
MULTICS TECHNICAL BULLETIN MTB-542 

To: Distribution 

From: Robert s. Coren 

Date: 12/03/81 

Subject: Measurement of FNP Performance 

ABSTRACT 

Currently available measurements of FNP performance and 
throughput are sketchy. Plans for extensive modification of FNP 
space allocation increase the desirability of better performance 
measurement in order to determine the impact of the changes on 
performance. Proposals for improved performance measurement 
include the following: 

- metering of FNP throughput; 

- improvement of the FNP "idle 
facilitate the calculation of a 
account for bursts of activity; 

time" measurement to 
moving average and to 

- improvement of the "instruction counter histogram" 
facility provided by debug_fnp to identify control tables 
modules; 

metering of time spent in 
interrupt-inhibited subroutines, 
for buffer pool management; 

certain interesting 
especially those used 

configuring pairs of 
t~st performance 
continuously. 

back-to-back channels in order to 
with data being pumped through 

THE NEED FOR BETTER PERFORMANCE MEASUREMENT 

In MTB 536, a proposal was described for making more effective 
use of extended memory in the FNP. The MTB included a rather 
vague prediction that the proposed change would carry a 
performance penalty. The fact of the matter is that presently 
available meters make it very difficult_to determine the exact 
size or nature of this presumed penalty. It was therefore 

Multics Project working documentation. Not to be reproduced or 
distributed outside the Multics Project. 

-1-



• 

MULTICS TECHNICAL BULLETIN 

decided that better instrumentation of the FNP 
implemented before the changes proposed in MTB 536 
effect of those changes could be observed. This 
bolstered by a feeling that FNP performance could 
but that without better measurements it would be 
determine where it needed improvement and to what 
attempts to improve it had succeeded. 

FNP THROUGHPUT 

MTB-542 

should be 
so that the 

decision was 
be improved, 
difficult to 

extent any 

As a result of a technical oversight, the FNP meters included in 
MR9.0 did not include an overall throughput meter on a per-FNP 
basis. This oversight has been corrected, and the number of 
characters per second input and output through a given FNP is now 
included in the output of the channel_comm_meters command, and is 
also available separately by means of the fnp_throughput command. 

IDLE TIME MEASUREMENT 

The method currently used to measure the percentage of time that 
the FNP is idle is as follows: the elapsed timer is set to a 
specified value (which defaults to 50 milliseconds); when it runs 
out,· an interrupt is generated, and the interrupt handler 
compares the value of the instruction counter at the time of the 
interrupt with the (known) address of the DIS instruction at 
which the FNP sits when it has nothing to do. The handler then 
increments one or the other of two cells, depending on whether or 
not the interrupt occurred at the idle DIS; comparison of the 
values of these two cells is used to determine the percent of 
time that the FNP is idle (or busy). 

While this method has the virtue of simplicity, it has some 
disadvantages as well.(1) It does not actually account for all 
idle time, since it only records any data when the timer actually 
goes off. It is also not well suited to the maintenance of 
moving averages or the observation of bursts of activity. 

The alternative method proposed here is based on a suggestion 
from Ricki Vick of FSO. The dispatcher, instead of sitting at a 
DIS when idle, loops incrementing a counter; the elapsed timer is 

(1) One apparent disadvantage, namely the possibility that a 
timer runout when interrupts were inhibited might incorrectly 
be recorded as idle, does not actually obtain; the idle DIS 
is preceded by two NOP instructions during which the timer 
runout can be handled. 

-2-



MULTICS TECHNICAL BULLETIN MTB-542 

set for one second rather than 50 milliseconds. When the timer 
runs out, the interrupt handler does the following: 

- records the value of the counter and resets it to zero; 

adds the value of the counter to a running total, and 
increments a count of the number of times the counter has 
been recorded; 

tests the value to see if it is either a new minimum or a 
new maximum, and records it as such if it is either. 

The running total is used to derive an average. The maximum is 
used to determine an idle percentage; that is, any interval 
during which the count matches the maximum is considered 100% 
idle. This approach is based on the assumption that the 
theoretical maximum idle time is experienced fairly early in any 
given bootload (this could be ensured by forcing 1 second of idle 
time near the beginning of each bootload). The minimum is used 
to identify the busiest second of the bootload. 

A user-ring metering program copies all the stored values 
described above on request, and reports an average idle time over 
the current metering interval, as well as the percentages 
reflected by the last recorded count and the lowest recorded 
count (if desired). The usual resetting mechanism can be used to 
start a fresh metering interval (although the maximum count is 
only reset when a new maximum is reported by the FNP). An 
absentee job that reported and reset the idle meters at regular 
intervals could thus provide a moving average of FNP idle time. 

Depending on configuration and activity, it might be desirable to 
use a timer interval other than one second. The length of this 
interval could be made a parameter optionally supplied in the FNP 
bindfile. Varying it dynamically, on the other hand, would 
introduce severe difficulti~s in interpreting the data, since 
values accumulated using one interval size would not be 
comparable to those accumulated with another, and the recorded 
maximum count might become completely meaningless. 

INSTRUCTION COUNTER HISTOGRAM 

The timer interrupt handler described above can also be made to 
keep track of the values of the instruction counter when it is 
invoked. Essentially, it divides FNP memory up into "buckets" of 
some specified size, and whenever the instruction counter does 
not reflect an idle state, it increments the bucket corresponding 
to its current value. Various requests exist in the debug_fnp 

~· command to turn this feature on and off, and to use the contents 

-3-



MULTICS TECHNICAL BULLETIN MTB-542 

of the buckets to determine in which modules the FNP is spending 
the bulk of its time. 

This approach has two problems. The first is that, if the 
interrupt occurred while running in the interpreter, this 
information is not very interesting; the control tables module in 
use at the time would be more useful information. This can be 
solved fairly simply by having the recording prog·ram use the 
contents of index register 2 rather than the instruction counter 
if the latter is within the interpreter, since index register 2 
normally points to the current op block when running in the 
interpreter. 

The second problem is that, for the purposes of monitoring the 
instruction counter, the failure to record anything while 
interrupts are inhibited constitutes a serious loss of 
information. Unfortunately, there does not appear to be any 
clean or reliable way to solve this general problem. The best 
approach seems to be to accept the fact that the percentages 
accumulated by the instruction counter sampling method are 
percentages of interrupt-enabled time only, and to use a 
different mechanism to record the time spent in certain selected 
interrupt-inhibited routines. 

The simplest and probably most effective method of doing this is 
to make each such subroutine read the elapsed timer at entry and 
exit, and to keep a running counter (at exit) of the number of 
calls and the total time spent. This could be done either by 
explicit subroutine calls in the modules being metered, or by an 
additional parameter to the "subr" and "return" macros used to 
generate entry and exit sequences. The recording of the actual 
data would presumably use the existing metering mechanism. Note 
that if instruction counter sampling is being used, the timer 
will obviously have to go off more often than once a second. The 
idle counter sampling described above would not be done at every 
timer interrupt in this case, but still only once every second. 

A complete list of routines to be monitored in this fashion has 
not been determined, but the most obvious candidates are the 
various subroutines used for allocating and freeing buffer space. 
Some parts of the scheduler are also possibilities, as are the 
subroutines in dia man dealing with the management of the 
per-channel request- queues and the construction of inbound 
mailboxes. Some care has to be taken both in the placement of 
the metering calls/macros and in analyzing the results of this 
metering, since some of these routines call each other. In 
addition, the calls themselves will take time and space, so we 
probably do not want to be overly prodigal with their use. It 
would probably be wise to make the metering described here be an 
option (separate from the option of whether to meter the FNP at 
all) settable·at bind time, and possibly at assembly time as 
well. 

-4-



MULTICS TECHNICAL BULLETIN MTB-542 

EXPERIMENTS 

The mechanisms described above can be used to gather statistics 
on our various service systems, of course, but they can also be 
used to observe FNP performance under more or less controlled 
conditions by configuring pairs of channels connected 
back-to-back. Various types of channels will be run in various 
combinations, driven by user-ring programs that simply generate 
output more or less continuously and discard all input. For 
example, we could run from one to 48 pairs of asynchronous 
channels at whatever combination of speeds we chose; or, say, 4 
pairs of bisync channels and 2 pairs of X.25 channels. The 
purpose in wiring the channels back-to-back is to avoid 
uncontrollable variables introduced by the use of external 
hardware, or the complications resulting from the use of an 
external driver such as CUESTA. 

HARDWARE REQUIREMENTS 

In order 
following 
CISL): 

to perform the experiments described above, the 
hardware would have to be available (preferably at 

o -- a full complement of 12 HMLC "mother boards" for a full 
FNP 

o -- 48 dual asynchronous subchannel boards 

o -- at least 4 HDLC subchannel boards 

o -- at least 4 bisync subchannel boards 

-5-



MULTICS TECHNICAL BULLETIN MTB-542 

TIME ESTIMATES 

The following is a summary of the tasks required to implement the 
proposals in this document, along with very rough time estiemates 
for each. 

Task 

Add idle loop and modify interrupt handler to 
record counter values 

Modify timer interrupt handler to record x2 

Add timing meters to inhibited routines 

Modifications to and/or addition of metering 
commands for idle meters 

Command to analyze time measurements for 
inhibited routines 

Documentation of new/changed commands 

Loopback experiments 

Total 

-6-

Time (weeks) 

0.5 

2 

2 

3 

1 0. 5 


