
MTB 588 Multics Technical Bulletin

To: MTB Distribution

From: N.S.Davids and Mike Kubicar

Date: July 19, 1982

Subject: MRDS and DMS: Conversion Overview

Comments may be made:
Via electronic Mail:

Davids.Multics
Kubicar.Multics

Via forum (method of choice):
>udd>Demo>dbmt>con>mrdsdev

Multics Project internal working documentation. Not to be reproduced
outside the Multics Project.

07/19/82 Page. 1 MTB 588

Multics Technical Bulletin MTB 588

INTRODUCTION

This MTB will discuss the conversion of mrds from using vfile
and other system routines for a relation's data management to
using the relation manager being developed at CISL. The use of
the relation manager will increase the functionality of MRDS,
providing transactionprocessing, better concurrency control, and
in the future larger data files with better paging.

The MTB is broken up into the sections: "changes to modules
manipulating the relation's data and the MSF containing the data",
and "unresolved issues". The first section is further divided
along the function lines of the modules. The pertinent features
of each module are described in greater or lesser detail depending
on its complexity as are the changes that are needed. In cases
where the correct change is not obvious several possible changes
are described, these are summarized in section 2.

07/19/82 Page 2 MTB 588

MTB 588 Multics Technical Bulletin

Changes to Modules Manipulating the Relation's Data and the MSF
Containing the Data:

Modules that display or return statistics about a relation:

display mrds db population
This-command-calls vfile status • This call will have to be
replaced with calls to
relation manager $get duplicate key count and either
relation-manager-$get-population or get count. The entry
get population returns a close (but not exact) count of the
number of tuples in the relation. The entry get count will
return an exact count but will be slower than get population.
The statistics concerning the number of bytes in-the tuples,
number of bytes used in keys, number of bytes used in the
duplicated keys, vfile tree height, number of pages, amount
of free space, and number of updates which are currently
displayed by the command will not be available when the command
is converted to use the relation manager • Of all these
statistics only the number of pages and number of updates
seems useful to the user, the number of pages can be obtained
via other system calls. This command will have to be
incompatibly changed, first to remove the statistics that
will not be available via the relation manager and second
to indicate that the population displayed will no longer be
exact or to indicate an increas.e in the execution time of
the command. It is also possible to call the relation manager
only for ·page file relations and continue to call vfile status
for databases composed of vfile_ relations. - -

mu get rel size
-This internal (not externally documented) subroutine calls

iox $control with a control order of file status. it returns
to its caller the number of tuples in- the relation, the
total number of keys, and the number of duplicate keys which
are used to estimate the costs of search paths. The call to
iox can be replaced with a call to the
relation manager $get duplicate key count and either
relation-manager-$get-population or get count. Which one will
depend on the further investigations- of the accuracy of
get population and the sensitivity of the cost estimate and
the-performance of get_count.

07/19/82 Page 3 MTB 588

Multics Technical Bulletin MTB 588

Modules that setup I/O with the relation:

mu open iocb manager
-This- internal subroutine is called by many other modules

when they determine that they need a new iocb pointer. These
iocbs are stored in the relation's resultant. Multiple iocbs
are needed when the same relation is referred to by multiple
tuple variables. The maximum number of iocbs needed is the
maximum number of tuple variables plus 1. The concept of an
iocb is being replaced with the concept of cursor. A cursor
is a position marker into the relation. Each cursor is
associated with either the relation's tuples or 1 of the
relation's keys (primary or secondary). In this respect they
are more limited than an iocb which can be used to reference
any of the keys or the tuples. The worse case maximum number
of cursors needed is (maximum number of attributes + 1) *
(maximum tuple variables + 1) which requires more space than
is reasonable. There will therefore have to be a change in
the current algorithm which allocates iocbs as needed and
then keeps them around for future use to one which perhaps
keeps a certain number of cursors around in a "cache" of
cursors but allocates extra cursors when needed and frees
them afterward. It would be simpler to not have the "cache"
of cursors but performance may suffer. In addition this
module will have to open the page file containing the relation
with ·a call to the relation manager $open if the relation is
not yet opened. - -

mrds dsl finish file
This internal subroutine closes, detaches, and destroys the
iocbs associated with a relation. The calls must be changed
to the relation_manager_$destroy_cursor and close.

rmdb create index
rmdb-delete-index
rmdb-create-relation

These internal subroutines attach, open, close, detach, and
destroy iocbs to the relations. They do this independently
of mu open iocb manager and mrds dsl finish file because the
modules do-not work in an "open database" environment. Calls
to iox $attach and open must be replaced with calls to the
relation manager $open and create cursor and calls to
iox $close, detach, and destroy must ~e replaced with calls
to the relation_manager_$destroy_cursor and close.

The modules that create or modify a relation:

mrds rst format file
This internal subroutine calls iox to attach and open the
relation's MSF, in the process the MSF is created. Th·ese
calls must be replaced with a call to the

07/19/82 Page 4 MTB 588

MTB 588 Multics Technical Bulletin

relation manager $create relation and N calls to create index.
The other function of this module is to format the MSF, this
function is no longer needed and it might be reasonable to
move to calls to the relation manager up into the caller of
mrds rst format file (create mrds db):

rmdb create relation
This internal subrou.tine uses the same logic as
mrds dsl format file and must be modified in the same way.
Its other functions however cannot be subsumed into its caller
(rmdb_rq_create_relation).

rmdb create index
This internal subroutine writes (using iox) a new index key
for each tuple in the relation. It does this by calling
mu scan records to read each tuple. The call to the
relation manager $create index will automatically scan the
tuples and write the new index so that the calls mu scan records
and iox $write record can be replaced with one call to
create index • Wh i 1 e it w i 11 b·e n e c es s a r y to open the re 1 at ion
via relation_manager_$open it will not be necessary to create
any cursors.

rmdb delete index
This internal subroutine deletes, from the vfile key tree,
all keys with a certain key head, which corresponds to the
keys for a particular attribute. The calls to iox $control
(order delete key) must be replaced with a call to the
relation manager $delete index. As in rmdb create index it
will be necessary to call relation manager $open to-open the
relation but it will not be necessary to create any cursors.

The module that deletes the relation:

rmdb delete relation
This internal subroutine calls delete to delete the relation's
MSF, it must be changed to call the
.relation_manager_$delete_relation.

The modules that store or modify a tuple:

mu build indl
-This internal subroutine extracts from the tuple those values

that will be secondary indices and builds a list of secondary
index strings that include the relation and attribute
identifiers. It also encodes the value so that collating
sequence of the string and the collating sequence of the
values is the same. This module may be deleted, its function
has been taken over by the relation_manager_.

07/19/82 Page 5 MTB 588

Multics Technical Bulletin MTB 588

mu encd key
-This-internal subroutine extracts from the tuple the values

that will make up the primary key of the relation and encodes
them and builds a key string. It may also be deleted since
its function has been moved to the relation_manager_.

mus add ind
This- internal subroutine adds the indices created by
mu build indl to the tuple. It may be deleted since its
function-has been moved to the relation_manager_.

mus del ind
This- internal subroutine deletes the indices created by
mu build indl from the tuple. It may be deleted since its
function-has been moved to the relation_manager_.

mus add ubtup
This- internal subroutines adds a tuple to the relation it
may be deleted and calls to it (in mu store) may be replaced
with a call to the relation_manager_$put_tuple.

mus mod ubtup
This-internal subroutine calculates the length of the new
tuple and calls iox to locate the tuple given its tuple id
and to rewrite it.- It may be deleted and calls to this
module (in mu modify) may be replaced with a call to the
relation_manager_$modify_tuple_by_id.

mu store
-For this internal subroutine replace the call to mus add ubtup

with a call to the relation manager $put tuple. Delete the
calls to mu_build_indl, mu_encd_key,-mus_add_ind.

mu modify
-For this internal subroutine replace the call to mus mod ubtup

with a call to the relation manager $modify tuple by id.
Delete the calls to mu_build_indl-; mu_del:ind, andmus_add_ind.

mrds dsl modify
An alternative to modifying mu modify is to delete it and
modify this external subroutine to perform the bookkeeping
tasks in mu modify and to call the
relation manager $modify tuple by id directly. This would
allow a reduction in calls to- the modify tuple by id since
an array of tuple ids could be passed to modify-tuple by id
instead of just one tuple id. Also if the selection expression
controlling the modify ranges over just 1 tuple variable a
single call to modify tuple by search could be made, this
would require more extensive-changes to mrds dsl modify than
just passing an array of tuple ids. - -

07/19/82 Page 6 MTB 588

MTB 588 Multics Technical Bulletin

The modules that delete a tuple:

mus del ind
see above section

mu delete
-This internal subroutine calls iox $seek key and delete record

to delete a tuple and then calls mus del ind to delete the
secondary indices. The call to mus del ind can be deleted
and the calls to seek key and delete-record replaced with a
call to the relation_manager_$delete_tuple_by_id.

mrds dsl delete
An alternative to modifying mu delete is to delete it and
modify this external subroutine to perform the bookkeeping
tasks in mu delete and to call the
relation manager $delete tuple by id directly. This would
allow a reduction in calls to- the delete tuple by id since
an array of tuple ids could be passed to delete-tuple by id
instead of just one tuple id. Also if the selection expression
controlling the delete ranges over just 1 tuple variable a
single call to delete tuple by search could be made, this
would require more extensive-changes to mrds dsl delete than
just passing an array of tuple ids.

The modules that retrieve a tuple:

mu scan records
-This-internal subroutine scans the relation sequentially and

returns a pointer to the tuple. It may be deleted since
this is the function of the
relation manager $get tuple by search used with the relation
collection cursor and- a specification that will include all
tuples.

mus lac tup
'This-internal subroutine has two entry points. The "given_id"
entry point calls iox $control with a control order of
record status to get a pointer to the tuple given its tuple id.
The entry point "given key" calls iox $control with a control
order of get key to get the tuple -id and then calls the
procedure which implements the given id entry. The reason
for having a separate module for doing this is to localize
the manipulation of tuple ids to vfile descriptors. This
module can be deleted and calls to it replaced with calls to
the relation manager $get tuple by id and
get_tuple_by_search. - - - - -

mu get tid
-This internal subroutine has two entry points. The "key"

entry point calls mus_loc_tup$given_key. The "index" entry

07/19/82 Page 7 MTB 588

Multics Te·chnical Bulletin MTB 588

point calls iox $control with control orders of select and
exclude to locate the tuples whose index (or key head) match
the relation operator. These two entries can both be changed
to call the relation_manager_$get_tuple_by_search.

mu sec get tuple
-This internal subroutine has two entry points. The "id"

entry point calls mus loc tup$given id to obtain a tuple from
a tuple id, this call can be replaced with a call to the
relation manager $get tuple by id. The "next" entry point
returns the tuple id -and tuple for the next tuple. There
are two definitions of next, first is by primary key order
and second is by storage order. If primary key order is not
used then a call is made to mu scan records. If the primary
key order is used than calls-to iox $control with control
orders of get key and record status and-a call to iox $position
are made. Both the call to-mu scan records and iox must be
replaced with a -call to the
relation man ager $get tuple by search. For a key order search
the the -primary-key -collection cursor will be used along
with a specification that will indicate a relative position
of one. For an unordered search the relation collection
cursor will be used with the same specification.

mrds dsl search
This internal subroutine is the one that executes the search
program specified by the user's selection expression. It
returns to its callers a pointer to a tuple and its tuple id
for a tuple that satisfies the expression. If the search
program indicates that an entire relation is to be searched
this module will call iox $position to position to the beginning
of the relation; it will further call mu scan records$ini t
if the search is to be unordered. These two calls must be
replaced with a call to the
relation manager $get tuple by search with a specification
that indicates that the cursor should be positioned to the
first record. If the search is to unordered the relation
collection cursor will be used, else the cursor for one of
the keys (primary or secondary) will be used. There is one
other call to iox (iox $control, order select) that is there
do to a bug in mus loc tup$given id which can be removed
when mus_loc_tup is converted. -

07/19/82 Page 8 MTB 588

MTB 588 Multics Technical Bulletin

The modules that define a temporary relation:

mrds dsl define temp rel
This external subroutine creates, loads and destroys temporary
relations. It creates a relation by calling
mu open iocb manager to attach and open and iocb and then
calls iox $control with a control order of record status to
force the- newly created segment to be an MSF. -This will
have to be changed to call the
relation manager $create relation to create the relation and
then to call the replacement for mu open iocb manager to open
the page file and create the cursors. Relations are deleted
by first-calling iox to close, detach, and destroy the iocbs
associated with the relation and then calling hes to delete
the MSF. This will have to be changed to- call the
relation_manager_$destroy_cursor and delete relation.

Search Program Generation:

mrds dsl permute

Tools

This internal module calculates the cost of searching the
tuple variables for each and-group in the selection expression.
The minimum change required will be to change the cost values
for each method of searching of a relation. This will have
to be done by experimenting to determine each cost. A secondary
change would be to change the algorithm for estimating the
number of tuples which will selected from a relation to use
the duplicate count for the selecting index instead of the
duplicate count for all indices. Also it might be reasonable
to use the min and max value of each attribute but the cost
of determining this may make it prohibitive.

MRDS has a great many software tools which are not distributed
as part of the MRDS product. These tools will also have to
be converted. In most cases this will entail opening and
closing the relations. Development of new tools to deal
with page_files may also be required.

07/19/82 Page 9 MTB 588

Multics Technical Bulletin MTB 588

Unresolved Issues:

The following unresolved issues are divided into 3 groups.
Group 1 concerns incompatible changes, both data returned to the
user and performance. The incompatibilities may be eliminated at
a cost of more effort during the conversion and more complex code
to maintain. Can users live with these incompatible changes?
Group 2 concerns a potential increase in performance verus more
effort during conversion. We do not yet know how big or under
what percentage of the circumstances a performance increase would
be observed. Are they worth doing now? Group 3 concerns areas
where we do not yet have enough information to plan effectively.

Group 1 - incompatible changes:

display mrds db population
The-use of the relation manager will change the information
that can be returned-to the -user. Information on the
average selectivity of each secondary index can be returned
(currently only the average selectivity over all secondary
indices is returned) while the lengths of the secondary
indices and a few other things cannot be. An alternative
is to continue to call vfile status for vfile relations
and call the relation manager- only for page file relations,
this of course will increase-the complexity of the code.

A decision must be made as to whether to call the
relation manager entry get population or get count. The
command currently (and speedily) returns the exact number
of tuples in the relation and it will continue to do so
for vfile relations, get population which is speedy returns
an approximate count while get count returns the exact
count but may be to slow. -

mu get rel size
- The same considerations as the second point under

display mrds db population with the added concern that the
count will be used to estimate search program cost.

07/19/82 Page 10 MTB 588

MTB 588 Multics Technical Bulletin

Group 2 - potential performance increase verus increased conver
sion effort:

mrds_dsl_modify, mu modify, mrds dsl search
A "straight" conversion of mu- modify would be the simplest
conversion task but moving -part of mu modify up into
mrds dsl modify and further changing mrds dsl modify to
form-an array of N tuple ids and call the relation manager
to modify all N tuples at once should give increased per for=
mance when multiple tuples are modified via the same selec
tion expression.

The module mrds dsl modify could be modified so that if
only 1 tuple variable is used a call to
relation manager $modify tuple by search could be made
instead of obtaining the tuple ids by calling mrds dsl search
and then calling modify tuple by id to modify-each tuple
individually. While it-would-not be necessary to modify
mrds dsl search to not generate the search program it would
increase-the performance gain still more.

mrds dsl delete, mu delete, mrds dsl search
The -same points as mentioned -for mrds_dsl_modify and
mu_modify.

mrds dsl permute
Changing permute to take into consideration the average
selectivity of each secondary index instead of just the
average selectivity of all of the secondary indices would
increase the effectiveness of calculating the cheapest
search program.

Group 3 - more investigation needed:

tools
The tools library needs to be reviewed, those tools still
useful need to be updated, those tools no longer used
need to be deleted or archived. New tools may need to be
created.

mu open iocb manager
- The- cost or creating a cursor needs to be determined.

07/19/82

The size of a cursor also needs to be determined, it
might be reasonable to allow space for the creation of
the maximum number of cursors. Alternatively new algorithms
must be implemented for the dynamic creation and deletion
of cursors. perhaps the maximum number of tuple variables
should be reduced?

Page 11 MTB 588

Multics Technical Bulletin MTB 588

mrds dsl permute
New values of the cost constants must be determined by
experiment.

07/19/82 Page 12 MTB 588

