
Multics Technical Bulletin MTB-493

To: Distribution

From: James R. Davis

Date: 03/02/81

Subject: Whither Menus

1. INTRODUCTION

The original design for MR 9 Menu software (MTB-476) has
drastic technical problems (MTR-170), and must be discarded.
This document presents new plans specifically, menu
subroutines. These subroutines allow PL/I programs to present
menus to users and get choices back. The functions here are at a
lower level than those in the Menu Manager, thus they · are more
flexible and general. It is likely that these primitives would
be combined with others to make it easier to write menu
applications.

Send comments to:

By continuum on System M:
>udd>m>jrd>mtgs>menus

By Extended Mail Facility, on MIT or M:
JRDavis.Multics

By Telephone:
HVN 261-9382 or (617)-492-9382

Multics Project internal working documentation.
distributed outside the Multics Project.

03/02/81

Not to be

page 1

MTB-493

2. OVERVIEW

2.1. What are the Regujrements?

Item 4.5.2 of the MR9 Product Functional Specification (1)
calls for a menu system. The specification in the PFS is very
brief. It reads:

MR9 will provide software that can be used to establish
menu interfaces for existing software. This software
will consist of a translator to translate menu
descriptions into a form useful; for interpretation by
the menu management software.

Since the PFS was written with the Menu Manager in mind, it
may be a requirement that all functions of the Menu Manager also
be provided in some form. Since I'm proposing completely new
interfaces, a full and more detailed specification is of the
utmost importance. For purposes of discussion, I see the
following as the features of the Prototype Menu System.

Applications programs are organized in a tree
structure. The user starts at the root, and can travel
down, up, return to the root, or quit. The Prototype
Menu System used menu selection to travel down, and
provided function keys to return to the root (First
menu), to return to the parent node (Previous menu),
and to quit.

It can print help files (using function key) if
provided by the applications writer.

It manages an
supported), in a
exec_com.

attached printer
terminal-dependent

(two types are
way, through an

The writer defines menus before the application
runs. Headers and trailers are slightly dynamic in
that they may contain references to active functions
which are evaluated at display time.

It sets up the window system, creating two
windows. The upper window is always used for menu
display, and the lower for interaction. The upper
window is kept at a size just large enough for the menu
on display, with the re~t for use by the application.

(1) My copy is dated 28 May 1980

page 2 03/02/81

MTB-493

The application can request the full screen for large
displays.

The reader should remember that many of the features were
unpopular, and most have important limits - specifically terminal
dependence.

2.2. Outcome of Technical Review

The design review of the Menu ManagPr was actually more
concerned with how applications should be written - specifically,
applications should not be written in command language, and
interactive subsystems should not be treated as programming
langauges (i.e. the "response" feature of the Menu Manager should
not be provided in any form). This means that applications will
be written in PL/I, and thus PL/I callable subroutines are
needed.

2.3. Compatibility with the Prototype

I don't consider compatibility with any Prototype Menu
System to be a requirement. The Prototype was just that, a
prototype. It was an experiment into certain kinds of
interfaces, it was not subject to the usual scrutiny of the
Multics design process. Its popularity shows that Honeywell
(like the rest of the Industry) recognized the significance and
usefulness of menu interfaces, and indicates only that Multics
should have some form of menu presentation, not the form it
should take.

The above shouldn't need to be stated again, but it does.

The Marketing organization uses the Prototype for
demonstration purposes. They could convert the Prototype to use
the menu subroutines without major effort. No Multics product
should be based on a Menu Manager, ·but there is no harm in
running demos, so long as one is careful.

The menu descriptions (embedded in cv_sd statements) could
be converted to the new forms given below by editor macros.

Nothing in the interface proposed here precludes use of
exec_coms, indeed, MTB-494 proposes a command interface to these
subroutines.

03/02/81 page 3

MTB-493

3. MENU DISPLAY .

Several PLiI callable subroutines will be supplied. A menu
will be represented by a "menu object", a pointer to an internal
data structure, a representation of a menu (given below).
Subroutines will be provided to create a menu object given a
description, to display a menu (in a Video System window), to get
a menu choice, and to delete menu objects.

Menu display is separated from menu choice because an
application will commonly display one menu, and want several
sucessive choices from it. When an option is selected, the
cursor is placed at the option letter. To do this echoing,
requires information about menu placement (e.g. where the option
letters are). To avoid internal static, the caller will be
required to keep pointers to this data, and pass them to the menu
subroutines. This in turn requires the subroutines to create and
destroy menu objects.

This interface is much more powerful than that of the Menu
Manager, since it allows for menus to be defined as needed,
rather than in advance (dynamic menus) and allows for multiple
menus to be on display (in separate windows) at the same time.

MPM style documentation appears at the end of this document.

These interfaces will take four to seven person weeks to
design, document, and debug.

4. CONTROL FLOW

It will be the application writers responsibility to provide
any desired control flow. This is much easier in PL/I than in
command language. The menu subroutines provide .D..Q. flow control,
which has the real advantage of not locking the programmer into a
fixed, limited model. A skilled programmer could always emulate
the heirarchical flow of the menu manager.

page 4 03/02/81

MTB-493

5. FUNCTION KEYS

If Multics software is to use function keys, it should be
done in an terminal independent manner. A design for this was
presented in MCR 4671, which has been approved. That MCR
proposed storing function key descriptions in the Terminal Type
File, and provided a method for accessing them. Although the
design is in hand, the actual work has yet to be done, and would
probably take two to four person-weeks to do.

Function keys are treated as a menu choice for which there
is no displayed label. Function keys are ~ot interrupts.

A perceived limitation of the Menu Manager is that function
keys are not effective when typing in the lower window (i.e. in
response to prompts). This design has the same limitation, and
for good reasons. If need be, I can explain them, and suggest
ways around the restriction, but I'd rather not do it here.

6. LOCAL PRINTER

Local printer support has nothing to do with menu
presentation. The Prototype Menu Manager did have local printer
support, but it is hard to use and quite terminal dependent.

Local printer support · should provide logically separate
paths (I/O switches) to the printer and to the screen,
multiplexing the communications line to the terminal. Local
printer support is a case of workstation support - where many
physical devices (or components of the same physical device) are
addressed over a shared line for the benefit of one user. We
should have workstation support, but it is not further addressed
here.

It will be addressed in a future MTB.

03/02/81 page 5

MTB-493

7. COMMAND INTERFACE, AF, ECS

A command/AF interface for menu selection is desirable. A
forthcoming MTB proposes one.

8. MENU APPLICATION UTILITIES

Writing robust applications is not easy, menu oriented or
not. There are many things that could be made easier (e.g.
any_other handlers, querying the user) and many things completely
missing (subroutine interfaces for per-user profile values, to
lister, etc.) One can imagine a video-oriented tool for creating
menu descriptions. Utilities could also be written to make the
menu subroutines act more like Menu Manager (e.g. heirarchical
control flow). We should remember that menu presentation is just
one part of Office Automation, and that our finite resources may
have better uses.

One important utility would manage windows (Desk Management,
in the terms of the Window System (MTB-458)). No one knows how
to define general Desk Management, so it is appropriate to
implement some small utility to gain experience, then perhaps
extend the Window System to do this itself.

9 • .S..UBROUTINE DESCRIPTIONS

MPM-Style descriptions appear on the following pages.
subroutines, if approved, should be documented in
tenatively titled "Menu Application Writer's Guide".

These
CP51,

page 6 03/02/81

•

menu_ menu_

The menu subroutine provides menu display and selection
services. It can display a menu in a window and get a selection
from the user. The entries work with menu objects. A menu
object is a pointer to an internal description of a menu. The
caller is expected to preserve the pointer, and to perform no
operation on it or through it other than comparison for nullity
or equality with another menu object, except through the menu_
subroutine. Declarations for the entries and the associated
structures are in the include file menu_dcls.incl.pl1

Entry: menu_$create_menu

This entry creates a menu object given its description. The
menu data structure is allocated in a caller supplied area, and
may be saved accross processes. A pointer to the new menu is
returned, also with the minimum size of a window to hold the
menu.

usage

dcl menu_$create_menu entry ((*) char (*) varying,
(*) char (*) varying, (*) char (*) varying, pointer,
(*) char (1) unal, pointer, pointer, pointer,
fixed bin (35));

call menu_$create_menu (choices, headers, trailers,
format_ptr, keys, area_ptr, needs_ptr, menu, code);

where:

choices

headers

(input)
is an array of the names of the options.
maximum number of choices is exceeded,
menu_et_$too_many_options is returned. The
maximum is 35.

(input)

If the
the code
current

is an array of headers. If the length of the first
header is zero, then no headers are used. This
allows the caller to specify no headers, without
resorting to a zero-extent array, which would be
invalid PL/I.

trailers (input)

03/02/81

is an array of trailers. As for headers, a
zero-length first trailer means that no trailers are

page 7

menu_

displayed.

format_ptr (input)

menu

points to a structure that controls formatting of the
menu. The structure is described below.

keys (input)
is an array specifying the keystroke for each option.
The array must have at least as many elements as the
array of option names. If not, the error code
menu_et_$too_few_keys is returned. It may have more
keys than choices. Each item of the array must be
unique, or menu_et_$keys_not_unique is returned.

area_ptr (input)
is a pointer to an area where the
allocated. If the area is not
area condition is signalled.

menu description is
large enough, the

needs_ptr (input/output)

menu

points to a structure giving requirements to display
the menu. The structure is described below. The
caller supplies this structure and fills in the
version number, the remaining members are output from
this entry.

(output)
is a newly created menu object.

code (output)
is a standard system error code, or an error code
from menu_et_.

Entry: menu_$display_menu

usage

This entry displays a menu object on a supplied window.

dcl menu_$display_menu entry (pointer, pointer, pointer,
fixed bin (35));

call menu_$display_menu (window, menu, code);

where:

page 8 03/02/81

menu_ menu_

window (input)
is a pointer to an IOCB for an I/O switch attached
through the Window Management level of the Video
System (i.e. crt_). This window must be large enough
to hold the menu. A window used for menu display
should be used ONLY for menu display, if redisplay
optimizations are desired.

menu (input)
is the menu object to be displayed.

code (output)
is a standard system error code.

Entry: menu_$get_choice

This entry returns a choice from a menu.
assumed to be already displayed on the window.

The menu is

usage

dcl menu_$get_choice entry (pointer, pointer, pointer,
bit (1) aligned, fixed,bin, fixed bin (35));

call menu_$get_choice (window, menu, function_key_info,
fkey, selection, code);

where:

window (input)

menu

is a pointer to an IOCB tor an I/0 switch for a
window.

(input)
is the menu object on display in the window.

function_key_info (input)

fkey

03/02/81

is a pointer to a data structure describing
function keys available on the terminal. This
structure is obtained by the caller from
ttt_info_$function_key_data subroutine. If
pointer is null, no function keys are used • ..

·. '~ (output)

the
data
the

this

tells whether if a function key was hit instead of a
menu selection.

page 9

menu_

Notes

menu_

selection (output)
gives the option number or function key number chosen
by the user. For an option, it is a number between 1
and the highest defined option, inclusive. For a
function key, it is the number of the funct~on key.

code (output)
is a standard system error code •.

If a terminal has no function keys, the caller can define
input escape sequences for function keys. These may be chosen to
have mnemonic value to the end user. For example, if Function
Key 1 is used to print a help file, the input sequence ESC H
could replace it. In some applications, this will be easier for.
the end user to remember than an unlabelled function key. The
caller can define these keys by allocating and filling in the
same function key structure normally returned by the ttt_info_
subroutine.

If a key is hit that is not one of the option keys and is
not a function key, then the terminal bell is rung.

Entry: menu_$describe_menu

data structure
The caller can

to hold a

This entry fills in a caller supplied
describing some of the aspects of a menu object.
use this to ensure a window is sufficiently large
menu.

usage

dcl menu_$describe_menu entry (pointer, pointer,
fixed bin (35);

call menu_$describe_menu (menu, needs_ptr, code);

where:

menu (input)
is the menu object to describe.

needs_ptr (input)
points to a structure declared like
menu_requirements. The caller fills in the version

page 10 03/02/81

menu_ menu_

to be menu_requirements_version_1, and the remaining
members are filled in by this entry.

code (output)
is a standard system error code.

Entry: menu_$destroy_menu

This entry is used to delete a menu object. The caller uses
this to free storage of a menu, since the representation of a
menu is not known outside the menu_ subroutine. This entry has
no effect on screen contents.

usage

dcl menu_$destroy menu entry (pointer, fixed bin (35));

call menu_$destroy menu (menu, code);

~ where:

menu (input)
is the menu object to destroy.

code (output)
is a standard system error code.

03/02/81 :J page 11

menu_ menu_

DATA STRUCTURES

A menu is described by the structure "menu_format".

where:

dcl 1 menu_format
(menu_format_ptr),

2 version
2 constraints,

3 max_width
3 max_height

2 n_columns
2 flags,

3 center_headers
3 center_trailers
3 pad

2 pad_char

aligned based

fixed bin,

fixed bin,
fixed bin,
fixed bin,

bit (1) unal,
bit (1) unal,
bit (34) unal,
char (1);

menu_format

version

specifies the format for menu display. It gives
limits for number of lines, and characters per line,
specifies the number of columns (of options), and
controls centering of headers and trailers.

must be menu_format_version_1

max_width
is the width of the window the menu will be displayed
on. This value is used for centering headers and
aligning columns.

max_height
is the maximum height of the window, in lines.

· n_columns
is the number of columns to use in displaying
options.

center headers
if set, header
window width
flush with the

center_trailers

lines will be centered using the
supplied above. If not set, they are
left edge of the window.

Same as center_headers, but for trailers.

page 12 03/02/81

menu_ menu_

pad
must be "O"b.

pad_c.har
is the character used for centering headers and/or
trailers.

The requirements for a menu are specified by the structure
"menu_requirements".

dcl 1 menu_requirements
(menu_requirements_ptr),

2 version

aligned based

where:

version

2 lines_needed
2 width needed
2 n_options

fixed bin,
fixed bin,
fixed bin,
fixed bin;

is set by the caller,
menu_requirements_version_1.

lines_needed

and must be

is the number of lines required. If the window does
not have this many lines, menu display will fail.

width needed
is the number of columns needed.

n_options
is the number of options defined.

The include file also provides an array of key characters
that may be used in the menu to select options. This array can
be used by the· caller as input to the menu_$create_menu entry.
Its name is MENU_OPTION KEYS.

03/02/81 page 13

The menu_$display_menu subroutine uses another subroutine,
window_display_ to display menus with as few changes to the
actual screen as possible. This is balled redisplay
optimization, and is an attempt to make display of menus happen
as quickly as possible. Redisplay should be done by the video
system itself, but there are reasons it cannot be part of the
video system at this time. The window_display_ subroutine is an
attempt to provide at least some redisplay. Applications
programmers do not use the window_display_ entry point itself,
but will probably need to call the window_display_$window_changed
entry point at times if they alter the window directly.

Documentation for this subroutine follows:

page 14 03/02/81

window_display window_display_

The window display_ subroutine provides a very simple,
limited redisplay for a window. The caller provides a screen
image, which is an array of unaligned characters strings. The
screen image represents the intended contents of the window. The
caller must perform all conversion - each character in the array
must occupy exactly one character position on the terminal. In
practise, this means that only printing characters may be used.
The caller must also ensure that the window is large enough to
hold the image.

Entry: window_display_

This entry displays a screen image on a given window.

usage

dcl window_display_ entry (pointer, (*) char (*) unal,
fixed bin (35));

call window display (window, image, code);

where:

window (input)
is the IOCB for a window.

image (input)
is the image to display.

code (output)
is a standard system error code.

Entry: window_display_$window_changed

This entry is called to inform the window_display_ package
that the screen contents of the window are no longer certain.
This implies that no redisplay optimization is possible, since
knowledge of previous contents is ~nreliable. With a few
exceptions, it must be called after any operation is performed on
a window other than a call to window_display~. The list of
exceptions is given below.

03/02/81 page 15

window_display_ window_display

usage

dcl window display $window_changed entry (pointer,
fixed bin (35));

call window_display_$window_changed (window, code);

where:

window (input)
is the window·that has changed.

code (output)
is a standard system error code.
possible.

No errors are

Exceptions

This entry must be called after any operation that affects
screen contents. Operations that do not effect screen contents .
are:

all modes operations
all cursor motion
iox_$get_chars
window_$bell

In addition, it need not be called after a change in window
size if the size change affected only the only the end of the
window was changed. That is, if the window grew, the new lines
added were added to the end; or if it shrank, the lines removed
were takenm from the end. This will be true of the top window on
the screen only, as a rule.

Entry: window_display_$discard

This entry is called to fnform window_display_ that a screen
image is no longer needed. It is useful to reclaim the storage
used for the screen image.

usage

dcl window_display_$discard entry (pointer, fixed bin (35));

page 16 03/02/81

window display window_display_

call window_display $discard (window, code);

where:

window (input)
is the window that is no longer to have a screen
image.

code (output)
is a standard system error cede.
possible.

No errors are

10. INTERNAL REPRESENTATION

The internal representation of a menu is given here for
review purposes. It is, of course, internal, and subject to
change without notice.

dcl 1 menu aligned based (menu_ptr),
2 version char (8) init (MENU_VERSION_ONE)
2 window_requirements, /* size of menu */

3 height fixed bin,
3 width fixed bin,

2 n_options fixed bin, /* N. valid options */
2 option_info (35),

3 key char (1) unal, /*key to hit */
3 pad bit (27) unal,
3 line fixed bin, /* where to echo */
3 col fixed bin,

2 screen_image (lines_alloc refer (menu.height)) unal
char (chars_alloc refer (menu.width));

dcl menu_ptr pointer;

dcl (lines_alloc, chars_alloc) fixed bin (21);

(The version is a
that this structure
structures that have
version is also 1 .)

03/02/81

character string, rather than a number, so
may be distinguished from all other

a version in their first word, and whose

page 17

