the ASCII character representation.
-bed

Outputs data including the BCD character representation.
-no_header, -nhe

Suppresses the header.
-header, -he ·

Prints a header. (Default)

Access required:
Access to the hphcs_ gate is required.

Function as an active function: returns the contents of the specified
words in octal, separated by spaces, rather than printing them.

Syntax as an active function:
[dump_partition Pvname Partname Offset {Length}]

Disk Partition Tools - 7 - 10/24/80

MTB-465

10/22/80: clear_partition

Function: overwrites the contents of a disk partition with zeros or an
optional user-supplied pattern word.

Syntax: clear_partition Pvname Partname {-control_args}

Arguments:
Pvname

10/24/80

The name of the physical volume on which the partition to be cleared
exists.

Partname
The name of the partition to be cleared. It must be four characters or
less in length.

Control arguments:
-brief, -bf

Produces brief format messages.
-long, -lg

Produces longer messages. (Default)
-pattern WORD

Overwrites the partition with data consisting of the specified octal
pattern word. The specified word is written into every location in
the partition. If this control argument is not specified, a default
of all zeros is used.

Access required:
Access to the hphcs_ gate is required.

Notes:
The user is always queried as to whether the partition should be
overwritten; by default (if -brief was not specified), the contents of
the first eight words in the partition are displayed (in octal and as
ASCII characters) as part of this question, to aid in preventing
accidental overwriting of the wrong partition.

10/24/80 - 8 - Disk Partition Tools

10/24/80 MTB-465

phcs_$read_disk_label phcs_$read_disk_label

Entry: phcs_$read_disk_label

This entrypoint is used to read the label of a storage system disk drive.
The label is described by the structure "label", in the include file
fs_vol,....label.incl.pl1.

Usage:
dcl phcs_$read_disk_label entry

(bit (36) aligned, pointer, fixed bin (35));

call phcs_$read_disk_label (pvid, label_ptr, code);

Arguments:

1) pvid (Input)
is the physical volume id of the disk whose label is to be read. The
physical volume id is used instead of the volume name because this is a
ring zero interface, and volume names are not accessable by ring zero;
hence, all ring zero interfaces which refernce physical volumes use the
pvid. A pvname may be converted to a pvid by calling the subroutine
mdc_$find_volname.

2) label_ptr (Input)
is a pointer to the user-supplied area in which to read the label. The
label is 1024 words long, and is described in fs_vol_label.incl.pl1

3) code (Output)
is a non-standard status code. It will be one of the following:

zero
indicates that the label was successfully read.

error_table_$pvid_not_found
indicates that the specified physical volume is not presently
mounted.

an integer between 1 and 10
indicates that a physical disk error occurred while trying to read
the label. Error messages for physical disk errors are declared in
the include file fsdisk_errors.incl.pl1, in the array
fsdisk_error_JDessage.

Disk Partition Tools - 9 - 10/24/80

M'l'B-465 10/24/80

mdc_$pvname_info· mdc_$pvname_info

Entry: mdc_$pvname_info

This entrypoint is get various information about a specified storage
system physical volume.

Usage:
dcl mdc_$pvname_info entry (char(*), bit (36) aligned,

char(*), bit (36) aligned, fixed bin, fixed bin (35));

call mdc_$pvname_info (pvname, pvid,
lvname, lvid, device_type, code);

Arguments:

1) pvname
is the name of the
returned.

(Input)
physical volume

2) pvid (Output)

about which information is to be

is the physical volume id of the specified volume. It can be used as a
parameter to ring zero volume and partition interfaces.

3) lvname (Output)
is the name of the logical volume to which the physical volume belongs.

4) lvid
is the logical
volume belongs.

(Output)
volume id of the logical

5) device_type (Output)

volume to which the physical

is a number indicating what type of device the specified physical volume
is mounted on. The names and characteristics of these devices are listed
in various arrays declared in the include file fs_dev_types.incl.pl1.

6) code (Output)
is a standard system status code. It is non-zero if the information
about the volume cannot be obtained, or if the volume does not exist.

10/24/80 - 10 - Disk Partition Tools

10/24/80 MTB-465

hphcs_$read_partition hphcs_$read_partition

Entry: hphcs_$read_partition

This entrypoint is used to read words of data from a specified disk
partition on some mounted physical storage system disk.

Usage:
dcl hphcs_$read_partition entry (bit (36) aligned, char (*),

fixed bin (35), pointer, fixed bin (18), fixed bin (35));

call hphcs_$read_partition (pvid, partition_name,
offset, data....pointer, word_count, code);

Arguments:

1) pvid (Input)
is the physical volume id of the disk from which to read. The physical
volume id is used instead of the volume name because this is a ring zero
interface, and volume names are not accessable by ring zero; hence, all
ring zero interfaces which ref ernce physical volumes use the pvid. A
pvname may be converted to a pvid by calling the subroutine
mdc_$find_volname.

2) partition_name (Input)
is the name of the disk partition to be read from. It must be four
characters long or shorter.

3) offset
is the offset
first location
number of words

(Input)
in words, from the first word of the partition, of the
to be read. It must be non-negative, and less than the
in the partition.

4) data....ptr (Input)
is a pointer to the user supplied area into which the data is to be read.
It must be aligned on a word boundary.

5) word_count (Input)
is the number of words to be read. The sum of offset and word_count must
be less than or egual to the number of words in the partition. The
word_count must also be less than or equal to sys_inf o$max_seg_size.

Disk Partition Tools - 11 - 10/24/80

MTB-465 10/24/80

hphcs_$read.._partition hphcs_$read.._partition

6) code (Output)
is a non-standard status code. It will be one of the following:

zero
indicates that the data was successfully read.

error_table_$pvi<L.not_found
indicates that the specified physical volume is not presently
mounted.

error_table_$entry_not_found
indicates that the specified partition could not be found.

error_table_$out_of_bounds
indicates that read request attempts to access data outside the
partition; that is, the sum of offset and wor<L.count is too large.

an integer between 1 and 10

10/24/80

indicates that a physical disk error occurred while trying to read
the label. Error messages for physical disk errors are declared in
the include file fsdisk_errors.incl.pl1, in the array
fsdisk_error__message.

- 12 - Disk Partition Tools

10/24/80 MTB-465

hphcs_$write_partition hphcs_$write_partition

Entry: hphcs_$write_partition

a specified disk
No protection is
several processes

when using it.

This entrypoint is used to write words of data into
partition on some mounted physical storage system disk.
provided against simultaneous use of ths entrypoint by
writing to the same partition; thus, care must be exercised

Usage:
dcl hphcs_$write_partition entry (bit (36) aligned, char (*),

fixed bin (35), pointer, fixed bin (18), fixed bin (35));

call hphcs_$write_partition (pvid, partition._name,
offset, data_pointer, worcL.count, code);

Arguments:

including the
that data is

than being

All arguments are the same as for hphcs_$read_partition,
possible values for the status code. The only difference is
written into the partition from the user-supplied area, rather
read.

Disk Partition Tools - 13 - 10/24/80

