
·MULTICS TECHNICAL BULLETIN MTB-490 

To: MTB Distribution 

From: R. E. Mullen and G. A. Texada 

Date: January 11, 1981 

Subject: Results of Emacs performance measurements. 

PURPOSE 

Persuant to MR8 PFS item 3.5.1.4 this MTB describes the 
measurement process and its results. 

METHODOLOGY 

CUESTA (Communication User Emulation System for Traffic Analysis) 
was chosen to "drive" emacs. CUESTA combines a reasonably simple 
script generation capability with a simple method for controling 
the speed at which "transactions" are transmitted to the test 
system~ Two CUESTA scripts were created; a "simple" script of 
only text insertion to validate that CUESTA and emacs could work 
together, and a "complicated" script to more closely reflect a 
real editing session. The results contained in this MTB were 

.gathered using only the complicated script. 

The complicated script was a endless loop of 14 different editing 
functions including; text insertion, character deletion while 
inserting text, backing up lines, deleting words, inserting 
words, paragraph adjustment and paragraph/buffer wiping (See 
Appendix A). 

To make extrapolation possible, the 
selected was: 

1 CPU 
1 MW Memory 
1 MSP451 Dual channel 
8 MSU451 
1 DN6678 

Multics 

The measurement sessions were conducted as follows: 

configuration 

With the test system and the driver system up and running, the 
script was started. The users log in and invoke emacs and wait 

·_.,,.. Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 

- 1 -



MTB-490 

(CUESTA sleep). Once all users were waiting, all lines were 
restarted with a 10 second delay between each to prevent 
syncronization. Once all lines had been running approximately 15 
minutes, the meters on the test system were reset. At 25 minute 
intervals, meters were taken. 

TUNING 

The only Multics tuning parameter changed from the "standard" was 
tefirst. It was changed to 2 seconds. The key-in rate was 2 
characters per second as performed by CUESTA. 

MEIERS 

For comparision purposes, the following set of meters is for a 1 
user complicated script. 

TOTAL TIME METERS: 

Total metering 

Page Faults 
Loop Locks 
RWS Overhead 

Getwork 
Loop Locks 
Post Purging 

Seg Faults 
Bound Faults 
Interrupts 
MP Idle 
Loading idle 
NMP Idle 
Zero idle 
Other 

DEVICE METERS: 

Total metering 

Prior Page I/0 
AIB 
Other Page I/0 
AIB 
ATB Page.I/0 
Prior VIOCE I/0 

I 

time 0:25:49 

% AVE 

0.01 1671.027 
o.oo o.ooo 
o.oo 0.000 
0 .10 771.631 
o.oo 0.000 
o.oo 153.000 
o.oo 5390.111 
o.oo 11876.000 
0.40 3115.004 
o.oo 
o.oo 
0.24 

98.13 
1.10 68.01 % of non-idle 

time 0:25:49 

dska 

378 
4098.305 

4 
387289.882 

4055.391 
30 

- 2 -



ATB 
ATB I/O 
% Busy 
Avg. Page Wait 
Avg. Page "Wait 
Avg. VTOCE Wait 
Avg. Page I/0 T 
Avg. VTOCE I/0 T 
EDAC Corr. Errs 
Errors 
Fatal Errors 

51638.650 
3760.095 

0 
173.811 
44.453 
4'7. 1 98 
29.083 
20.491 

0 
0 
0 

TRAFFIC CONTROL METERS: 

Total metering time 0:25:49 

Ave queue length 
Ave eligible 
Response time 

0.08 
0.08 
0.006 sec 

The following meters are from the final 35 user run: 

TOTAL TIME METERS: 

Total metering time 

Page Faults 
Loop Locks 
RWS Overhead 

Getwork 
Loop Locks 
Post Purging 

Seg Faults 
Bound Faults 
Interrupts 
MP Idle 
Loading idle 
NMP Idle 
Zero idle 
Other 

DEVICE METERS: 

36.61 
o.oo 
0.00 
5.23 
o.oo 
0.78 
0.03 
0.09 

20.96 
0.07 
0.05 

10.93 
0.46 

25.57 

Total metering time 

Prior Page I/O 
ATB 

0:30:14 

AVE 

5503.090 
0.000 
0.000 

547.643 
0.000 

4868.765 
9253.852 

35319.750 
2159.180 

dska 

146740 
14.813 

28.89 % of non-idle 

0:36:13 

- 3 -

MTB-490 



MTB-490 

Other Page I/0 
ATB 
ATB Page I/O 
Prior VTOCE I/O 
ATB 
ATB I/O 
% Busy 
Avg. Page Wait 
Avg. Page "'Wait 
Avg. VTOCE Wait 
Avg. Page I/0 T 
Avg. VTOCE I/0 T 
EDAC Corr. Errs 
Errors 
Fatal Errors 

87479 
24.849 

9.280 
202 

10761.220 
9.272 

527 
102.006 

1093.319 
185.788 

48.877 
44.514 

16 
1 
0 

TRAFFIC CONTROL METERS: 

Total metering time 

Ave queue length 
Ave eligible 
Response time 

CONCLUSIONS 

7.46 
7.07 

0:36:18 

1 .381 sec 

It appears that one L68 cpu, one MW of memory, one dual channel 
disk controller with 8 logical channels and 8 drives will pretty 
well support 35 users executing the given script at the given 
input rate. In order for the reader to judge the applicability 
of this result to actual or proposed use of emacs certain issues 
must be considered which relate to the nature of the script and 
the nature of the load placed on the hardware. 

The script is neither entirely trivial nor entirely difficult; 
it could be characterized as consisting primarily as the 
inputting of new text with about 50% of the lines requiring 
immediate correction of a character and additional occasional 
backing up further in order to make corrections. At the end of 
each script cycle the paragraph is adjusted and finally deleted. 
The best thing about the script is that it consumes cpu time at 
about the same rate (per connect hour) as live users on System 
M, when run on an empty system. The best measure of the work 
being accomplished is the number of characters input into the 
system per second. On the single user run 1.6 cps were input, 
on the 35 user run .9 cps per user were input. Less progress 
was made by the simulated users on the loaded system because 
they paused, waiting for the mainframe to catch up, after each 
line of input and it took longer for the mainframe to catch up 

- 4 -



MTB-490 

under load. Because the average mainframe interaction incurred 
about 50 page waits and because the average page wait time was 
about 100 milliseconds we can assume the average editor function 
requiring a mainframe interaction took at least 5 seconds 
(realtime) of eligibility and 1.3 seconds to become eligible for 
a total of at least 6.3 seconds. 

Looking at the metering output for the 35 user run it can be 
seen that the system is quite IO bound in spite of having a 
typical and adequate ratio of memory to processor, and a 
slightly higher than typical ratio of IO capacity (logical 
channels and drives) to p.rocessor. The seemingly large amount 
of page fault time is largely (more than half) due to having to 
loop waiting for an IO to complete before page control could 
even queue the IO of current interest. Another sure indicator 
of the IO bound situation is the large average page wait time, 
which should be more like 70ms rather than 100ms. If the loop 
waiting time in the disk dim were properly accounted for, it 
would be apparent that the processor was nearly 303 idle, 
whereas the IO system was saturated. 

The import of the above is this: many Multics sites have found 
that a configuration similar to the one benchmarked here will 
support about 40 users without any element of the system being a 
bottleneck. The problem is that emacs users place a somewhat 
greater load on the IO system and a somewhat lighter load on the 
processor. This fact is presumably relatively independent of 
the particular script and suggests that ~ny future effort to 
improve emacs performance concentrate on reducing paging. A 
further advantage of reducing paging is that, as we have seen, a 
major component of response time delays experienced by emacs 
users is page wait time. Finally, if the paging can be reduced, 
a certain amount of processor time will be saved as the number 
of disk interrupts, page faults, and calls to pxss$wait will be 
reduced. 

- 5 -



MTB-490 

APPENDIX A. 



MTB-490 

This script will have 14 different things going on, 
referenced by capital letter below. 

There should be as many logical channels as disks in 
1 cases. 
A full script cycle will take about (ballpark) 10 minutes, so 
metering snapshots should be of 10 to 15 minutes duration, more 
would be ok. 

A. ten char input line 
abed abcde[CR]aAg 
B. 20 char input line 
abed abed abed abed [CR]aAg 
C. 40 char input 
D. 60 char input 
E. 70 char input 
F. 10 chars with deletion of one in middle 
abcde# abcd[CR]aAg 
G. 20 char input line with delete 
abed abcde# abed abcd[CR]aAg 
H. 40 char with delete 
I. 60 char with delete 
J. 70 char with delete 
K. backup 3 lines, kill a word, go to end 
( note: wait for prompt three times) 
"'p"'p"'pAg 
ESC-dAg 
ESC->Ag (thats escape of greater_than char) 
I* please put think time of 15 sec before one of those sends */ 

L. backup 3 words, forward one word, insert a word, go to end 
ESC-b ESC-b ESC-b Ag (actually no blanks there ••• ) 
ESC-f Ag 
abcd"'g 
ESC-> Ag 
I* please put think time of 10 seconds before one of those sends */ 

M. Adjust paragraph 
I* think 20 seconds */ 
ESC-q Ag (excape Q) 

N. Delete and start over 
I* think 20 seconds */ 
AxhAwAg 

- A-1 -



---- so one whole script cycle would be as follows 
AJBICHDGEFAKBLCJDKELAIBKCLDHEKALBGCKDLEFMN 

MTB-490 

it is made up of the pieces with letter-names described above. 

- A-2 -


