
12/01/80 Multics Technical Bulletin MTB-474 

From: W. Olin Sibert 

To: MTB Distribution 

Date: December 1, 1980 

Subject: Multics Initialization Redesigned: A Replacement for BOS 

This MTB proposes a mechanism, called "Bootload Multics", that replaces 
the functions presently provided by BOS. The major benefit of this proposal 
is that the almost all the programs will be in pl1, and therefore have the 
inherent maintainability provided by the standard Multics programming environ
ment. This contrasts with BOS, which is coded entirely in ALM, and is 
difficult and obscure even as ALM goes. 

It will also drastically reduce the effort to support 
in particular. This is partially because BOS is a large 
would have needed modifications, and is eliminated, but 
modifications would have been much more difficult due to 
in which it runs. 

new hardware, ORION 
body of code which 
mostly because the 

the ALM environment 

Finally, it will make it much easier to make a simple, consistent 
operator interface for the functions BOS provides today: it will provide 
mnemonic names, intelligible error messages, and more tolerant syntax. 

This concept owes most of its basic structure to Charlie Hornig of CISL, 
without whom it would never have taken shape. I am also indebted to Bernard 
Greenberg and Benson Margulies, also of CISL, for much useful technical 
commentary and support. 

Please send any comments, questions, etc., to the author: 

By Multics Mail, at either MIT-Multics or System-M: 

Sibert.Multics 

By Honeywell Express Delivery Interoffice Mail: 

W. Olin Sibert 
Cambridge Information Systems Laboratory 
HED MA22 

(or) 575 Technology Square 
Cambridge, Massachusetts 02139 

Multics Project internal working documentation. 
distributed outside the project without consent 
Multics System Development. 

Not to be distributed or 
of the author or director, 

A Replacement for BOS - 1 - 12/01/80 



MTB-474 12/01/80 

Introduction: 

Boatload Multics is a mechanism for implementation of low-level system 
test and support features, such as are currently provided by BOS. Ultimately, 
it is .intended to replace BOS. It will initially provide only the 
debugging/test features from BOS, but other BOS functions which are not in the 
critical path, such as SAVE and RESTOR, will be implemented before the product 
is finished. 

Although this MTB discusses various stages in the development of Boatload 
Multics, and the functions available at each stage, these stages are only 
visible internally. The only version ever shipped to customers, with the 
possible exception of System-M and MIT, will include all the functions 
described herein. This is a requirement for the ORION, of course, since 
Level 68 BOS will not run on the ORION at all. For Level 68 and DPS-8 
systems, the BOS interface will remain in the shipped system, for a time at 
least, though it will never be used except in highly unusual circumstances. 

The major gain from this proposal will be the ability to code debugging 
utilities in pl1, in a Multics pl1 environment, rather than in ALM in the BOS 
environment. This is very desirable from a maintenance standpoint, as well as 
making it much simpler to create or modify such utilities -- an important 
improvement easing system checkout. If for no other reason than that there 
are ten or more programmers competent in pl1 for every one who knows ALM, this 
is a good thing. 

Boatload Multics provides a shorter path to making Multics run on the 
ORION hardware, and also provides several other desirable features: 
reliability improvements in auto-reboot; simplified operator interface for 
bootloading Multics; and Multics boatload from disk, improving reliability and 
performance. These are described in more detail in the Justification section. 

The MTB contains the following sections: 

Introduction (you're reading it) 
List of forthcoming MTBs 
Justification: Benefits of Boatload Multics 
Functional Overview 
Partition Organization 
Scenarios for Using Boatload Multics 
Functional Correspondence between BOS and Boatload Multics 
How Boatload Multics Works 
Communications Between Boatload Multics, Real Multics, and BOS 
Basic Implementation Plan 

12/01/80 - 2 - A Replacement for BOS 



12/01/80 
MTB-474 

JUSTIFICATIONS; THE BENEFITS OF BOOTLOAD MULTICS: 

This project answers a variety of needs, both externally from customers 
and internally from the marketing and development organizations. The major 
benefits of the proposal are listed here, and described briefly. Details of 
the individual points can be found in the appropriate sections later in the 
MTB. 

1) First, and most important: this is BOS for ORION. Rather than 
converting both present-day BOS and Multics to run on ORION, this will 
completely eliminate the work of converting BOS. Much of the work which 
would be required to convert BOS for ORION must also be performed to 
convert Multics. Rather than doing it twice, in different environments, 
conversion will only be done once, and in a hospitable programming 
environment. 

2) An important reliability improvement will be provided. The ability to 
boot from disk is something which many sites have requested. No longer 
will auto-reboot be subject to the vagaries of operators and tape drives. 

3) Bootload time will be somewhat reduced. Additionally, the new environ
ment will make it easier to implement "hot" bootload, which could provide 
an even larger reduction in bootload time. 

4) The necessity for operator intervention at bootload time will be reduced. 
A normal bootload will be initiated will a single command, or by mounting 
a tape and pressing Initialize and Bootload three times. No other 
intervention will be necessary, unless the default configuration informa
tion is incorrect or inappropriate. In that case, the operator will be 
faced with an initial bootload dialogue, much the same as today. Even if 
"automatic" bootload is in use, therefore, one is not limited to the 
default configuration description. 

5) The operator interface for all functions provided by Bootload Multics 
(that is, the BOS functions and anything new) will be much improved. It 
will provide readily understandable error diagnostics and tolerant 
command syntax, rather than the difficult operator interface which BOS 
presents today. 

6) The BOS environment is difficult to program in. Because BOS is written 
entirely in ALM, it is difficult to understand and modify. The 
conventions used in BOS programming are unlike those used in Multics ALM 
programming, and are also not even standardized within BOS. By 
converting all the BOS functions to the pl1 environment, the system will 
become easier to maintain and upgrade. 

7) It will be practical to write debugging utilities in the Bootload Multics 
environment which would have been very difficult in BOS. This is very 
important for the ORION -- in order to meet our schedule, we must have 
the most powerful debugging tools possible. 

A Replacement for BOS - 3 - 12/01/80 



MTB-474 12/01/80 

8) It will be much easier to implement sophisticated automatic crash 
recovery strategies. For instance, if we had hardware capable of 
providing a several second ride-through, we could easily implement 
power-fail auto restart. It will also be easier to implement the complex 
crash recovery strategies discussed in VanVleck's (unpublished) recovery 
t-ITB. 

9) When SAVE and RESTOR are implemented in the native Bootload Multics 
environment, they will be implemented with the ability to do multiple 
SAVEs at once, thereby reducing downtime considerably. They will also be 
able to automatically take advantage of multiple IOM and MPC paths, 
unlike BOS, which knows of only one path per subsystem. Since 
SAVE/RFSTOR is completely I/O bound, it should be possible to run at 
least three simultaneous SAVEs, assuming sufficient channels are avail
able. 

10) It will eliminate the necessity of supporting new peripherals in BOS. 
This reduces the number of programs that must be modified in order to 
support any particular new peripheral, and it also eliminates the need to 
support them in a difficult programming environment. 

11) It combines all peripheral support into one area; the most important 
benefit of this is that I/0 errors will be handled in only one way, 
produce only one type of error message, and need only be documented once. 
This will dramatically improve the quality of I/O error messages c9mpared 
to BOS, since the status information are interpreted, rather than just 
being printed in octal. 

This proposal is not without its costs, of course. The entire operator 
interface, though improved, will be different, requiring that operators be 
retrained. It requires approximately 2000 additional records of disk 
dedicated to the bootloading function (though they need not be on the RPV). 
In order to utilize the no-frills bootload mechanism of (4) above, it will be 
necessary for each site to make a site-specific boot tape. Of course, the 
general release boot tape will work everywhere. There is some work involved 
in installing this mechanism at an existing site, primarily disk rebuilds to 
allocate new partitions. The conversion procedures will be detailed in a 
future HrB. 

While implementation of Boatload Multics will be more expensive than 
implementation of any of the specific features mentioned above, as a whole it 
is cheaper. Many of the benefits would be difficult to derive from 
present-day BOS, because its programming environment is inadequate. In 
particular, it will shorten the critical path to ORION support, by eliminating 
BOS and making the Multics development somewhat longer -- but not by as much 
as was saved by eliminating BOS. Bootload Multics will bring Multics 
initialization and recovery out of the dark ages, and make practical the 
implementation of innovative recovery strategies. 

12/01/80 - 4 - A Replacement for BOS 



12/01/80 
MTB-474 

_.., FUNCTIONAL OVERVIEW OF BOOTLOAD MULTICS: 

The key to this proposal is the creation of a "Bootload Multics" system, 
which will serve (for debugging and crash recovery) the same purposes that BOS 
does today. While it is being developed, it will coexist with BOS, though it 
will be a complete replacement for BOS when it is finished. Until then, BOS 
can continue to be used (on non-ORION systems) for functions which are not yet 
implemented in Bootload Multics. 

A Multics system using Bootload Multics will operate in two different 
modes: Bootload Multics, and Serice Multics. Service Multics is the same as 
Multics is today: it runs user processes, in the user ring. Bootload Multics 
is used for system initialization, crash recovery, debugging, testing, and all 
the other things BOS does today. It runs a single process, entirely in ring 
zero, without a file system. This environment is very robust; it is 
"guaranteed" to work no matter wht state the system is in (as long as enough 
hardware works), and will function in the face of difficulties that would (and 
perhaps DID) stop Service Multics in its tracks. 

The Bootload Multics will provide all the features necessary for normal 
system operation: bootloading, shutting down, and recovery from crashes where 
ESD works. The Bootload Multics will be used for the following purposes: 

1) Bootloading the Service Multics system. This function is equivalent to 
the BOS BOOT command. It will always be performed from the (new) BOOT 
partition. 

2) Creation and loading of the BOOT partition from tape. There is no 
counterpart to this in BOS. 

3) Setting the clock and loading (some) firmware, if the system is being 
brought up after a power shutdown. 

4) Creation and editing the config deck. The standard config deck will be 
kept in the (new) DIR partition (equivalent to the BOS directory); it can 
be edited and saved, or edited and used temporarily. This provides the 
same features in today's BOS config command. Additionally, this will 
include the code which, for ORION systems, processes the configuration 
information in Reserved Memory and generates a config deck from it. 

5) Crash interception; the same function which "return to BOS" provides 
today. It can also perform FDUMPs, ESD, and auto reboot. 

6) Analysis and debugging facilities, such as are provided today by BOS 
DUMP, PATCH, and ABS commands. It will also be used to provide any new 
debugging facilities needed, at a much lower programming cost than today. 
As desired, it would also be straightforward to implement pl1 versions of 
other, more esoteric BOS analysis tools such as MPCD and TSTCHN. 

A Replacement for BOS - 5 - 12/01/80 



MTB-474 
12/01/80 

7) Boatload Multics will provide a mechanism for executing the equivalent of 
SAVE and RESTOR. This will be done initially by transferring to BOS and 
executing BOS commands; ultimately, we will replimplement these functions 
in pl1. 

8) There will be a mechanism similar in intent to BOS RUNCOM, which will be 
used for setting up various automatic mechanisms and macro commands. The 
syntax will be more like exec_com, and flow of control will use the 
call/return model, rather than the goto model used by BOS. 

The reason this mechanism is called the "Boatload Multics" is that it IS, 
actually, a whole Multics supervisor. The system it runs will be all of 
collection 1, and most of collection 2. The entire pl1 runtime environment 
will exist. Standard supervisor prelinking will have been done. Page control 
will be active, but segments will not exist, and the entire file system will 
be unknown to it. It nonetheless provides a powerful and familiar programming 
environment. 

The Boatload Multics requires that only slightly more hardware than is 
necessary to run BOS today. All that is required is a CPU with an operating 
appending unit, 256K of low order contiguous memory, the disk drive(s) with 
the partitions, and the associated I/O hardware. The only significant 
difference between the hardware requirements for Boatload Multics and BOS is 
that 256K of memory rather than 64K is required, and that the CPU must be able 
to access through PTWs; BOS uses only SDWs, and all its segments are unpaged. 
This does NOT mean the ability to take page faults and restart in the middle 
of instructions; all PTWs used at this stage must describe actual memory 
frames. Although the 256K of memory required for Boatload Multics is much 
larger than that required for BOS today, there is no longer any Multics system 
anywhere which would have difficulty fulfilling that requirement. 

The "basic" Boatload Multics environment does not utilize page faults, 
connects (received, CPU-CPU connects; I/O, of course, is done by sending 
connects to the IOM), or timer runouts; this insures that it will function, if 
it possible to function at all, in the environment used for crash recovery and 
bootloading. Interrupts are only used in a very primitive fashion. For the 
most part, the system runs masked, and only unmasks when actually waiting for 
an interrupt. This is the environment used for low-level functions, such as 
fdump, dump, boot, and the config editor; the functions necessary for 
boatload, crashing or shutdown. The toehold which performs the memory 
swapping operates at an even lower level; it loops awaiting status, and does 
not use interrupts at all. 

For more complicated applications, the Boatload Multics environment will 
have the ability to take page faults, and operate in a more Multics-like I/O 
environment. These features might be usable for a reimplementation of 
SAVE/RESTOR or other non-critical BOS utilities, since there is no need for 
them function in the face of hardware difficulties. 

12/01/80 - 6 - A Replacement for BOS 



12/01/80 MTB-474 

The environment provided by Bootload Multics will be essentially the same 
as that existing just before accept_fs_disk runs to accept the RPV. All 
paging (done only in places where the environment supports it, of course) will 
be done from a special disk partition belonging to Bootload Multics. There 
will be some differences; various tables (the SST, tc_data) will have sizes 
appropriate to the single-process, non-filesystem environment. The syserr 
logging mechanism will not exist as such; there will be no running syserr 
daemon hproc, and all syserr messages will be printed on the console. This 
will have to change to support ELAN properly, since all messages from both 
systems will have to be logged in a place accessable to ELAN. 

A future enhancement would be to have Bootload Multics perform syserr 
logging, using the same LOG partition that Service Multics uses; this would 
make it possible to keep track of disk errors for analysis purposes, which is 
impossible today with BOS. In general, however, Bootload Multics should 
operate with as little communication between it and Service Multics as 
possible, so that interdependencies are kept to a minimum. 

For accessing the Service Multics address space, Bootload Multics has an 
appending mechanism, similar in intent to BOS APND, but with different 
implementation. It operates by causing simulated page faults, using PTWs from 
AST entries in the Bootload Multics SST. Segments in the Service Multics 
address space are accessed by grabbing an ASTE of the appropriate size and 
calling a subroutine to copy the ASTE from the Service Multics SST into the 
Boatload Multics SST,· which will perform appropriate translations for all the 
PTWs. 

A new type of PTW address type will be defined, specifying that "This 
page was in core, but is now in the saved memory image; it was swapped out 
when we switched from Service to Bootload Multics, so you must do I/O to get 
it". When an ASTE is copied, PTWs for all pages that were in core in the low 
256K will be translated to specify this address type; all other PTWs will be 
copied as is, since the rest of memory is still intact, and the disk PTWs 
describe the correct disk pages. · The CMEs for in-core pages will also be 
copied and merged appropriately. 

Since this mechanism 
actual fault processing, 
page faults on segments 
databases are set up so 
low-level functions, and 
may be used as the basis 
the Service Multics. 

A Replacement for BOS 

will use page_fault (by a side door that omits the 
but does everything else) it can even be used to take 
in the Service Multics address space, since all the 
that will work. While this will not be used by the 
probably not by the initial implementation at all, it 
of sophisticated crash recovery or analysis tools for 

- 7 - 12/01/80 



MTB-474 12/01/ 80 

The operator interface to Bootload Multics will be as much like Multics 
command level as possible. This primarily means commands with Multics-like 
arguments and control arguments and the standard quoting conventions, and may 
also include active functions and iteration sets if that proves desirable. 
The operator interface will go through the operator console, or, for ORION, 
the SSF console emulator. Bootload Multics will not use the SSF Session 
Control interface on ORION systems unless it proves necessary for communica
tion about configuration information; this will not be known until the design 
of reconfiguration for ORION is complete. It should also be possible to use 
the LCC remote access facility to access Bootload Multics remotely. I/O will 
be completely synchronous. The REQUEST button will interrupt all normally 
functioning operations; if it fails, an Execute fault can be used to cause 
Bootload Multics to reinitialize itself and reboot. 

Bootload Multics commands will take arguments and control arguments like 
standard Multics commands. Some commands will have request loops, which will 
accept input (unprompted, except for the LCC) much the same way BOS does today 
for things like PATCH requests and volume extents in SAVE, but with superior 
error diagnostics. An important feature of the Boatload Multics programming 
environment is that it will be much simpler to provide informative error 
diagnostics -- no more of this "?" nonsense that BOS gives you today. Code to 
generate informative error messages is easier to write, and the messages can 
be documented with the standard Error Message Documentation system. Addition
ally, all error messges will be documented, in the source of the programs from 
which they emanate, using the standard Supervisor Error Message Documentation 
system. 

The Boatload Multics will communicate with the :rest of the system, and 
keep its "permanent state", in a toehold of its very own, located at some 
known location in absolute memory near where the BOS toehold is today. The 
Bootload Multics toehold and the BOS toehold will coexist; all three systems 
will know about both of them. For details on the communication between 
systems, see the later section on this subject. 

Bootload Multics is designed so that it "cannot fail". If it encounters 
a serious problem, it will perform whatever recovery it can. An unexpected 
fault will be caught by the condition handler around the command listener, 
which will cause the current command to be aborted. Individual procedures may 
establish condition handlers of their own also, to catch miscellaneous 
"expectable" errors. 

An execute fault, a serious I/O related error, or something like a 
trouble fault, will cause it to completely reinitialize itself and :reboot by 
executing the relevant code in the Multics toehold. The same will be done in 
response to an Execute Switches; this is similar to what BOS does today. The 
major difference is that the Bootload Multics will completely reinitialize 
itself under such circumstances, which will take a little longer than 
reinitializing BOS. This is being done because it is the simplest approach, 
and it will work at least as reliably than other approaches. 

12/01 /80 - 8 - A Replacement for BOS 



12/01 /80 
MTB-474 

List of Forthcoming MTBs: 

The following is a tentative list of some MTBs which I expect to be 
written for this project. Most of them are simply internal documentation of 
the design, though some are intended as user/operator interface documentation. 
This list is very tentative; some of the MTBs will probably never be written, 
and others not listed here probably will. Some of them are simply more 
complete documentation for things described in this MTB, but most of them will 
concern topics which are entirely omitted from this document, because their 
design is only very nebulously conceived now, if at all. Some of these 
descriptions include a brief overview of technical details to be expounded on 
at length in the MTB; this detail is provided here for early review. 

Management of the Config Deck: 

A document describing the way in which the config deck is created, 
modified, and maintained so that it can be used by both systems. It will 
also describe the subroutine interfaces for performing these operations. 

The Bootload Multics File System: 

A description of the internal interfaces used to manipulate files in the 
DIR partition; also describes the user commands used to manipulate those 
files from Service Multics. 

~ The Boatload Multics Programming Environment: 

Documentation of how to write programs to run in Bootload Multics; this 
is largely concerned with writing commands, and the subroutines, conven
tions, temporary space management mechanisms, etc. used to do so. The 
command environment is very undefined as yet, but I expect it will 
include a reasonably large stack, cu_, condition handling, some sort of 
area for temporary storage, and a variety of subroutines for interfacing 
with specific Boatload Multics facilities. Commands which require large 
amounts of temporary storage will be best suited by reserving segments 
(init-segs) for themselves in the system tape header. 

The Bootload Multics Operator Interface: 

This will probably be several documents, which describe all the operator 
commands in Bootload Multics. They will include detailed descriptionr of 
syntax, function, and arguments for each, comparisons (where relevent) 
with comprable BOS facilities, and the reasoning behind various design 
decisions about the interface. The design of the operator interface is 
expected to take a long time, much exposure, and several design reviews; 
there will be many revisions of documentation as well. 

A Replacement for BOS - 9 - 12/01/80 



MTB-474 12/01/80 

The Bootload Multics Command Environment and Runcorn Mechanism: 

A discussion of the command environment (as opposed to the command 
programming environment) and how runcoms (or whatever we choose to call 
them) will be used. The command environment will be very similar to 
Multics command level, although many facilities will be missing. Topics 
will include error handling, input and output stream management, and 
argument conventions. The section on runcoms will describe flow of 
control constructs, call/return for runcoms, recursion, and similar 
exec_com issues. 

The Dialogue for Cold Bootload: 

A description of the dialogue at cold boot time; what it means, and how 
to use it properly. This will also describe the mechanism 
(bootload,_info) used to generate a tape with present answers for the cold 
boot dialogue, so that operator intervention can be minized. This 
document, in combination with the operator interface and command environ
ment documentation, will serve as the base for the Multics Operators 
Handbook sections describing Bootload Multics. 

Installation of or Conversion to Boatload Multics: 

A description of the procedures used to install a system based on 
Bootload Multics: both for new sites, and for existing sites whose 
systems must be converted. Discusses requirements for disk formatting 
and rebuild, making system tapes, setting up boot-from-disk, etc. 

Automatic Operation with Bootload Multics: 

A description of the facilities for automatic crash recovery and reboot, 
as well as the mechanisms for booting new supervisors without operator 
intervention. Primarily a description of how the runcoms for automatic 
operation are set up. 

Multics Initialization PLM: 

Basically, a complete rewrite of the Multics System Initialization PLM, 
which will be updated to describe all the facilities used by Bootload 
Multics, as well as all the other changes which have occurred since it 
was originally written. This is a low priority item, and will probably 
not appear until long after the other documents. 

12/01/80 - 10 - A Replacement for BOS 



12/01/80 MTB-474 

PARTITION ORGANIZATION: 

Because of the additional functionality provided by this mechanism, 
several new disk partitions will be required. They may be placed on whatever 
disks are desired. The partitions are required for operation in the sense 
that they are "files outside the file system". Since the Boatload Multics 
cannot assume anything about the integrity of the Service Multics file system, 
and will have none of its own, it must use partitions for any permanent 
databases it has. 

The names shown here for these partitions may be changed, if desired. 
They are used as defaults for normal system operation. It should only be 
necessary to change them during the course of intensive Multics hardcore 
development. The partitions will be found, as they are today, from cards in 
the config deck. When doing a cold boot (that is, from tape), the locations 
of the partitions necessary for bootload will be specified by the operator, 
much as they are today by the BOS WARM and COLD commands. The new partitions 
occupy approximately 2000 disk records (700 + 700 + 257 + 257 + 30). 

The following partitions are used today by Multics: 

BOS This partition is used to hold all the BOS programs, the BOS file 
directory, and the low core image of Multics, saved when BOS is 
entered. Its location is specified by the WARM or COLD command. It 
is generally 200. records, and is used only by BOS. 

LOG This partition is used by the syserr logging mechanism as a buffer for 
messages. Its location is specified by a PART card. It is generally 
256. records, and is used only by Multics. 

DUMP This partition is used by the BOS FDUMP command to save an image of 
the Multics supervisor after a crash. It is accessed by Multics 
later, when this image is copied into the hierarchy. It is generally 
2000. or more records, and is used jointly by BOS and Multics. 

HC This partition (of which there may be as many as there are RLV disk 
drives) is used by Multics to hold the Multics hardcore supervisor. 
It is from here, rather than from the storage system disk area, that 
the pages of pageable hardcore programs and databases are drawn. 
There may be several, on different drives, but each must be large 
enough to hold the entire supervisor. Their locations are specified 
by the ROOT card. An HC partition is generally 1024. records, and is 
used only by Multics. 

A Replacement for BOS - 11 - 12/01/80 



MTB-474 12/01/80 

The Boatload Multics facility will require additional partitions. The 
names of these partitions may be changed as desired, in order to provide 
additional flexibility; the names listed are the defaults. This is a complete 
list of partitions required to operate BOS, Boatload Multics, and Service 
Multics. The sizes listed here for the new partitions are only approximate, 
as they are dependent on the size of the Bootload Multics supervisor, which 
has not yet been determined. All partitions, except the CONF partition, are 
located by means of PART cards in the config deck. The PART cards are may 
also be used to specify that a different name for the actual disk partition 
used for any particular function. 

CONF The CONF partition (which, alone among the Bootload Multics 
partitions, has a specific name by which it must be known) is used to 
contain the conf ig deck for all instances of the system. This 
information is carried from bootload to boatload, and is considered 
"permanent"; it can be changed, or replaced with a completely new 
version, but it does not change without explicit action. During 
Service Multics operation, the segment config_deck is dynamically 
paged from this partition. During initialization of either form of 
the system, its contents are read and placed in a known region in low 
memory. As today, the config deck is updated by the dynamic 
reconfiguration software. The CONF partition is 4. records long. 

LOG This partition is used by the syserr logging mechanism as a buffer for 
messages. Its location is specified by a PART card. It is generally 
256. records, and is used only by Service Multics. Bootload Multics 
does not use syserr logging in this fashion. 

DUMP· This partition is used by the Boatload Multics fdump command to hold a 
saved image of the Service Multics supervisor after a crash. It is 
accessed later by Service Multics, when this image is copied into the 
hierarchy. It is generally 2000. or more records, and is used jointly 
by Boatload Multics and Service Multics. Multiple DUMP partitions may 
be used for multiple dump images, by giving them different names. A 
DUMP partition is not strictly necessary; if one is not present, 
however, crash dumps cannot be handled automatically. If the DUMP 
partition is absent, or unusable for some reason, a dump image can be 
written to tape, so this is not an unworkable situation. 

HC This partition (of which there may be as many as there are RLV disk 
drives) is used by Service Multics, for the same purposes as today. 
The size(s) and location(s) of the HC partitions are the same as they 
are today. An HC partition is used only by Service Multics. 

12/01 /80 - 12 - A Replacement for BOS 



12/01/80 MTB-474 

MCI This new partition will contain the lower 256K of the saved Service 
Multics Core Image. This core image will be saved whenever Bootload 
Multics is entered, as it will then run itself in the lower 256K. The 
saved image is swapped back in when (if) Service Multics is restarted. 

The MCI partition must be at least 257. records. If it is larger 
(large enough to save all of main memory), it can also be used by the 
Bootload Multics to save main memory, as the equivalent of the BOS 
CORE SAVE command. As much MCI partition as is available will be 
used; therefore, if it is large enough, all of main memory will be 
saved and restored, so that the system may be powered off and its 
state later completely restored. If the MCI partition is not large 
enough for this, a core save to tape may be used, but this sacrifices 
the automatic operation provided by the partition. 

BOOT This new partition is used to hold the Multics System Tape image from 
which Multics (both Service AND Bootload) is bootloaded. It may be 
created either online, by a privileged program which writes directly 
into it, or by reading a Multics System Tape with Bootload Multics. 
It is probably about 700. records. It is read by both Bootload 
Multics and Service Multics, and can also be written (to create a new 
bootload image) by both systems. 

BHC This new partition is used to hold the hardcore supervisor and 
databases for the Bootload Multics. It is roughly equivalent to the 
HC partition used by the Service Multics, except that exactly one such 
partition is required for Bootload Multics, rather than the several 
that regular Multics can use. It is probably about 1000. records. It 
is used only by Bootload Multics. 

BCI This new partition is used to hold the Bootload Multics core image 
when Service Multics is entered. Its function is very similar to that 
of the MCI partition, except that it need only ever be 257. records, 
since Bootload Multics will never use more than that. 

DIR This new partition takes the place of the BOS directory as a 
repository for the config deck sources and various ASCII files, most 
of which are will be the equivalent of runcoms. It is probably about 
30. records. It is used primarily by Bootload Multics, although there 
is an interface for getting files from it or putting files into it 
from Service Multics. 

A Replacement for BOS - 13 - 12/01/80 



MTB-474 12/01/80 

SCENARIOS FOR BOOTLOAD: 

This section lists a number of scenarios for use of Boatload Multics. 
Because the operational details of Boatload Multics are not fully defined yet, 
the scenarios can not be described in detail. They are intended to give an 
idea of what is possible. 

The basic power-on boatload scenario involves the automatic boatload 
described earlier. A Multics tape is mounted on drive 1, and the Initialize 
and Boatload buttons are pressed three times in succession. Boatload Multics 
reads the first part of itself in, and, assuming the necessary information is 
in bootload._info, reads in the rest of the system from the disk partition. It 
loads disk, tape, and URC firmware for all controllers described in the config 
deck. At this point, it pauses, at Bootload Multics command level. The 
bootload dialogue, and the bootload._info mechanism used to supply answers for 
it, will be described in a subsequent ~ITB. 

Somewhere in this path, the time may have to be set. 
will be done is not yet specified. 

When and how this 

Here, the BOOT command may be issued to start Service Multics, or other 
operations may be performed, such as editing of the config deck. 

When Service Multics crashes or shuts down, Bootload Multics command 
level receives control again. In the case of a crash, it can try to do an ESD 
or other crash recovery actions. 

If the configuration has changed in such a way that the bootload._info for 
Bootload Multics is not correct, a special pattern may be placed in the 
processor switches to force it to go through the boatload dialogue. Thus, 
would never be necessary to have another tape which has a bootload_inf o that 
does not specify the dialogue information, since the dialogue can always be 
forced. 

If the system has never been booted before, or if the disks have all been 
wiped out, the dialogue should be forced, and the appropriate response given 
to indicate a cold bootload. This will initialize the label of the bootload 
disk drive, optionally formatting it first, and initialize the various 
partitions. The dialogue for cold bootload is considerably more complex than 
for warm boatload, and is not yet completely defined. The formatting of disk 
packs is an area which is presently in flux; we are supposed to be using MTAR 
for it, but this seems inappropriate in that MTAR can only be used under GCOS. 
In the meantime, Boatload Multics will avoid addressing the problem. 

If the configuration seems incorrect, Boatload Multics will attempt to 
describe why it holds this opinion, and after doing so will either crash or 
enter Boatload Multics command level. If it crashes, it must be rebooted with 
the switches set to force the dialogue. If it pases at Boatload Multics 
command level, the config editor can be used to change the config deck. 

12/01/80 - 14 - A Replacement for BOS 



12/01 /80 MTB-474 

A distinction is made between "early" command level and "real" command 
level. At early command level, only those functions are available that are 
necessary to get the system running are available. At real command level, all 
Boatload Multics commands are available. The exact set of commands, as well 
as the precise point in initialization at which each of the two command levels 
occurs, has not yet been defined. 

SCENARIO: Booting Multics from tape for the first time, on completely new 
hardware and virgin disk packs, or on working hardware and dead disk 
packs. 

1) The switches are set to the "force dialogue" pattern. 

2) The tape is mounted on drive 1, and the Initialize/Boatload buttons 
are pressed three times. 

3) Responses are given to the dialogue to indicate the drive to be used 
as boatload disk drive, and whether or not it must be formatted. 
The time is also set as part of this dialogue. 

4) The disk pack is initialized, perhaps having been formatted first. 
The DIR partition is initialized. 

5) The system waits at Boatload Multics early command level, and a 
config deck is typed in. It is saved, and the system is instructed 
to reinitialize with that config deck. 

6) At this point, the system has come up to Boatload Multics real 
command level, and operations may proceed as in the next scenario. 
If necessary, disks can be RESTORed; note that this can even be done 
to the drive in use as the Boatload Multics disk, as long as the 
three partitions (DIR, BHC, and BOOT) which Bootload Multics expects 
to remain intact are not reloaded. 

SCENARIO: Booting Multics from tape with intact disks after powering up the 
system. 

1) The tape is mounted on drive 1, and the Initialize/Boatload buttons 
are pressed three times. 

2) The system boots according to the parameters for automatic boot. 
The time may have to be set at this stage. It finishes booting, and 
waits at Boatload Multics real command level. 

3) At this point, the config can be altered, various maintenance 
operations can be performed, or the Service Multics system can be 
booted. If automatic bootload is being used, this is the only 
interaction which will occur before Answering Service initialization 
in Service Multics. 

A Replacement for BOS - 15 - 12/01/80 



MTB-474 12/01/80 

SCENARIO: Booting Multics from disk, after a crash or shutdown. 

1) After a crash or shutdown or Service Multics, the system returns to 
Bootload Multics real command level and waits for a command. Any 
Bootload Multics command may be issued; for instance, a SAVE could 
be done before booting Service Multics again. Crash recovery could 
also be performed at this time - any kind from ESD to disk label 
patching. 

SCENARIO: Booting Bootload Multics for purposes of editing the config deck, 
and then booting Service Multics. 

1) This is essentially equivalent to a simple boot from tape or disk, 
except that after the config is altered, Bootload Multics must be 
instructed to reinitialize itself. It does so by rebooting, and 
pausing once again at Bootload Multics real command level. 

SCENARIO: Entering Boatload Multics for debugging purposes, and restarting 
Service Multics. 

1) The Initializer "rtb" command is issued to return to Boatload 
Multics. Boatload Multics waits at real command level, and any 
commands may be issued. Once this is finished, the GO command is 
issued, and it returns to Service Multice. 

SCENARIO: Making a new Multics Supervisor, shutting down, and rebooting, 
without ever using tape. 

1) Assume Service Multics is up and running. A Multics System Tape 
file is generated using generate_mst -file, and the 
write_mst_partition command is used to put it in a partition. 

2) The shutdown.ea file in the DIR partition is edited, using the 
Service interface to the Bootload Multics file system, to indicate 
that the system should immediately reboot from the partition which 
was just written, and that it should take a dump and reboot the old 
system from the standard boot partition in the event of a crash in 
the new system. 

3) Service Multics is shut down. Upon return to Boatload Multics, 
Boatload Multics executes the shutdown.ec file, and reboots from the 
specified partition. 

4) If the new system runs, all is well. The user logs in again, and 
uses it. Otherwise it crashes, Boatload Multics reboots the OLD 
system, and our developer logs in and debugs the dump. All this is 
done without tape, and without human presence at the machine. If 
the new system loops, there is no planned recourse. A pity. 

12/01 /80 - 16 - A Replacement for BOS 



12/01 /80 MTB-474 

FUNCTIONAL CORRESPONDENCE BETWEEN BOS AND BOOTLOAD MULTICS: 

The following table summarizes all the present BOS commands, and gives 
their equivalents in the Boatload Multics system. 

Any Boatload Multics function which is not in the critical path for 
development is identified by the comment "(NC)"; these are any functions which 
are basically useless or can continue to be provided easily by present-day BOS 
while development is progressing. All the functions must be available by the 
time a system is first shipped, of course. 

BOS 
Command 

ABS 

BLAST 

BOOT 

BOST AP 

Function in BOS 

Displays 
address, 
tents. 
sole or 

main memory by absolute 
and analyzes cache con
Outputs to either con-

printer. 

Sends a message to all terminals 
dialed into an FNP. Can be used 
for announcing crashes and the 
like. Today, it hardly ever 
works. 

Boatloads Multics from tape. 
Reads part of the Multics System 
Tape, and transfers control to 
the program it has read in, 
which continues the process of 
boatload. 

Writes a 
from the 
directory. 

new BOS System Tape, 
contents of the BOS 

A Replacement for BOS - 17 -

Boatload Multics Equivalent 

This function will be subsumed 
into the general interactive 
dump/patch facility. (NC) 

Will be re-coded in pl1, and 
will use the Multics FNP 
software, rather than an entire
ly separate mechanism as BOS 
does today. This should improve 
reliability considerably; the 
code will also be much simpler. 
Because the MCM databases 
belonging to Service Multics are 
available (using the segment 
accessing mechanism described 
earlier), it will be possible to 
make BLAST work for multiplexed 
channels, as well as for ordi
nary FNP channels. (NC) 

There will be commands to 
boatload Multics (Service or 
Boatload) from disk partitions 
or tape. Usually, though, this 
will be done without explicit 
intervention. The operator 
interface will be completely 
different. 

Obsoleted; no equivalent. To 
save the DIR partition, which is 
essentially the equivalent of 
what BOSTAP does for BOS, SAVE 
can be used. 

12/01/ 80 



MTB-474 

CONFIG 

CONT IN 

CORE 

DELETE 

DIE 

Provides a simple interface for 
manipulating the current conf ig 
deck. Uses files in the BOS 
directory. The editor is primi
tive and baroque. 

Restores the Multics machine and 
memory image, and restarts 
Multics. 

Saves and restores the Multics 
core image from tape. This ex
ists primarily because the BOS 
partition is not large enough to 
contain a saved image of all the 
core that BOS uses while 
executing some commands. It 
cannot save core to disk. 

Deletes a specified file or pro
gram from the BOS directory. 

Destroys the BOS partition and 
main memory image. 

DMP355 Dumps FNP memory to tape or 
printer. 

DUMP 

EDIT 

ESD 

FD355 

FDUMP 

12/01 /80 

Writes a dump 
tape or online 
segments dumped 
in various ways. 

of Multics to a 
printer. The 

can be selected 

Edits a BCD file from the BOS 
directory. 

Restarts Multics for the purpose 
of performing an emergency 
shutdown. 

Creates an FDUMP of an FNP in 
the DUMP partition. 

Creates an FDUMP of Multics in 
the DUMP partition. 

- 18 -

12/01/80 

A direct equivalent will exist, 
with an improved interface. 

A direct equivalent will exist. 

This is largely 
Boatload Multics. 

automatic in 
All core that 

will be used is saved automati
cally by the toehold. A command 
will be provided to save core to 
a specified disk partition or to 
tape. (NC) 

A direct equivalent will exist 
for files in the DIR partition. 

Not necessary; no equivalent. 

An equivalent could be codedif 
desirable. (NC) 

A general purpose dump/patch fa
cility will exist for performing 
both interactive dump/patch op
erations and dumps to tape or 
the printer. See below for de
tails. 

An edm-like editor (derived from 
user ring edm) will be provided. 

A direct equivalent will exist. 

An direct equivalent can be 
coded easily using the Multics 
FNP software. This will be done 
as necessary. (NC) 

A direct equivalent will exist. 

A Replacement for BOS 



12/01/80 

FLAG Sets toehold flags in the BOS 
flagbox. 

FMT Formats disk packs for use by 
Multics. Today, it cannot deal 
with all the different types of 
disks Multics supports. 

FWLOAD Loads MPC firmware. 

GO 

IF 

LABEL 

LIST 

LOADDM 

MPCD 

Restarts Multics. 
same as CONT IN. 

Exactly the 

Performs testing and conditional 
execution of BOS commands for 
use in RUNCOMS. 

Prints the label from a tape. 

Lists the BOS directory. 

Loads additional or replacement 
commands from tape into the BOS 
directory. 

Dumps MPC memory or the MPC 
trace table (to the printer, I 
assume). This is a little used 
feature, and is only interesting 
to Field Engineers, who have 
better ways of doing it. 

A Replacement for BOS - 19 -

MTB-474 

Some equivalent will be 
provided; though the interface 
will be completely different be
cause of the different toehold 
management. 

The format_disk_pack command can 
be used for all cases except 
cold boot, for which an adequate 
formatting program will exist. 
It will be necessary to modify 
format_disk_pack to support disk 
types not presently supported. 
(NC) 

A direct equivalent will exist, 
though most firmware will be 
loaded automatically in the 
boatload process according to 
the config deck. 

See CONT IN, above. 

Some equivalent will exist in 
the RUNCOM replacement. 

Not used -- no equivalent. 

A direct equivalent will exist 
for files in the DIR partition. 

Not used no equivalent. 
Files can be placed in the DIR 
partition from Service Multics, 
or the entire partition may be 
RESTORed. 

No equivalent is planned. The 
function is available from Ser
vice Multics. MPCD doesn't work 
in BOS today, anyway. 

12/01/80 



MTB-474 

PATCH 

PRINT 

RENAME 

RF.sTOR 

An interactive dump/patch utili
ty for disk, bulk store, abso
lute memory, or Multics virtual 
address space. It uses the op
erators console, though it can 
also use the card punch. 

Prints 
ABS or 
printer. 

a tape produced 
DUMP command 

by the 
on the 

Renames a file in the BOS direc
tory. 

Restores the contents of second
ary storage devices from SAVE 
tapes (or disks) produced by the 
SAVE command. 

RUNCOM Executes a file of BOS commands 
(a "RUNCOM"). 

SAVE 

SSTN 

TAPED 

TEST 

TIME 

12/01/80 

Saves the contents of secondary 
storage devices on SAVE tapes 
(or disks) for use by the RESTOR 
command. 

Fills the SST Name Table, a 
database used by FDUMP and the 
dump/patch utilities. 

Produces 
printer) 
tape. 

an octal dump (on the 
of the contents of a 

Tests disks and Bulk Store; can 
read or write and check 
patterns. It is primarily used 
today for zeroing portions of 
disk, such as the LOG partition. 

Sets and reads the calendar 
clock in the SCU. 

- 20 -

12/01/80 

A general purpose dump/patch fa
cility will exist for performing 
both interactive dump/patch op
erations and dumps to tape or 
the printer. See below for de
tails. 

Not used -- no equivalent. 

An equivalent will exist for 
files in the DIR partition. (NC) 

An equivalent will exist in the 
final implementation. (NC) 

A replacement for the RUNCOM 
package will be exist, to pro
vide much the same exec_com-like 
functionality. The actual 
interface details have not yet 
been worked out; it will proba
bly be considerably different 
from BOS RUNCOM in flow of con
trol. 

An equivalent will exist in the 
final implementation. (NC) 

A direct equivalent will exist. 

Not used -- no equivalent. 

Some equivalent will eventually 
be provided. (NC) 

A direct equivalent will exist. 
It is needed only for non-ORION 
systems. 

A Replacement for BOS 



12/01/80 

TSTCHN 

WRITE 

testing Allows 
of IOM channels 
level. Today, 
thing is usually 
programs. 

and exploration 
from BOS command 

this sort of 
done with T&D 

Writes a message on the BOS 
console. 

A Replacement for BOS - 21 -

MTB-474 

Not used for testing channels; 
many sites use it to rewind 
tapes after crashes, however. A 
command to rewind tapes will be 
provided. 

A direct equivalent will exist. 
(NC) 

12/01/ 80 



MTB-474 12/01/80 

HOW BOOTLOAD MULTICS WORKS: 

The config deck is a database that will be shared by Bootload Multics and 
Service Multics. It will describe the hardware configuration of the system. 
It will contain some information which is specific to each of Boatload and 
Service Multics, but most of the information will be common to both. It is 
initially read in from the CONF partition on the boatload disk drive at cold 
boot time, and is continuously updated as Boatload or Service Multics 
operates. The major difference between its function today and the new 
features is that it will be "permanent"; that is, it can be considered as 
being written once, when the system is installed, and merely modified 
thereafter. The config deck will specify the location (disk drive, and, 
optionally, alternate name) of all the partitions, along with all the same 
information it contains today. 

At cold boot (boot from tape) time, since no config deck is available, 
the operator must go through a cold boot dialogue and specify much the same 
things as are specified now at BOS boot time: the tape controller type; the 
!OM, channel, disk type, and drive number of disk drive containing the config 
deck (CONF partition); and the firmware for the disk controller. This 
dialogue is intended to acquire the bare minimum of information for getting 
Bootload Multics started; it does not require additional firmware loading as 
BOS does today, or other extraneous dialogue, to start the booting process. 
Boatload Multics does require more partitions to really get started, but since 
these are all obtained from the config deck, there is no additional 
complication. The cold boot dialogue can be suppressed by proper use of the 
bootload_info mechanism to supply preset answers to it; this is described in a 
forthcoming MTB. 

The dialogue is dependent on the information contained in the module 
bootload_info, which is part of the first program read in from tape. This is 
a eds program which, at compile time, asks the user the same questions which 
would be asked at boatload time; if satisfactory answers are provided, they 
will be used as the bootload parameters rather than querying the operator at 
boatload time. It is not necessary that any of this information be specified; 
if it is not, the dialogue will be entered to ascertain any information not 
supplied. 

If boatload is being done from tape, then Boatload Multics will pause at 
an early stage to allow the clock to be set. Prior to the setting of the 
clock, no clock readings will be trusted for absolute time, although the clock 
is assumed to be running. The config deck may also be altered at this time, 
or a different config deck loaded. Also, if this is a cold boot, firmware 
will be automatically loaded into all the MPCs listed in the config deck (once 
it exists). This firmware is expected to be on the tape, in collection 1. As 
part of the MPC loading process, or instead of it if a warm bootload is 
happening, the firmware version and revision running in each configured MPC 
will be logged in the syserr log. 

12/01 /80 - 22 - A Replacement for BOS 



12/01/80 MTB-474 

Normally, both Boatload and Service Multics will be bootloaded from the 
Multics System Tape image in the BOOT partition after the initial dialogue 
which is read in from the tape. If the BOOT partition must be reinitialized 
from the tape, a special control argument can be given to the initial dialogue 
which will instead cause Bootload Multics to be bootloaded from the tape; it 
will then rewind the tape and write its contents into the BOOT partition 
before proceeding to boot Service Multics. 

The precise flow of initialization is not yet determined. It presently 
looks like it will be desirable to split what is presently in collection 1 
into two collections, one of which is read from tape and the other of which is 
read from the BOOT partition. It is also not clear how it will be possible to 
alter the config deck at bootload time if automatic (no dialogue) boatload is 
being performed and the changes must be made in order for bootload to 
continue. These difficulties present no fundamental problems, and will be 
ironed out as implementation progresses. 

A Replacement for BOS - 23 - 12/01/80 



MTB-474 12/01/80 

COMMUNICATIONS BETWEEN BOOTLOAD MULTICS, REAL MULTICS, AND BOS: 

During the implementation effort, it will be necessary for Boatload 
Multics, Service Multics, and BOS to coexist. This will be accomplished by a 
dual-toehold mechanism, in which both the BOS and Multics toeholds exist. The 
BOS toehold remains where it is today, at absolute location 10000. The 
Multics toehold is located at location 14000, for 4000 words (2 pages). The 
first program read in during a Multics (either kind) bootload is loaded at 
location 20000 (bootstrap1 is loaded at 14000 today, by the BOS BOOT command) 
by the self-relocating program started by the IOM Initialize/Boatload se
quence. No modifications to BOS are required to use it to debug Boatload 
Multics. 

Until the Boatload Multics/Service Multics switching mechanism is opera
tional, Boatload Multics will be debugged as follows: Service Multics (of 
today -- none of the new boatload mechanisms are operational in this system) 
is brought up, using the BOS BOOT command. A Boatload Multics tape is 
generated, and Service Multics is returned to BOS with the Initializer bos 
command. A CORE SAVE is done from BOS, and the Boatload Multics tape is 
booted with the Initialize and Boatload buttons. It does whatever it's gonna 
do, and crashes or returns to BOS. BOS is the used to take an FDUMP, a CORE 
RESTOR GO is done, and Service Multics is restarted. 

This is a very efficient way to test new systems. The total overhead for 
generating a tape, taking the system down, saving, restoring and restarting 
amounts to about five minutes. It is quite practical to test a new tape every 
20 minutes this way, assuming that the problem can be analyzed and fixed 
quickly, as many problems can. Since there is a Service Multics "running" 
(but suspended), it is necessary for Boatload Multics to use different volumes 
for its RPV, etc., but this is easily accomplished. For the same reason, 
since BOS "knows" that Multics has returned to it, it is necessary for 
Boatload Multics to patch the location in the BOS toehold that indicates it is 
to save the core image when returned to; this permits FDUMP to work. 

In order for Boatload Multics to be able to get a Service Multics 
started, and switch back and forth between itself and Service, it must have a 
toehold of its own, used for the same sorts of things that the BOS toehold is: 
swapping memory, saving the core image and machine state, etc. It will still 
perform minimal communication with BOS to set the flagbox up so that the 
current Multics (Service or Boatload) can be dumped when BOS is returned to, 
but its dependence on BOS will steadily lessen. One of the first things done 
will be to change sys_trouble to return to (or restart) Boatload Multics, 
rather than BOS; then the only way to get into BOS will be by an Execute 
Switches. 

12/01/80 - 24 - A Replacement for BOS 



12/01I80 MTB-474 

Once Boatload Multics is fully operational, the BOS toehold will be just 
a vestigial remnant of earlier days; something like vermiform appendix. 
Still, for the Level 68, there is no real reason to get rid of it entirely -
it is just a page, and it may be useful for debugging now and then if BOS is 
booted beforehand. Customers will presumably never use it, since they will 
not have the necessary BOS partition, and will not have booted BOS on the 
machine to set it up anyway. For ORION systems, it will be totally useless. 
There will be a mechanism for discarding the toehold, and reclaiming the page 
it occupies, when it cannot be used. 

will be "entered 11 from Service Multics the same way 
by an appropriate Execute Switches (which has to 
*sigh*), by an Execute Fault, by sys_trouble when 
or by a deliberate call to Boatload Multics. If 
to Boatload Multics, it will reinitialize itself, 

The Multics toehold 
the BOS toehold is today: 
change again, to XED 14000, 
syserr crashes the system, 
one of those things happens 
and restart. A go command from Boatload Multics will start Service Multics 
again. 

A Replacement for BOS - 25 - 12/01/80 



MTB-474 12/01/80 

IMPLEMENTATION PLAN FOR BOOTLOAD MULTICS: 

The following table is a brief summary of the implementation plan for 
Boatload Multics. For more detail, see the associated Multics Task Report on 
this subject. The general picture should be correct, although individual 
items may be added or removed as the implementation progresses. The earlier 
time estimates are relatively firm, but they become less so for the later 
steps. 

This plan does not include any changes which are specific to the ORION, 
al though many ORION changes will be implemented as part of the work. Also 
never mentioned explicitly in this plan is any time for study of existing 
code, or of methods for implementation of the new features. 

This plan also does not include any time specifically allotted for 
writing other MTBs or user/operator documentation, or human engineering any of 
the user/operator interfaces. These topics are not covered for two reasons: 
one is that most of the internal design MTBs are simply treated as part of the 
implementation effort for any particular phase, and the other reason is that 
the finalizing of the user/operator interfaces is expected to take place over 
a long period, and will require little concentrated effort. Those interfaces 
have not even been designed, and they will require considerable exposure to 
insure that they are acceptable; since the exposure time will occur entirely 
in parallel with other projects, it is not relevant to budget specific times 
for it. 

Implementation plan: 

1) Prepare tools for accessing disk partitions and writing Multics System 
Tape images into partitions. 2.5 weeks. 

2) Prepare a Multics system which can be booted without the aid of BOS. It 
will be the prototype Boatload Multics, although it will not be able to 
start Service Multics. 2.5 weeks. 

3) Prepare a Bootload Multics which can operate in a different hardcore 
partition, set up the Multics Toehold, and swap its core image in and 
out. Create a primitive command level for Boatload Multics, with some 
commands to manipulate the toehold. Make a mechanism to bootload from a 
disk partition, and interface this to the primitive command interpreter. 
This is the first real appearance of Bootload Multics. 5 weeks. 

4) Create commands for the Bootload Multics environment: DUMP, FDUMP, 
PATCH, etc. Create the appending simulation mechanism by appropriately 
modifying page control. Modify Service Multics interfaces to FDUMPs 
(copy_dump, ifd) to use the new information. Create the Bootload Multics 
file system (DIR partition) and associated commands. 6 weeks. 

5) Create a more powerful command listener/interpreter. Add error handling 
facilities. 1 week. 

12/01 /80 - 26 - A Replacement for BOS 



12/01/80 MTB-474 

6) Implement the replacement for RUNCOMs and associated features. Modify 
the toehold to properly support automatic reboot. 2 weeks. 

7) Create the file editor, by converting edm to run in the Bootload Multics 
environment. 3 weeks. 

8) Implement replacements 
of a Bootload Multics 
6 weeks. 

for BOS SAVE and RESTOR. 
tape I/O, probably by 

This includes creation 
converting tape_mult_. 

9) Write replacements for the FNP commands, such as BLAST and FD355. 
3 weeks. 

10)Write replacements for any remaining BOS commands, such as CORE, FWLOAD, 
LABEL, etc. These should require relatively little effort, since all the 
underlying mechanisms will now exist. 3 weeks. 

The Bootload Multics System is essentially complete and shippable at this 
point. Much can still be done to add features and functions, of course. 

A Replacement for BOS - 27 - 12/01/80 


