
Multics Technical Bulletin
Search Facility

To: Distribution

From: Benson I. Margulies

Date: 01/2:?/82

Subject: Improvements to the Search Paths

1 ABSTRACT
I

MTB-53 5

The search facility has an important limitation: there is no way to
validate that the objects put into the lists are acceptable to the programs
that use them. This MTB proposes a flexible mechanism for solving this
prob lam.

Comments should be sent to the author:

via Multics Mail:
Margulies.Multics on either MIT Multics or System M.

via US Mail:
Benson I. Margulies
Honeywell Information Systems, inc.
57 5 Tech Square
Cambridge, Massachusetts 02139

via telephone:
[HVN] 261-93 91 , or
492-9391

Multics project internal working documentation.
distributed outside the Multics project.

Page 1.

Not to be reproduced or

Multics Technical Bulletin
Search Facility

g INTRODUCTION

MTB-ffi5

Ever since the introduction of the search facility, there have been
complaints from the users that the error detection available on the search
path manipulation commands is inadequate. There are two major problems.

g,j_ Error checking is too little and too late

While there are often strict rules for what sorts of objects may be
put in a given list, the add_search_path and set_search_path commands
cannot enforce them. Thus users can add directories, or segments whose
suffices do not end in ".diet," to the dictionary search path, and not be
told that anything is wrong until much later.

2.2 Comparisons ..s.rg clumsy

To the search path commands, all paths are just character strings. To
delete a pathname from a search list the user must give the identical
character string that was given wh.en it was added. Short names cannot be
used. This is unlike anything else in the system, and is a major
limitation. This also prevents the reliable detection of duplicates.

~ PER-LIST VERIFICATION PROCEDURES AND PATH UID'S SOLVE THE PROBLEM

For validation, an easy solution is to allow the system or a user to
supply a per-List verification procedure. For comparisons, the definition
of an existing pad field in the search list structure as a UID, supplied by
the verification procedure, would allow reliable detection.

~ Verification Procedures

Verification procedures will be named LISTNAME_sl_. This will impose
a limit of 28 characters on the length of names of search paths that have
these procedures. The first name defined for the search list in the search
segment will be used regardless of the name specified by the user on the
command line. The LISTNAME_sl_ program may have the entrypoints:

* LISTNAME_sl_$validate,
* LISTNAME_sl_$compare
* LISTNAME_sl_$duplicates_ok
* LISTNAME_sl_$find
* LISTNAME_sl_$find_ptr

See the MPM pages for the exact calling sequences.

Page 1.

MTB-$5

3.1 .1 HOW THE PROCEDURES ARE CALLED

Multics Technical Bulletin
Search Facility

For additions to a search path, LISTNAME_sl_$validate will be called
on the new path. This program examines the path structure and returns
approval or disapproval. If it approves, it may optionally return a UID.
Then the check for duplicates is made. If a LISTNAME_sl_$duplicates_ok
entrypoint exists, it is called to find out whether duplicate paths are
acceptable for this list. This entrypoint may specify that duplicates are
to be accepted, raj acted, or accepted with a warning. If no
LISTNAME_sl_$duplicates_ok can be found, the default is to the user but
accept the duplicates. If UID's are available, the duplicate check is made
via them. If not, then multiple calls to LISTNAME_sl_$compare are used.
If there is no LISTNAME_sl_$compare entrypoint, then string comp~risons are
used.

For deletions, LISTNAME_sl_$validate is again called for syntax
verification. Again, if UID's are available, they are used to search for
the path to be deleted. If not, the LISTNAME_sl_$compare entry is again
used. If it is not defined, character string comparisons are used.

LISTNAME_sl_$find is used to extend the search_paths_$find_dir and
find_all entrypoints. If this entrypoint is defined for a List, then those
corresponding entries in search_paths_ will make use of them to find
things. For example, a search list of value segments could have a
LISTNAME_sl_$find that called value_.

LISTNAME_sl_$find_ptr is a performance enhancement for objects that
can be in the address space. Since searching for an object frequently
involves initiating the segment that contains it, this saves an initiation
when the procedure calling search_paths_$find wants a pointer. For some
things, Like value segments, the pointer may want to be a pointer to the
base of the containing segment rather than to the particular object.

3.2 UID's: their definition and management

For most objects, the standard file system UID will serve as a UIO.
As of now, there is no entry to the hardcore that returns the UID of a
non-initiated segment other than status_long. However, search path changes
are not frequent, and need not be especially cheap. A better interface for
fetching UID's would be a great improvement.

For search paths that are not file system objects, some other source
of UID's is needed. One solution would be to give up, and make use of the
compare procedures each time. Another would be to make use of the large
number of past-time UID's that will never be assigned to an object. Since
the control argument paths do not need UID's at all, the only problem is
non-entry objects. Since the ID's only have to be unique within a search
path, the use of small numbers [beginning with UID "000000000001"b3) is a
reasonable solution.

Page 2.

Multics Technical Bulletin
Search Facility

! THE INTERF~CE TO THE PROCEDURES

MTB-$5

To get good error messages out of the verification procedures, they
are specified to call sub_err_ to report invalid paths. The search path
commands will handle sub_error_, note errors signalled by the verification
procedure, and extract the message from the info structure. Since there
are no subroutine interfaces for manipulating the paths except modification
or replacement of the entire sl_info structure, any programs that wish to
modify Lists and make use of validation and comparison will have to
make_entry and call the procedures themselves •

.§ IMPLEMENTATION COST

The modifications to the search List commands, and even verification
procedure for all the installed search Lists, could be coded in a matter of
several working days.

Page 3.

LISTNAME_s l_ LISTNAME_s l_

Name: LISTNAME_sl_

LISTNAME_sl_ is a generic name for a procedure associated with a
search List that provides validation facilities for paths in the search
List. For example, a validation procedure for the dictionary search path
would be named "dictionary_sL_". Not all search paths have validation
procedures, and not all validation procedures provide all the entrypoints.
The documentation for the individual entrypoints specify the correct
default action to take if the entrypoint does not exist.

Entry: LISTNAME_sl_$validate

checks a search path for correctness in a given search List. If
there is no validate entrypoint for a list, all paths that consist of the
standard control arguments, all absolute or relative pathnames, and all
such pathnames including active strings are to be considered valid. If the
search path is valid, the procedure will set the UID in the path to the
correct UID, if any, and return. If the search path is invalid, the
procedure will call sub_err_ with a "name" argument of
"LISTNAME_s l_$va Li date," and other arguments suffi ci ant to produce an
appropriate error message.

Usage

dcl LISTNAME_sL_$validate entry [character C*l, pointer);

call LISTNAME_sl_$validate (search_list_name, search_path_ptrl;

where:

search_List_name is the primary name of the search list. (Input)

search_path_ptr is a pointer to a search_path structure, as declared in the
include file sl_info.incl.pl1: (Input)

dcl 1 search_path aligned based,
2 type fixed binary,
2code fixed bin (35),
2 UID bit (36) aligned,
2 pathname character (168) unaligned;

type may be chosen from the type values defined in sl_info.incl.pl1.
(Input)

code will always be zero. (Input)

Page 4.

LISTNAME_sl_ LISTNAME_s l_

UID should be set to
defined.

the UID of the
(Output)

Entry: LISTNAME_sl_$duplicates_ok

object, or ""b if there is no UID

returns information about duplicate paths in a search list. If
this entrypoirrt is not defined, then the default is to warn of duplicated.

Usage

dcl LISTNAME_sl_$duplicates_ok entry (char C*ll returns (fixed bin);
dcl Value fixed bin;

Value= LISTNAME_sl_$duplicates_ok (search_list_namel;

where:

search_list_name is the primary name of the search list. (Input)

Value defines the correct treatment of duplicate paths for this list.
(Output) It may be one of:

dcl DUPLICATES_ALLOWED init (1) fixed bin;
dcl WARN_DUPLICATES init (0) fixed bin;
dcl PROHIBIT_DUPLICATES init (2) fixed bin;

Entry: LISTNAME_sl_$compare

compares two search paths. This entry is only called when one or
both of the paths to be compared both has no UID, and is not of a type that
can be compared without UID. All of the control argument paths
(-working_dir, etc) can be compared without UID. If this entrypoint is not
defined, character string comparison is appropriate.

Usage

dcl LISTNAME_sl_$compare entry (char C*l, pointer, pointer)
· returns (bit (1) aligned);

Equal= LISTNAME_sl_$compare (search_list_name,
search_path_ptr_1,

search_path_ptr_21;

dcl Equal bit (1) aligned;

Page 5.

LISTNAME_s l_ LISTNAME_s l_

where:

search_list_name is the primary name of the search list. [Input)

search_path_ptr_1 is a pointer to the first path to be compared. [Input)

search_path_ptr_2 is a pointer to the second path to be compared. [Input)

Equal is "1"b if the paths are equal, and "D"b otherwise.

Entry: LISTNAME_sl_$find

given a search path and an object of interest, indicates whether
the object exists in the path.

Usage

dcl LISTNAME_sl_$find entry [pointer, char [*), fixed bin (35))
returns [bit (1) aligned);
dcl Found bit (1) aligned;

Found = LISTNAME_sl_$find [search_path_ptr, search_string,
code) ;

where:

search_path_ptr is a pointer to a search path structure to be searched for
the object. Note that the current referencing path will be
available in the pathname portion of the structure for the
-referencing_dir path. (Input)

search_string is the object that the caller is looking for. (Input)

code is a standard system status code. It will be nonzero if the search
path is invalid, or if the search_string is malformed. Note
that the sub error_ condition may be signalled with an
informative string in the information. [Output)

Found wi LL be equa L to "1 "b if the object was found, and "D"b otherwise.

Entry: LISTNAME_sl_$find_ptr

given a search path an and object of interest, returns a pointer
to the object if it exists in the path.

Page 6.

LISTNAME_s l_ LISTNAME_s l_

Usage

dcl LISTNAME_sl_$find_ptr entry (pointer, char [*), fixed bin [35))
returns [pointer);

where:

dcl Thin!L_ptr pointer;

Thin!L_ptr = LISTNAME_sl_$find_ptr (search_path_ptr,
search_string, code);

search_path_ptr is a pointer to a search path structure to be searched for
the object. [Input)

search_string is the name of the object that the caller is looking for.
[Input)

code is a standard system status code. It will be nonzero if the search
path is invalid, or if the search_string is malformed. Note
that the sub_error_ condition may be signalled with an
informative string in the information. [Output)

Thin!L_ptr will be a pointer to the object
semantics of this pointer are
search list basis.

Page 7.

found, or null.
defined on a search

The exact
list by

