
MULTICS TECHNICAL BULLETIN MTB-533

To: MTB Distribution

From: Chris Jones

Date: 30 July 1981

Subject: Proposed Message Facility Enhancements

This MTB describes plans for enhancements to the Multics message facility
commands and subroutines.

The two chief motivations for the re-implementation of the user ring message
facility are that the current implementation is felt to be unmaintainable, and
to provide reasonable subroutine interfaces for subsystems.

Many of the ideas in this MTB were formulated originally by Jim Davis.

Comments and questions should be sent to the author:

Christopher L. Jones
Honeywell I CISL
575 Technology Square
Cambridge MA 02139

(617) 492-9337 or HVN 261-9337

or

CLJones.Multics on System M and MIT-Multics

Multics Project internal working documentation.
distributed outside the Multics Project.

Not to be reproduced or

Page 2 MTB-533

1 Introduction

This MTB is divided into three parts: a description of the current status of
the message facility (that is to say, a description of the problem), an
overview of the proposed changes (both command changes and subroutine
interfaces), and the documentation of same.

The reader is assumed to be
commands (accept..JDessages,
versions of senc:L..message)
sen<L..message subroutines are

familiar with the current message facility. The
deletEl_Jl1essage, print..JDessages, and the various
are documented in MPM Commands (AG92). The
documented in MPM Subroutines (AG93).

2 Current Deficiencies of the Message Facility

The most immediate need for the message facility is to fix the bugs in it.
This is complicated by the convoluted control structure of the current message
facility. More than one of the known bugs can be attributed to tne great
complexity of the current implementation.

One of the most glaring shortcomings is the inability to determine the current
state of the message facility (e.g. on which mailboxes messages are being
accepted, whether alarms are enabled, etc.). Without this ability, subsystems
such as Emacs which wish to temporarily intercept messages cannot properly
restore the message facility to the state it was in before messages were
intercepted. Thus, Emacs does not intercept messages by default because it
cannot save and restore the user's message modes. Every Emacs user must
explicitly ask Emacs to interc~pt messages, yet, if this is not done, and a
message arrives, the screen is garbled.

Existing message facility interfaces allow for a subsystem to specify a string
to be executed by the command processor when a message arrives. This is not
sufficient. What is needed is a way to determine the names of all mailboxes
on which a message might arrive. The ability to intercept messages on a given
mailbox is of no value if one cannot tell what mailboxes are potential sources
of messages.

An additional deficiency is that the command string can be executed an
arbitrarily large number of times for the same message if the message facility
reminder feature is used. The reminder feature (invoked via "am -time")
causes all undeleted messages to be printed (or the call· string to be
executed) every N minutes. There is no way to tell whether the call string is
being executed because of a new message or a reminder.

3 Changes Proposed to the Message Facility

3.1 New Features

Changes are proposed here to correct what are thought to be design mistakes in
the message facilty interfaces. Most of these are incompatible in some·way.
Compatible additions are also proposed to make the message facility more
powerful, and easier to use.

MTB-533 Page 3

3.1.1 Incanpatible Interface Changes

accept...JDessages will now print old messages by default. This means that
"-print" will be redundant (although retained for compatibility). Without
this change, naive users will not see messages sent to them while they were
logged out.

The accept...JDessages command will take a new control argument, -no_print, to
suppress processing pending messages.

If the accept_messages command is used with a mailbox that does not exist, and
is not the default mailbox, then the user will be queried as to whether to
create it. Currently the default mailbox is created (without comment, in
brief mode). This MTB proposes that the comment should always be given when a
mailbox is created (unless -force is given; see below), and that the user
should have a chance to be queried before a nondefault mailbox is created.

The accept...JDessages command will have a new control argument, -force (-fc).
If this control argument is given, the user will not be queried as to whether
or not to create the mailbox if it does not exist; the mailbox will be
created.

Using the "-time" control argument will cause messages to be saved by
implication. The function provided by -time is useless without -hold.

When the alarm feature (am -time) is used, all output will go to user_i/o.
Currently, the alarm processor gives the count of messages on error_output,
prints the messages on user_i/o. and gives a "start" control order on
user_output. This can cause lost wakeups. When a message is received it will
still be printed on user_i/o, and all commands will print on user_output.

The numbers assigned to messages will be consecutive per mailbox. Currently
they are consecutive per-process - if three messages arrive in mailbox A, then
three more in mailbox B, mailbox A contains messages 1,2, and 3, and mailbox B
contains messages 4,5 and 6. Having consecutive numbering will be less
disturbing in printing messages. It will make it possible to estimate the
message number of a message of interest.

If the user is accepting messages on a mailbox that is not the default, then
the entryname of the mailbox will be printed when the message is printed.
This will reduce confusion about which mailbox a message is from.

3.1.2 Compatible Interface Changes

The maximum size of a call command string will be 512 characters instead of
120. This string is concatenated with the message text (which can be any
size), and passed to the command processor.

The header printed when printing messages in a mailbox to which the user lacks
"r" extended access (but has "o") will be changed from "Message from yourself"
to "You have N message(s) in PATH", where N will be the number of messages,
and messages will be pluralized properly, and PATH will be the pathname of the

Page 4 MTB-533

mailbox. This is almost the same as print_Jllail (which spells out the number).
The mail command prints "Your messages" as a header.

The maximum number or messages that can be "held" without error will be raised
from 256 to a very large number (larger than the number or messages a mailbox
can currently hold).

When the alarm feature is used on a mailbox other than the default, it will
give the mailbox entryname in the same line as the count · or messages.
Currently there is no way to tell what mailbox is being referred to.

3.2 Desirable Extensions

While this MTB was being written users have requested certain additional
features which have not been included in the current proposal. All or these
ideas have merit and would improve the message facility, and so are documented
here for future consideration. The proposals are ranked below in estimated
order or difficulty (from most difficult to least difficult).

- Allowing more than one process to receive wakeups from a given
mailbox.

- Warning the user when attempting to send a message to a suspended
process.

- Making it possible for user ring to determine whether a current
process is receiving wakeups on a given mailbox (besides the current
kludge or sending a message and testing the returned error code).

- Providing the ability to discriminate between automatic or "computer
generated" messages (e.g. answering service messages, mail
notifications) and interactive or "human generated" messages.

3.3 Subroutine Interfaces

There are two reasons to add subroutine interfaces to the message facility.

First, subsystems in existence and being planned need to be able to process
messages in order to provide new user interfaces to the electronic mail
facility. For example, Emacs keeps conversations with separate users in
separate buffers, and is able to log both sides or a conversation. Other
subsystems are being planned for "conferencing". The second reason to add
subroutine interfaces to the message facility is to give greater control over
unexpected output to video subsystems (such as Emacs and the Menu System).
These environments require total control over all writing on the user's
screen. As things stand now, a message arriving is printed by the message
facility, and thus unexpectedly alters the contents or the screen. (This
problem might be better fixed by providing better control over I/O switches,
but that solution is beyond this MTB.) Aside from messages, timers are the
only other way that unexpected I/O can occur on the user_i/o switch.

r
MTB-533 Page 5

3.4 Documentation Changes

The following pages present new documentation for the MPM Commands description
of the accept..JDessages · command and document the new subroutine interfaces.
Possibly the subroutine interfaces should be ·considered "internal", and
documented only in a PLM or SDN of some sort, if at all.

The subroutines below are to be declared obsolete, in favor or mail_syste1Q....,
which provides all of the facilities currently provided by these subroutines.
An appropriate note should go into AG93, the MPM Subroutines Guide.

- sencl.Jnessage_
- sencl.Jnessage_$acknowledge
- sen<l.JnessagEL.$express

3.4.1 accept..JDessages

The following changes should be made to the description of the accept..JDessages
command:

In the description of the -call control argument, add

The maximum length of cmdline is 512 characters.

Add the following four control arguments. Note that -mail and -no_JD.ail
are already implemented, but have not been documented.

-mail, -ml
sets the user's process so that when mail is sent to the mailbox a
message will be printed. This is the default.

-no..JDail, -nml
prevents mail notifications from being printed when mail arrives in
the given mailbox.

-no_print
prevents accept..JDessages from printing messages that were al·ready in
the mailbox when the command was given.

-force, -re
create the mailbox if it does not exist without querying the user as
to whether or not the mailbox should be created.

Add to the description of the -print control arg:

(This is the default)

Add to the description of the -time control argument:

Using this control argument causes messages to be held, even if
-hold was not given.

Page 6 MTB-533

Add the following paragraph at the end of the description:

It is possible to accept messages on more than one mailbox at a
time, and to accept messages on a mailbox other than the default.
If a mailbox other than the default is to be used, and it does not
exist, then the aocept..JDessages command queries the user as to
whether or not it should be created. When messages are printed from
a mailbox other than the default, the mailbox is always identified.

3.4.2 message_facility_

message_facility_

The message_facility_ subroutines
behavior of the message facility. This
messages in a non-standard way.

~: message_facility_$get_Jllessage_;info

allow a subsystem to control the
is useful, for example, to process

The message_facility_$get_Jllessage_info subroutine returns a pointer to an
array of structures containing information about each mailbox used by the
message facility in this process. The caller should not write into any of the
structures.

Usage

declare message_facility_$get_Jllessage_info entry (ptr, ptr,
fixed bin (35));

call message_facility_$get_Jllessage_info (areap, mbxdatap, code);

where:

1. areap (input)
is a pointer to an area in which the information will be returned.

2. mbxdatap (output)

3. code

is a pointer to a structure whose form is given below. If null,
then the caller is not accepting messages on any mailbox.

(output)
is a standard system error code.

Upon return from message_racility_$get..JDessage_info, mbxdatap point to a
structure of the form:

MTB-533

dcl 1 mb~array_struc
2 version
2 n...inbxs
2 mb~array (1

aligned based,
fixed bin,
fixed bin,

refer mb~array_struc.l\....lllbxs)

Page 7

like message_data;

The structure describing the mailbox (messagtt_d~ta) has the following format:

dcl

where

version

dn

en

index

flags

short_rormat

1 message_data
2 version
2 dn
2 en
2 index
2 flags,

3 short_rormat
3 hol<l.Jnessages
3 notify_Jllail
3 defaul t_Jllbx
3 def erred
3 pad

2 prefix
2 alarmtime
2 last,

3 last_Jllessage_ptr
3 last__id
3 last_sender

2 last_Jllessage
2 message_ptr
2 ~stacked
2 command
2 wakeup_processor,

3 wakeup_handler
3 wakeup_closure

2 alarm__processor,
3 alarmJiandler
3 alal'Jll._closure

aligned based (mbxdatap),
fixed bin,
char (168),
char (32),
fixed bin,

bit (1) unal,
bit (1) unal,
bit (1) unal,
bit (1) unal,
bit (1) unal,
bit (31) unal,
char (12) var,
fixed bin {71),

ptr,
bit (72) aligned,
char { 32),
fixed bin,
ptr,
fixed bin,
char {512) varying,

entry variable,
ptr,

entry variable,
ptr;

is the version of this structure.

is the name of the directory containing the mailbox.

is an entry name (including suffix) or the mailbox.

is the index that identifies this mailbox to the ring one
message segment primitives.

give the state of this mailbox.

messages are to be printed in short format.

hol<l.Jnessages messages are to be held in the mailbox until explicitly
deleted.

Page 8

notify..JDail

defaul t..JDbX

def erred

pad

prefix

alarm.time

last

·1ast..JDessage_ptr

last_J.d

1 ast_sender

last_inessage

message_ptr

n.._stack.ed

command

wakeup_processor

wakeup_Jiandler

MTB-533

mail notifications are to be printed

this mailbox is the default mailbox. This is the mailbox
used when no box is explicitly named in commands.

messages are currently deferred in this mbx.

should not be referenced.

is a string to be printed before the text of a message.
It may contain ioa._ control characters. It is set by the
-prefix control argument to accept_Jllessages.

if non O, indicates that this mailbox is in reminder mode.
If there are any messages in the mailbox, · an alarm goes
off every "alarm.time" seconds, and the alarm handler
processes all messages. This mode is set by the -time
control argument to accept_inessages.

contains information about the last message received.

is a pointer to a mai].._format structure for the last
message or null if there is no last message.

is the unique id of the last message. The time of the
last message may be extracted from the message id. (see
below)

is the Person.Project for the last sender.

if messages are being held, then it is the index into the
message array (see below) of the information about the
highest numbered message. Otherwise it is zero.

is a pointer to a structure containing an array of
information about all messages currently in the mailbox or
received in this process in hold mode. The structure
itself is not to be modified by users.

is the number of undeleted messages in the mailbox.

is the character string to be passed to the command
processor to process the message. This string is set by
the -call control argument to accept_Jllessages.

is information about the routine used to handle wakeups
for this mailbox when a new message arrives. This routine
may print the message, invoke the command processor with
the call string, or perform some arbitrary task defined by
the subsystem writer.

is the routine to be called.

MTB-533

wakeup_closure

alarJJLProcessor

al arm._handl er

alaM1Lclosure

Page 9

is a pointer to information supplied by the supplier of
the wakeup_handler. Its value is defined by the subsystem
writer.

is information about the routine used to handle mailbox
alarms. These alarms are set using the -time control
argument to the accept_messages command, and are typically
used to remind the user of undeleted messages.

is the routine to be called for alarms.

is a pointer to information for the alarm handler routine.
The message facility makes no use of this pointer, only
passes it to the called routine.

Page 10 MTB-533

~: message_facility_$set_cal:L)landlers

The message_facility_$set_ca1Lhandlers entry point is used by a subsystem
writer to specify handler routines to process messages. One routine is called
whenever a new message arrives, the other is called when a special alarm timer
goes off. Calling sequences are given below.

Usage

where

declare message_facility....;$set_ca1Lhandlers entry (char (*), char (*),
entry, ptr, entry, ptr, fixed bin (35));

call message_facility_$set_ca1Lhandlers (mb]Ldn, mb]Len, wakeup_ev,
wakeup_J.nfo, alarDL.ev, alal"lll.J.nfo, info, code);

mbJLdn (input)
is the name of the directory containing the mailbox.·

mb]Len (input)
is the name (including suffix) of the mailbox.

wakeup,.....ev (input)
is the routine to be called when a new message arrives.

wakeup_J.nfo (input)
points to information for the wakeup routine. It may be null. It
is passed to the wakeup routine, and the message facility makes no
use of it.

alarDL.ev (input)
is the routine to be called if a mailbox alarm timer goes off.

alal'llL...info (input)
PQints to info for the alarm handling routine.

code (output)
is a standard system error code.

Restrictions on the Message Handlers:

A user should be familiar with interprocess communication in Multics and
the pitfalls of writing programs which can run asynchronously within a
process. For example, if a program does run asynchronously within a process
and it does input or output with the tty_ I/0 module, then the program should
issue the start control order of tty_ before it returns. This is necessary
because a wakeup from tty_ may be intercepted by the asynchronous program.

MTB-533 Page 11

The Wakeup Routine

The wakeup routine is called when a wakeup is received on a given mailbox. It
means a message has arrived. The usual action is to print the message. Other
actions might be logging the message or replying to it.

If messages are being held, the message is saved before the call.

After the call, if code is O, the message is considered processed. Otherwise
it remains pending, but no error message is printed. Messages that are not to
be retained are deleted from the mailbox after a sucessful call. Information
about the message is saved for use by the last_Jllessage (and related) commands.

The supplied routine should be declared compatibly with the following usage:

where

into

declare wakeup_routine entry (ptr, fixed bin, ptr, ptr, fixed bin (35));

call wakeup_routine (info, message_no, mail_format__ptr, mbll;_data....J)tr,
code);

(input)
is the info pointer supplied in the call
message_racility_$set_call..Jlandler.

to

message_no (input)
is 0 if messages are not being held, otherwise it is the message
number.

mail_forma t_ptr (input)
points to_ the mail_format structure, which describes the message
to be processed. This structure is defined in
mail_format.incl.pl1.

mbll;_datiL_Ptr (input)
points to a message_data structure, which describes the mailbox
the message was received in. This structure is defined above.
The user must not write into this structure.

code (output)
is set by the called routine.

The time or the last message may be extracted from the unique message id by
assigning it to the following structure:

dcl 1 mb~sg_i<Lstr
2 unknown
2 time

where:

aligned based,
bit (18) unal,
bit (54) unal;

Page 12

unknown

time

MTB-533

has an undefined value and should not be referenced.

is the low order 54 bits of a standard Multics time.
convert it to a standard time use the binary.builtin.

To

The Alarm Handler

The alarm routine handles message facility alarm calls. Alarm calls are set
by the -time control argument to the the accept...J11essages command. The default
routine prints a count of the number of undeleted messages, lists the
messages, then reschedules the timer. See the documentation of timer....J11anager_
for a description of timer alarm calls.

The supplied routine should be declared compatibly with the following usage:

declare alarDLroutine entry (ptr, ptr);

call alal'lll.J'OUtine (alal'Dl.J.nfo, mb~da t~tr);

where

alarDLinfo (input)
is the info pointer supplied when the handler was set.

(input)
points to a message_data structure which describes the
mailbox whose alann timer went off. The user must not
write into this structure.

The message_ptr in the message_data structure points to a structure which has
the following form (declared in message_data.incl.pl1)

dcl

where:

slot

mesno

printed

1 msg_array_struc
2 slot

(message_data.l'L.stacked)
bit (72)'

aligned based,

2 mesno fixed bin,
2 printed bit (1);

is the unique message ID of this message.

is the message number of this message. Messages are
numbered consecutively per mailbox, starting with message
number 1. The message number of a message is passed to
the wakeup routine when it is invoked.

is set to "1"b if this message has been processed (either
by a wakeup routine or an alarm routine).

MTB-533 Page 13

..tlimle.: measage_facility_$get_call...)landlers

The message_tacility_$get_call...)landlers entry point is used by a subsytem
to obtain the current handler routines for message wakeups and alarm clock
wakeups for a given mailbox. This entry point may be used before a call to
set the handlers to allow the caller to restore the handlers later. The
information can also be obtained from the message_facility_$get__message_info
entry point, this entry is available for completeness.

Usage

declare message_facility_$get_call...)landlers entry (char (*), char (*),
entry, ptr, entry, ptr, fixed bin (35));

call message_facility_$get_call...)landlers (mb~dn, mb~en, wakeup_ev,
wakeup_J,nfo, alarDl._ev, alaMILJ,nfo, code);

All parameters have the same meaning as for the set_call...)landlers entry point,
but, are output, except for the directory name and entry name of the mailbox.

3.4.3 SRB Notice

The message facility has been re-implemented in order to fix all known bugs
and provide subroutine interfaces for managed video subsytems.

New control args have been added to the accept_Jllessages command.

The accept.JDessages command now prints pending messages by default, always
creates a mailbox if none exists, and assumes "-hold" if "-time" is given.

The subroutines to send messages (sen<l.Jnessage._, sen<l.Jnessage_$acknowledge_,
send.._message_$express) are now obsolete, and will be deleted in a future .
release. Users should convert to the more general subroutine mail_syste._.

Page 14 MTB-533

Appendix A - Time Requirements

The work outlined in this MTB can comfortably be done by one person. It is
estimated that the complete re-implementation of the message facility can be
done in two (2) person-months. Once the design of the message facility has
been · finalized, one person-month of effort would be enough to recode the
message facility. This task could be done by one person. Debugging,
exposure, and installation would use up the remaining time. It would not be
necessary to devote a person full-time to this part of the effort, which could
reasonably be completed in two months of real time.

