
MULTICS TECHNICAL BULLETIN MTB-539

To: MTB Distribution

From: Gary C. Dixon

Date: November 24, 1981

Subject: Results of the Multics Software Support Study

INTRODUCTION

This MTB examines several functions which could be performed by
the Multics Software Support (MSS) unit to improve customer
satisfaction with Multics. The functions lie in the areas of:

improving site support capabilities, and

increasing the frequency and/or quantity of bug fixes
shipped to sites.

This MTB reviews various options available in each area, and
concludes that MSS should take on more C&F responsibility so that
more errors will get fixed, and should use a method such as bug
fix release tapes to distribute fixes to sites in a more orderly
and timely fashion.

Comments on this MTB should be directed to Gary Dixon in one of
the following ways:

System M continuum:
>udd>m>GDixon>meetings>Multics Support
(short name mss) -

System M mail: GDixon.Multics

HVN: 341-7295

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

- 1 -

MTB-539 MSS Support Study

IMPROVING SITE SUPPORT CAPABILITIES

One way to improve the product
provide direct support to sites.

is to improve MSS's ability to
This includes several options:

1) add new tools to the support tool box, and enhance existing
tools. Upgrade some existing tools for installation in the
system libraries. Such tools might include: a
full-capability dial out facility 1 with msg packet
transmission protocol~ for shipping source and object
modules; enhanced, more-maintainable version of
copy dump tape and compare_dump_tape; adding new
func£ionaiity to library maintenance tools (eg, a tool to
compare hierarchies on MIT and System M); etc.

2) provide SiteSAs with better information on how to deal with
Site problems, who to interface with in MSS, how to use TR
system, etc. This could be as formal as a SiteSA Reference
Guide, or as simple as a series of info segments which
SiteSAs could dprint.

3) have MSS personnel learn about more areas of the system, so
they can better deal with problems in those areas. Areas
of interest include: crash analysis; system installation
methods; system tape generation; running a test system;
online debugging techniques; performance measurement &
tuning; system administration and operation techniques;
emergency recovery techniques; etc.

It is clear that all of the available person-power (and more)
could be expended performing the above functions. While most are
not on-going functions, history indicates that anoth~r list of
similar tasks will have been developed once the above tasks were
completed.

The real question is: would the improvements in site support
capabilities because of one or more of the above options justify
the cost ofperformihg these ... functions? This point is discussed
in the ''Recommendatic)ns"···section below.

- 2 -

MSS Support Study MTB-539

BUG FIXES

Another way in which MSS could improve the product is by making
more bug fixes available to sites, and to get bug fixes to sites
sooner. This includes several options:

4) move the C&F (continuation and fix) project from Bob
Mullen's Languages and Command System Unit into MSS.
Several people could be assigned to the Phoenix-based C&F
project, with the responsibility to fix bugs in dormant
software. For purposes of this discussion, dormant
software is software which is not under active change or
development.

5) provide bug fix releases (BFRs) for shipment to sites. The
primary purpose of such releases is to shorten the cycle
between the time an error is reported in Multics software
and the time the fix reaches the customer site. BFRs would
be created at 3-4 month intervals between major system
releases to distribute fixes for critical and high priority
problems and for other dormant software modules.

Options 4 and 5 are discussed in more detail in the following
sections.

- 3 -

MTB-539 MSS Support Study

FIXING BUGS

Most people recognize that Multics could do a better job of
maintaining products after their initial development is complete.
By moving the C&F project to MSS, we could apply more resources
to fixing errors. At the same time, we would be freeing up some
resources at CISL for more development activities.

In general, the support level for dormant software does not
involve adding new functionality. However, it may occasionally
involve significant code rewrites to correct reported bugs, or to
upgrade a module to use new system facilities or to improve
performance.

Dormant software modules can be divided into two types: modules
whose maintenance is assigned to a specific developer; and
modules not assigned to anyone (and therefore the direct
responsibility of the C&F project). Fixes for each type of
module would be handled differently. For unassigned modules, MSS
would take total responsibility for implementing the fixes and
auditing the changes.

For modules assigned to a developer, MSS would make fixes under
the existing policy for "Fixing Minor Problems in Multics
Software", MAB-036. This policy requires the developer to
approve of such fixes before they are implemented, and to audit
the changes after implementation. This policy insures that the
proposed fix is proper for the module as it stands now, and that
it will fit well with any future development plans.

Clearly, we could reallocate all available person-power to the
C&F project and still not fix all of the bugs in dormant
software. Some care must be taken in deciding which bugs get
fixed, and how much resources to spend on bug fixes.

BUG FIX RELEASES

Before discussing Bug Fix Releases (BFRs), we must define some
terminology.

BFR TERMINOLOGY .

When a Multics release is shipped to customers, it becomes the
current release. Development work from that point is applied to
the next release of Multics software.

Earlier, we defined dormant software modules as those not under
active development for the next release. Conversely, active
software modules are those which are being changed for the next
(or some future) release.

- 4 -

MSS Support Study MTB-539

CONTENTS OF BFRs

Several considerations arise when determining what kinds cf
changes should be shipped in Bug Fix Releases.

No New Functionality

The term "new functionality" is somewhat ambiguous. In the
context of BFRs, one possible definition of~ functionality is:

- enhancements for existing software modules which are
significant enough to be listed as PFS items, or

- new commands not distributed in the current release, or

- new subsystem requests not distributed in the current
release, or

- support for new language features in a compiler.

It should be noted that the items above are not an exhaustive
list. Other kinds of changes might be considered "new
functionality" in the context of BFRs. Also, other definitions
of new functionality could be used in the BFR context. For
example, a more stringent definition describes new functionality
as any coding change which requires a --change to user
documentation.

Regardless of what definition of new functionality is used, BFRs
should not include new functionality for several reasons. From
an HIS standpoint, HIS policy prohibits shipment of new
functionality in bug fix releases. This policy stems from
revenue considerations.(1)

From an MSS standpoint, adding new functionality to BFRs makes
the BFRs more difficult to checkout prior to release. BFRs are
applied uo current release software, and LISD does not run a
current release system on which such bug fixes could be
exposure-tested. Thus, adding new functionality increases the
risk of introducing new bugs in place on the ones being fixed.

From a documentation standpoint, there are no plans to have
documentation changes (ie, addenda for manuals) associated with
BFRs. Thus, any new functionality would have to be

(1) Roger von Seeburg suggests that Marketing could have all

customers include in their control an agreement to pay new
rates whenever the new functionality was distributed in a
general release. This possibility might allow us to bypass
the HIS policy on shipment of new functionality in BFRs.

- 5 -

MTB-539 MSS Support Study

upwards-compatible with existing functionality, and would
essentially be invisible to the sites. It would be difficult to
insure that such upwards-compatibility is maintained.

From the site's standpoint, many sites are leery of functional
changes to modules because of the impact such change~ can have on
their users. Such sites thoroughly test releases containing new
functionality, using testing produces which require significant
time and resources. These sites would probably not want to spend
the resources for such testing every 3-4 months (the planned
frequency of BFRs), and therefore would avoid applying BFRs (or
would attempt to apply only parts of BFRs). Having sites
partially install BFRs, or not install them at all, is not a good
idea. It would make tracking of the various versions of a module
difficult for site and TAC/LISD personnel during error diagnosis.

The key criterion for determining whether a change represents new
functionality is the impact such change would have on users. If
a control argument is added to a command but users can cQntinue
to use the command without knowledge of the control argument,
then that control argument does NOT represent new functionality.
Updated documentation describing the control argument will not be
shipped with the BFR release, so users will never know that the
control argument exists (without looki:1g at the source) until the
documentation is updated in the next major release. However, if
addition of the new control argument involved rewriting of
substantial portions of the program, such recoding increases the
likelihood of new bugs in the software and would therefore have a
greater impact on users.

determination of what changes are eligible for
in BFRs is subjective process. Perhaps a small

would have to be established to make such

Clearly, the
distribution
review board
determinations.

Types of Bug Fixes

In producing BFRs, we must select the contents of the release
from one of several possible content levels. The content level
chosen has an impact on the amount of work needed to create and
checkout a BFR.

A) BFRs could contain only fixes to critical problems in
active and dormant software. If such fixes were made to
dormant software modules, the same fix could be applied to
the current release (via BFR) and to the next release
without additional labor. However, when fixes were needed
in active software, extra effort would be required to
retrofit the fixes to the current release software. BFRs
at this level are critic~l fix BFRs.

- 6 -

MSS Support Study MTB-539

B) BFRs could contain fixes to critical problems (A), plus
fixes to high- and normal-priority problems in dormant
software modules. BFRs at this level are dormant fix BFRs.

C) BFRs could contain fixes to critical problems (A), plus
fixes to high- and normal-priority problems in dormant
software (B), plus selected fixes to high- and
normal-priority problems in active software. For active
software modules, the developer would select which problems
to fix, based upon impact of the problem and cost of
retrofitting the fix onto current release software. BFRs
at this level are active fix BFRs.

Critical Fix BFRs

We currently provide critical fix BFRs (usually in the form of
source-line changes) to sites on an individual basis when they
encounter a critical problem. What is needed is a uniform method
of getting all such fixes to every site. Possible methods are
discussed below under ''Distribution of BFRs".

Dormant Fix BFRs

If we move the C&F project to MSS in Phoenix (option 4 above),
then the number of fixes to dormant software will probably
increase. By definition of dormant software, the version of the
modules being fixed is the same in both the current and next
release. Therefore, MSS-supplied fixes to dormant software could
be included in BFRs with little or no extra effort (beyond the
C&F effort on next release modules).(1)

In addition to efforts of the C&F project, some dormant software
fixes are made by other developers as part of their software
maintenance responsibilities. If appropriate care was taken,
these fixes could also be included in BFRs. However, often such
fixes are made in conjunction with software enhancements (new or
changed functionality). Care would be required to insure that
new functionality was not included in BFR modules.(2) The

(1) In producing bug fixes in dormant software to be applied to
both the current and next release, some care must be taken to
avoid using new, next release features to fix the bugs.
However, past experience indicates that the use of new, next
release features is unlikely in such circumstances.

(2) Avoiding new functionality in BFR modules requires more care
than might be expected. Consider the case in which new
functionality is installed in a module on System M for the
next release. A bug is found in this new functionality, so a

- 7 -

MTB-539 MSS Support Study

prohibition on new functionality reduces the number of dormant
software fixes which other developers are likely to provide.

Active Fix BFRs

Including fixes in BFRs for active software modules becomes more
expensive. In some cases, developers might have to deal with up
to four versions of their software: the current release version
with BFRs applied; the next release version (installed on System
M); the EXL ·version; and a development version to which changes
are first applied. A significant overhead is required to
mentally switch between such versions. In other cases, however,
there might be fewer versions (no EXL version, for instance), and
a given module might be the same in the different versions,
facilitating bug fixes in all versions.

Multiple software versions can further complicate the task of
retrofitting a fix from the development version back to current
release software, because is sometimes necessary to use a
completely different fix approach in the current release
software. Development of such separate fixes for current release
software can represent a very significant additional overhead.

In estimating the costs involved in dealing with an additional
version of the software, and in retrofitting fixes to current
release software,· most developers of large, active subsystems
(eg, compose, PL/I, answering service) felt such fixes would
require 30-50% of their time. This overhead reduces the amount
of new development work which can be performed. It is doubtful
that MDC can afford such cuts in new development work.

Bug-Fix-only MSCR is submitted to solve the problem. It
would be easy to mistakenly include this bug fix in the BFR,
even though it is fixing a bug which does not exist in the
current release.

- 8 -

MSS Support Study MTB-539

DISTRIBUTION OF BFRs

Several methods of distributing bug fix releases are possible.

X) maintaining a list of compare ascii changes in a System~
data base. The data base wo~ld include information such
as:

- bug fix number
- date fix created
- date fix last updated (in case the fix has a bug)
- description of the bug
- TR numbers associated with bug
- error list entries associated with the bug
- new System Technical Identifier (STI) associated with

the bug fix
- numbers of prerequisite bug fixes (fixes which must be

applied before this bug fix)
- description of testing performed for this bug fix, so

far
- description of the bug, as a compare ascii of current

release module version module containing bug fix.(1)

Sites could pick and chose bug fixes from this data base,
depending upon: resources at their site to apply such
fixes; importance of product being fixed to the site;
impact of the bug on site's users; level of testing of the
fix; etc.

Y) an informal "release" consisting of a hardcopy list of the
complete database described in (X) above, distributed to
each site on a monthly basis.

Z) generation of a BFR tape containing modified source and
object archives, bound segments, and an exec com to apply
the modified to the system libraries (and to generate a
new Multics System Tape (MST) if necessary). A minimal
SRB would describe bugs fixed by the BFR, and outline the
procedures for installation. Microfiche listings for the
changed modules could also be provided.

(1) My thanks to SiteSA Jim Homan for the details of this idea.

- 9 -

MTB-539 MSS Support Study

LACK OF EXPOSURE TESTING FOR BFRs

The biggest problem which MSS will encounter in producing and
distributing BFRs is the lack of exposure testing of the fixes.
Current release software is not run on any production system
available to MSS, so no system is available on which exposure
testing could be performed.

MSS will probably run general regression tests against each new
BFR release to insure that major system functionality is not
disrupted by bug fixes. However, specific testing of each bug
fix after integration into a BFR system is probably not possible,
given our current resources.

One possible method of gaining some exposure would be to have our
Beta test sites (eg, Ford) which are running the current release
apply the BFR changes before the BFR is released to other sites.
This technique could limit the impact of any problems which were
found. However, this would also delay distribution of fixes to
sites. It is not clear that the benefits of a brief exposure at
beta sites would outweigh the costs of such delays.

- 10 -

....

MSS Support Study MTB-539

RECOMMENDATIONS

Given the above considerations, it is my recommendation that
resources be allocated toward fixing more bugs (option 4) and
getting bug fixes to sites more quickly (option 5). While I'm
sure some manpower will be devoted to building site support tools
and to training MSS personnel, such tasks should be performed
only as needed and as time permits.

With respect to BFRs, I would recommend a combination of options
B (critical/dormant fix BFRs) and Z (BFR tapes).

DON'T ALLOW SITES TO PICK BUG FIXES

Option X above is probably the easiest for MDC to implement
because it avoids the necessity to create and ship BFR tapes, for
elaborate system integration testing, for creation of microfiche,
etc. However, option X has several drawbacks.

Option X requires more involvement by the SiteSA in applying bug
fixes. He must integrate the bug fix into the unmodified source
code by hand using compare ascii output. The potential for
errors in application of fixes-is thereby increased.

Even worse, the SiteSA must also update the STI data base
(>t>psp info) and the STI information in bound segments for each
PSP to-allow offsite maintenance personnel to track which bug
fixes have been applied. Procedures for doing this are not well
documented.(1)

Option X makes it possible for SiteSAs to get bug fixes sooner,
and allows them to pick whlch bug fixes to apply to their system.
While this is an option X advantage, it is also a disadvantage,
for it makes it much more difficult to track which fixes have
been applied at a given site. In general, STis apply only to
major groupings of software modules (an entire PSP or the Multics
System Software Extensions (>sss and >tools), etc). To properly
track a pick-and-choose style of bug fixing, we would have to
associate STis with each module in the system. This does not
seem feasible at the current time. Therefore, option X requires
that we lose the ability to track bug fixing through STis (this
is the current situation when emergency fixes are shipped to
individual sites), and that we require a site to apply all fixes
covered under a given STI. Neither of these alternatives seems
desirable.

(1) According to Frank Martinson, is it against LISD policy for

anyone but MDC to change STI numbers.

- 11 -

MTB-539 MSS Support Study

Option Y shares most of the advantages and disadvantages of
Option X. It does provide a uniform method of notifying all
sites of the availability of bug fixes. However, it shares the
problems of application of fixes by SiteSAs and of loss of bug
fix tracking via STis.

Option Z bypasses most of the drawbacks described above. It
removes the capability for a site to pick and choose which fixes
to apply.(1) In exchange, it simplifies the application of bug
fixes by providing modules to which bug fixes have already been
applied, plus simple exec corns for installing such fixes at each
site. Such BFRs could bi applied by site personnel without the
aid of a SiteSA.

Option Z would still require changes to the MSCR form, such as:
a BFR box, reference to TR being fixed and/or error list entries
being resolved. The BFR box would be needed to distinguish
between bug fixes made to current release software and fixes made
to next release software (ie, fixes to bugs not yet in the
field). The TR and error list information would be needed to
include a list of bugs being fixed in the mini-SRB ~ssociated
with the BFR.

The disadvantage associated with options X and Y of not being
able to track bug fixes with ST! make these options undesirable.
Option Z does not have this disadvantage, because it packages all
bug fixes together as a single installation unit.

DON'T RETROFJT BUG FIXES TO ACTIVE SOFTWARE

Spending d~velopment resources to fix critical- and high"".priority
·pre>'blems ·in active. software (option C) ,could be expe11sive •. From
Ju.1y l, 1980 to ·the pt.e'sent, 46 critical;... ahdhigh_:p.riority
problems were entered as TRs. Most of these were entered against

.. active · sub~ystem.s •. Therefore, it is reasonable ·to as,sµme that
40-6p such. ::TRs ·-rrif.ght be ·_entered during· a .. typical :inte;ri::'release
·petiC:id. Retrofittfng fixes for such TRs ··to the;;ctfrrexit.:release

. could require 25-50% of·. development resources .curre·ntly ':allocated
·to these ac.tive subsystems •. .Expending such a-l~rge'perce11tage·of
.. total resources for. 'bug fixing is not reasonabTe~ · · · ·.

Also, we do not have sufficient personnel to-add f.or.2 people to
each development project for the purpose of ·bug fi·xing. ·Of
course, developers would still have the option o£·retrofitting

(1) In theory, a site could still choose to install some bug fix
modules, and not others. However, most sites ·Would not go to

. .

the lengths of to do such chasing (selective retrieve of only """\
certain modules from the BFR tape, modification of the
installation procedures, etc).

- 12 -

... , ... -

MSS Support Study MTB-539

important bug fixes and distributing them via the BFR tape, if
the need arose. However, standard policy would not require that
active software bug fixes be retrofitted to current release
software.

DO MOVE C&F INTO MSS

The C&F project should be moved to the MSS unit. MSS has more
resources available for fixing bugs in dormant software (option
4, above) than do the developement units. Such a move would
increase the number of bugs which actually get fixed, provide
educational coding opportunities to Phoenix personnel, free up
manpower in the development units for other development work, and
would produce a positive PR impact with customers. This should
also help to improve our goaled TR response times (many overdue
problems occur in dormant software that no one has time to
correct).

- 13 -

