
•

Multics Technical Bulletin MTB - 600

To: Distribution

From: James A. Bush

Date: September 24, 1982

Subject: The mtape_ I/O module: A new user interface for tapes

Send comments on this MTB by one of the following means:

By Multics mail on System M to:
Bush.Multics

By Multics mail on MIT-Multics to:
JABush.Multics

To the forum meeting on System M at:
>udd>m>jab>forums>Multics_tape_I/O {tape)

By U. s. mail to:
James A. Bush
Honeywell Information Systems Inc.
Multics Development Center
Cambridge Information Systems Laboratory
Mail Station MA22
575 Technology Square
Cambridge, Massachusetts 02139

Multics Project Internal working Documentatfon. Not to be
reproduced or distributed outside of the Multics Project.

Page 1 MTB 600

MTB - 600 Multics Technical Bulletin

INTRODUCTION

As detailed in MTB 575, there are many problems associated
with tape I/O on Multics. Not the least of these problems is the
current user interface which, with the many individual I/O
modules involved, presents an arbitrary and inconsistent
interface to the user.

Another serious problem with our current tape software is
performance or lack thereof. Although some interim performance
improvements have been made to the tape software for the MR10.0
release, any significant gain in performance will require that
the tape_ioi_ intermediate tape I/O module (Documented in MTB
383) finally be implemented. The implementation of tape ioi is
being completed as I write this document and will be releasea in
the MR10.1 general release. However, in order to take advantage
of the performance enhancements offered by tape ioi , the current
tape I/O modules would have to be retrofitted to interface to
tape ioi instead of the tdcm intermediate I/O module. Because
of the -user interface problems mentioned above, it has been
decided not to proceed with this retrofit. (The exception to
this will be the retrofit of the tape_mult_ I/O module for the
MR10.1 release, which will give system tape I/O a much needed
boost in performance, plus provide a testbed and exposure vehicle
for tape_ioi_.)

A new iox compatible tape I/O module is being designed to
address the problems mentioned above, plus the other problems
detailed in MTB 575. This new I/O module, called mtape_ (for
Multics tape), will initially complement and eventually replace
the existing tape_ansi_, tape~ibm_, tape_nstd_ and tape_mult_
tape modules, plus provide a f 1rst time support for GCOS, CP5/6,
and user defined tape formats as well.

OVERVIEW

The mtape_ I/O module offers a significant departure from
the current group of tape I/O modules. Features of mtape_
include:

o One tape module for all tape formats.

MTB 600

Unlike the current tape I/O modules, mtape will allow
processing of several different types of formated tapes
including: ANSI, IBM, Multics, GCOS, CP5/6, UNLABELED,
and RAW formats. For tape input, information returned
from RCP after a successful tape mount is used to
determine the appropriate tape format. For tape output, °"'
a simple attach description control arg ("-label") is

Page 2

Multics Technical Bulletin

used to designate
specific processing
externally callable
modules".

the desired
requirements
subroutines

tape
are

known

MTB - 600

format. Format
accomplished by

as "Per-Format

o Enhanced performance and better error recovery.

The mtape_ I/O module will use the tape_ioi_ int7rmedi~te
module for performing physical tape I/O and will enJOY
the performance enhancement resulting from all tape I/0
being initiated asynchronously (i.e. multi-buffers being
written or read with one I/O). The tape_ioi_
intermediate module will also perform all error recovery,
taking advantage of hardware error recovery features
available within our tape subsystems. This will ensure
that all error recovery will be accomplished in a
consistent manner for all tape formats.

o Logical separation of volume and file functions.

Tape volumes and volume sets will be attached and
detached, where as tape files will be opened and closed.
This is made possible by extensions to the iox I/O
system (see below) which allows an "open description" to
be passed in the open call for defining file specific
parameters, instead of passing those parameters in the
attach description. This will obsolete the "retention"
misfeature perpetrated by the tape ansi and tape ibm
tape I/O modules. - - - -

o A system of sensible defaults.

To make the user interface simpler, all values required
in an attach or open description will have a reasonable
default value assigned. All default values are stored in
the users default value segment ([user name].value in the
users home directory) and are created at first reference
by mtape_. To meet special needs, a user may change
these default values, by using the value_set command.

o A method to enable users to define their own tape
formats.

Although mtape provides support for all "popular"
labeled tape types, there may be circumstances where a
user or a site may need to read in tapes created by other
vendors, the formats of which do not conform to any of
the popular labeled tape types. Since format specific
processing is contained in externally callable
"per-format" modules which are found using the standard
search path mechanism, a user may write his own
per-format module and change his search paths

Page 3 MTB 600

MTB - 600 Multics Technical Bulletin

appropriately to find it. This tailored per-format
module may be either a substitution of one or more of the
standard per-format modules, or by using the "-label"
attach description argument, a unique named per-format
module may also be specified.

For a detailed discussion of the mtape I/O module, see the
MPM style mtape_ documentation at the end of-this document.

RCP Extensions

In order to fulfill the requirements of mtape , RCP must be
extended to return more information to the caller, after a
successful tape mount. This information must include:

o Density the tape is recorded at.
o A numerical value of the label type that RCP identified.
o ASCII representation of the volume name, as recorded in the

volume label record.
o An indication of whether Operator authentication was required.
o And if so, what was the authentication code used by the

Operator.

These changes will be designed in such a way as to not be
incompatible with the existing RCP interface. This will be
accomplished by using a different version number in the structure
returned by RCP, (defined by the include file
rcp_tape_info.incl.pll).

In addition, RCP must be extended to implement a tape unit
exchange protocol. This protocol would allow automatic selection
of a different tape unit, if after mounting the requested tape
volume, it is determined that the recording density is not within
the range of density capabilities of the current tape unit. This
protocol should also include an externally callable subroutine
interface, so that mtape_ could use it as a last ditch error
recovery method. (e.g. If an unrecoverable error exists during
tape input, mtape_ would remember the current physical position,
and demount the the current tape volume. A different tape unit
could be requested and after a successful mount, mtape could
position to the end of the last good block and attempt to re-read
the block in error.)

EXTENSIONS TO IOX

MTB 600 Page 4

Multics Technical Bulletin MTB - 600

In order to support mtape_, three (3}.new entries must be
added to the iox_ I/O system. These new entries are:

o iox $open file
o iox-$close file
o iox:=sdetach

All of these new entries will accept as one of their arguments, a
"description" which will contain a strin~' of arguments to be
parsed by the I/O module.

In addition, features
name) to recognize the
description:

attach:
open:
close:
detach:

must be added to iox_$attach_(ptr
following keywords in an attach

The character strings that follow each of these keywords will be
extracted and saved by iox (in an allocated area, with a pointer
to this area being initialized in the iocb area) and will be
passed to the appropriate new entry (i.e. iox $Open file,
iox $close file and iox_$detach) as descriptions~ when the
correspondTng old entry (i.e. iox $open, iox $close, and
iox_$detach_iocb) is called. These changes are needed to support
language I/O in mtape_, without changing language I/O.

For details of the new iox entries and the changes to the
attach entry points, see the MPM-style iox documentation below.

Page 5 MTB 600

iox iox

Name: iox

Entry: iox $attach name - -
This entry point is the same as the iox $attach_ptr

entry point except that the I/O switch is designated-by name and
a pointer to its control block is returned. The control block is
created if it does not already exist.

Usage

declare iox $attach name entry (char(*}, ptr, char(*}, ptr,
fixed bin(35)};

call iox_Sattach_name (switch_name, iocb_ptr, atd, ref_ptr,
code) :

where:

switch name
is the name of the I/O switch. (Input)

iocb ptr
-points to the switch's control block. (Output)

atd
is the attach description. (Input)

ref ptr
- is a pointer to the referencing procedure, used by the

search rules to find an I /0 module. (Input)

code
is an I/O system status code. (Output)

Entry: iox_$attach_ptr

This entry point attaches an I/O switch in accordance with a
specified attach description. The form of an attach description
is given in "Multics Input/Output System" in Section V of the MPM
Reference Guide. If the switch is not in the detached state, its
state is not changed, and the code error_table_$not_detached is
returned.

The I/O module is located using the current search rules.

MTB 600 Page 6

iox

Usage

declare iox_$attach_ptr entry (ptr, char(*), ptr, fixed
bin(35));

call iox_$attach_ptr (iocb_ptr, atd, ref_ptr, code);

where:

iocb_ptr
points to the switch's control block. (Input)

atd

iox

is the attach description. (Input)

ref ptr
- is a pointer to the referencing procedure, used by the

search rules to find an I/O module. (Input) (See
hcs_$make_ptr for more information about ref_ptr.)

code
is an I/O system status code. (Output)

Notes

The ref ptr argument can be used to specify a particular I/O
module if one by that name is not already initiated, for example:

call iox $attach ptr (iocb ptr, "discard ",
addr (my_discard_$my_discard_attach), code);

In addition to searching the attach description for the I/0
module name to attach, there are four keywords which are searched
for and have special meaning to the attach entry points. If
anyone or all of the kerwords, "attach:", "open:", "close:", or
"detach:" are found in the attach description, they are
interpreted by the iox_Sattach entry points as follows:

The character string that follows each keyword, up to the next
keyword or the end of the attach description, is stripped from
the given attach description and saved in an allocated area with
a pointer to this area being initialized in the iocb area. In
the case of the "attach:" keyword, this saved character string
becomes the new attach description which will be passed on to the
specified I/O module. For the "open:", "close:", and "detach:"
keywords, the saved character strings become "descriptions" for
the iox_sopen_file, iox_Sclose_file and iox_$detach entry points

Page 7 MTB 600

iox iox

respectively. If after attaching an I/O switch, a user calls the
iox_$open entry point and iox has previously saved an "open
description" in the manner just described, then the open file
entry of the attached I/O module will be called instead of the
open entry, with the saved open description being supplied by
iox_ as the required open description. The saved close and
detach "descriptions" are handled in a like fashion, by having
iox intercept the call to the close or detach iocb entries and
forwarding the calls to the close file and detach entries
instead, after supplying the necessary "descriptions" from the
saved copies.

Entry: iox $close file - -
This entry point closes an I/O switch. If the switch is not

open, its state is not changed, and the code
error_table_snot_open is returned.

This entry point differs from the iox_$close entry point due
to the addition of the close description argument. For those I/O
modules that support the close_f ile entry, the close description
offers a means of providing file closing parameters such as a
closing comment, where to position to upon closing etc.

Usage

declare iox_$close_file entry (ptr, char (*), fixed
bin(35));

call iox_$close_file (iocb_ptr, cld, code);

where:

iocb_ptr
points to the switch's control block. (Input)

cld
is the close description. (Input)

code
is an I/O system status code. (Output)

MTB 600 Page 8

iox iox

Entry: iox_$detach

This entry point detaches an I/O switch. If the switch is
already detached, its state is not changed, and the code
error table $not attached is returned. If the switch is open,
its state is not-changed, and the code error_table_$not_closed is
returned.

This entry point differs from the iox_$detach_iocb entry
point due to the addition of the detach description argument.
For those I/O modules that support the detach entry, the detach
description offers a means of providing detach time parameters
such as a resource disposition comment to be sent to the system
operator.

Usage

declare iox $detach entry (ptr, char (*), fixed bin (35));

call iox_$detach (iocb_ptr, dtd, code);

where:

iocb_ptr
points to the switch's control block. (Input)

dtd
is the detach description. (Input)

code
is an I/O system status code. (Output)

Entry: iox_$open_f ile

This entry point opens an I/O switch. The switch must be
attached via an I/O module that supports the specified opening
mode, and it must be in the closed state. If the switch is not
attached, its state is not changed, and the code
error table $not attached is returned. If the switch is already
open,-the code error_table_snot_closed is returned.

This entry point differs from the iox $Open entry point due
to the addition of the open description argument. For those I/O
modules that support the open_file entry, the open description
offers a means of providing file opening parameters such as file

Page 9 MTB 600

iox iox

format, block size, record size, etc. The open description also
allows the logical separation of attachment of resources, such as
tape volumes, with the iox $attach name and iox $attach ptr entry
points, and file specific-operations for those I/O modules that
deal with multi-file resources.

Usage

declare iox $open file (ptr, fixed bin, char (*), bit (1)
aligned, fixed bin(35));

call iox_sopen_file (iocb_ptr, mode, opd, unused, code);

where:

iocb_ptr
is a pointer to the control block. (Input)

mode

•

is the number assigned to the mode as shown in Table 5-1 in
Section v of the MPM Reference Guide, e.g., 1 for
stream input, 2 for stream_output. (Input) Named constant
values-for these modes are defined in iox_modes.incl.pl1. ~

opd
is the open description. (Input)

unused
must be "O"b. (Input)

code
is an I/O system status code. (Output)

MTB 600 Page 10

mtape_ mt ape_

Name: mtape_

The mtape I/O module supports physical and logical I/O to
or from magnetic tape volume(s), in any one of several formats,
including:

ANSI standard format
IBM standard format
IBM Disk Operating System (DOS) format
Multics standard. format
GCOS File and Record Control (FRC) format
GCOS Unified File Access System (UFAS) format
CP5/CP6 standard format
Unlabeled format
Raw format

In addition, facilities exist within mtape which will permit a
user to define his/her own magnetic tape format.

Entries in this module are not called directly by users;
rather, the module is accessed through the I/O system. See the
MPM Reference Guide for a general description of the I/O system.

Definition of Terms

For the purpose of this document, the following terms have
the meanings indicated.

block

file

a collection of characters written to or read from a
tape volume as a unit. A block may contain one or
more complete records, or it may contain parts of one
or more records. A part of a record is a record
segment. A block does not contain multiple segments
of the same record.

a collection of
pertaining to a
recorded on all or
one volume.

information consisting of blocks
single subject. A file may be
part of a volume, or on more than

file set
a collection of one or more related files, recorded
consecutively on a volume set.

per-format module
an externally callable subroutine with several

Page 11 MTB 600

mt ape

record

volume

mtape_

standard entry points. The naming convention for
per-format modules is in the form of
<volume_type>Ttape_io_. w~ere <volume_type> is the
character string descr1pt1on of the volume label type
as returned by RCP on tape input or requested by the
user by the use of the "-label" attach description.
argument or the default label type on tape output.
For a discussion of the definition and use of
per-format modules, see "Per-format Module
Description" below.

related information treated as a unit of information.

a reel of magnetic tape. A volume may contain one or
more complete files, or it may contain sections of
one or more files. A volume does not contain
multiple sections of the same file.

volume set
a collection of one or more volumes on which one and
only one file set is recorded.

Attach Description

In addition to the I/O module name, only information
relevant to the volume or volume set is supplied in the attach
description. For the specification of information pertaining to
files and file sets, refer to the section titled "Open
Description" below. The attach description is a contiguous
character string and has the following form:

mtape_ vnl {-comment vnl str'J vn2 {-comment vn2 str1
vnN {-comment vnN_str'J {-control_argsJ -

.

where:

1. vni
is a volume specification. In the simplest {and
typical) case, a volume specification is a volume
name. Occasionally, keywords must be used with the
volume name. For a discussion of volume names and
keywords see "Volume Specification" below.

-comment vni str, -com vni str 'ililii\.
allows the optionar-specification of a message to be

MTB 600 Page 12

mtape_ mtape_

2.

displayed on the operators console at the time volume
vni is to be mounted. The comment text, vni str, may
be- from 1 to 64 characters in length ancr- must be
quoted if it contains embedded white space.

vn1 vn2 ••• vnN
-comprise the volume sequence list. The volume

sequence list may be divided into two parts. The
first part, vn1 ••• vni, consists of those volumes
that are actually members of the volume set, listed
in the order that they became members. The entire
volume set membership need not be specified in the
attach description~ however, the first (or only)
volume set member must be specified, because its
volume name is used to identify the file set. If the
entire membership is specified, the sequence list may
contain a second part, vni+l ••• vnN, consisting of
potential members of the-VOlume set, listed in the
order that they may become members. These volumes
are known as volume set candidates. (See "Volume
Switching" below.)

control args
Is a sequence· of one or more attach control
arguments. A control argument may appear only once.

-density N, -den N
on output, specifies the density at which the
volume-set is to be recorded, where N can be 200,
556, 800, 1600, or 6250 bits per inch. If this
control argument is not specified on output, then the
current default density value will be used (See
"Default values" below.). On input, this control
argument (or in the absence of the -density control
arg, the current default density value) will be used
as a "first guess" and will be passed to RCP to aid
in determining the density of the tape volume at
mount time. However, determination of the correct
density setting of a tape volume, is the purview of
RCP and a user need not concern himself with it.

-device N, -dv N
specifies the maximum number of tape drives that can
be used during an attachment, where N is an integer
in the range 1 ~ N ~ 63. (See "Multiple Devices"
below.)

-display, -ds
specifies that the entire attach description, after

Page 13 MTB 600

mtape_ mtape_

it has been parsed and any necessary defaults added,
will be displayed on the user_output I/O switch.

-label vol type, -lbl vol type
specifies that the-volume set to be mounted have
~olume labels of type vol type, where vol type can be
one of the following valid supported tape-formats:

MTB 600

ANSI, ansi
IBM, ibm
Multics, multics
GCOS, gcos

UFAS, ufas

CP6, cp6

unlabeled, ulbl
RAW, raw

<STR>

(for GCOS FRC formated
tapes)
(for GCOS UFAS formated
tapes)
(for CPS or CP6 standard
formated tapes)
(for unlabeled tapes)
(for processing any and all
tape formats in a raw, user
·controlled environment)
(for user defined formated
tapes)

The vol_type value is used in the Per-Format module
selection process. The mtape_ I/O module appends the
string " tape io " to the vol type value in order to
form the full -name of the- Per-Format module to
searched for (e.g. if the user specified "-label
gees" in the attach description, then mtape would
form the full name of "gcos_tape_io_" as the
Per-Format module to search for). For user defined
formatted tapes, the value of "<STR>" may be
representative of the actual format for which a
private Per-Format module has been written. (e.g.
If a user has written a private Per-Format module for
say tapes generated on a UNIVAC computer system, this
Per-Format module could be named "univac tape io ",
and this private Per-Format module could be called
into execution by simply specifying a "-label univac"
argument in the attach description.) For more
details on the Per-Format module selection process,
refer to the section titled "Per-Format Module
Selection" later in this document.

-no labels, -no label, -nlbl
- specifies that the user wishes to override or further

define the "-label" argument specification. For tape
input, if the user specified "-label ibm" but did not
have a "-no labels" specification in the attach

Page 14

mt ape_ mtape_

description, then for an unlabeled tape volume, RCP
would indicate that the tape volume would indeed be
unlabeled and mtape would return an error indicating
that the tape volume was not of the requested type.
By using the "-no labels" specification, this
indicates the tape Ts unlabeled, but is an IBM
unlabeled tape and the ibm_tape_io_ per-format module
is called to process the unlabeled tape. For tape
output, this indicates to the per-format module
specified in the "-label" specification (or the
current default), that an unlabeled tape volume is to
be processed. For those per-format modules that do
not process unlabeled tapes, an error will be
returned by the attach call. For more detail on the
relationship between the "-label" and "-no_labels"
attach description arguments, see the section titled
"Per-Format Module Selection" later in this document.

-ring, -rg
specifies that
rings. (See
below.)

the volume set be
"Write Rings and

mounted with write
Write Protection"

-speed N_!{,N~, •.. ,N.!}], -ips N_!{,N.£, ..• ,N_gJ
specifies desired tape drive speeds in inches per
second, where Ni can be 75, 125, or 200 inches per
second. (See "Divice Speed Specification" below.)

-track N, -tk N
specifies the track type of the tape drive that is to
be attached, where N may be either 9 or 7.

Volume Specification

The volume name (also called the slot identifier} is an
identifier physically written on, or affixed to, the volume's
reel or container.

If a volume name begins with a hyphen (-), the -volume
keyword must precede the volume name. Even if the volume name
does not begin with a hyphen, it may still be preceded by the
keyword. The volume specification has the following form:

-volume vni

Page 15 MTB 600

mtape_ mtape_

If the user attempts to specify a volume name beginning with
a hyphen without specifying the -volume keyword, an error is
indicated or the volume name may be interpreted as a control
argument.

Volume Switching

There are four types of file set configurations defined:

single-volume file
a single file residing on a single volume

multivolume file
a single file residing on multiple volumes

multif ile volume
multiple files residing on a single volume

multif ile multivolume
multiple files residing on multiple volumes

The mtape_ I/O module maintains a linked list of volume set
members and potential members or candidates, throughout the. time
the I/O switch is attached. This linked list of volume set
members and candidates is called a volume sequence list and is
initially generated from the volume specification(s} within the
attach description. A minimal volume sequence list contains only
one volume, the first (or only) volume set member. For
multi-volume operations, additional volume set members or
candidates may be specified and included in the volume sequence
list, following the mandatory first volume.

If in the course of an output operation physical end of tape
is detected, the I/O module prepares to switch to the next volume
in the volume set. An attempt is made to obtain the volume name
of the next volume in the volume set from the next entry in the
volume sequence list. If the volume sequence list is exhausted,
then the user is queried for the next volume name to be mounted.
This new volume is then added to the volume sequence list. In
either case, volume switching occurs, and processing of the file
continues.

If in the course of an input operation, an end of file mark
is detected followed by what is identified by the per-format
module in control as the end of volume trailer sequence, but is
not an indication of the end of the current file, then volume

MTB 600 Page 16

mtape_ mtape_

switching is initiated as above. The exception to this is when
the multics tape io per-format module is in control and the end
of reel record -is-identified, if the volume sequence list is
exhausted, then an error code of error table $end of file is
returned to the user instead of querying hTm for-the next volume
name.

In a like fashion to the linked list of volume set members,
the mtape I/O module builds and maintains a linked list of file
attribute-structures as each file is processed or recognized in
the course of searching for other files. Among other things, the
file attribute structure contains information as to the file
identifier, file sequence number and indices to the starting and
ending volume set member which contain this file. In the course
of opening a file, a search of this linked list of file attribute
structures is made to determine if the requested file has already
been processed or otherwise recognized during this attachment.
If an entry for the requested file is found, then the volume set
member on which the file resides is compared to the volume
currently mounted. If this match is made then the physical file
position on the volume is determined (from information contained
in the file attribute structure) and the current volume is
positioned to the beginning of the requested file. If an entry
for the requested file is found in the linked list of file
attribute structures, but the starting volume set member that
contains this file is different from the current volume, then
volume switching is initiated as described above. If no entry
for the requested file is found in the linked list of file
attribute structures, then a physical search for the requested
file is initiated, starting from the current position of the
current volume forward through each file position performing
volume switching as above when necessary. As each file is
identified, even though it is not the requested file, a file
attribute structure is built for it and linked into the chain of
other file attribute structures.

Multiple Devices

If a volume set consists of more than one volume, the
-device N control argument can be used to control device
assignment, where N specifies the maximum number of tape drives
that can be used during this attachment.
N is an integer in the range 1 < N < 63. Drives are assigned
only on a demand basis, and in-no case does the number actually
assigned exceed the device limit of the process. The default for
an initial attachment to a file in a file set is N equals 1; the
default for a subsequent attachment to that (or any other) file
in the file set is N equals the previous value of N.

Page 17 MTB 600

mtape_ mt ape_

Device Speed Specification

The -speed control argument is used to specify acceptable
tape device speeds in inches per second. The module only
attaches a device that matches a speed specified by this control
argument. If more than one speed is specified, the module
attaches a device that matches one of the speeds. If more than
one device is attached, and more than one speed is specified, the
devices will not necessarily all be of the same speed.

Resource Disposition

The mtape_ I/O module utilizes two types of resources:
devices (tape drives) and volumes. Once an I/O switch is
attached, resources are assigned to the user's process on a
demand basis. When the I/O switch is detached, the default
resource disposition unassigns all devices and volumes.

Write Rings And Write Protection

Before a volume can be written on, a write ring {an actual
plastic ring) must be manually inserted into the reel. This can
only be done before the volume is mounted on a device. When a
volume is needed, the I/O module sends the operator a mount
message that specifies if the volume is to be mounted with or
without a ring.

In general, the decision of whether write rings are to be
installed or not is made at attach time. This decision is
effected by either the explicate use of the "-ring" attach
description argument, or the current default value of the ring
specification (See "Default Values" below). If output operations
are to be performed on the volume set, then installation of write
rings must be specified or an error will result when attempting
to open a file for output or input_output. The write ring
decision may be effected after the attach is complete by the use
of the "ring_in" control operation described below.

When a volume set is mounted with write rings and the I/O
switch is opened for input, the hardware file protect feature is
used to safeguard the file set. Conversely, when a volume set is
mounted with write rings and has subsequently been opened for
input and closed, if it is now to be opened for output or
input output, the hardware file permit feature is used to once
again-allow writing operations.

MTB 600 Page 18

mtape_ mtape_

Error Processing

If an error occurs while reading, the I/O module makes 25
attempts to backspace and re-read, using the available hardware
error recovery mechanisms. If an error occurs while writing, the
I/O module makes 10 attempts to backspace, erase, and rewrite.
If an unrecoverable error occurs while writing file labels or
tapemarks, the user is queried as to preserving the defective
file versus file set consistency. (See "Queries" below.) If an
unrecoverable error occurs during certain phases of volume
switching or label reading, the I/O switch may be closed. The
overriding concern of the error recovery strategy is:

1. to maintain a consistent file set structure

2. to ensure the validity of data read or written

Opening

Opening is made through the iox $open file entry which
supports a character string "open descriptTon" argument for
supplying file specific attributes to the per-form~t modules {See
"Open Description" below}. The iox $Open entry is supported in
the sense that it will forward the call to the mtape $Open file
entry, supplying a minimal open description by default. -This
default open description is different for each per-format module,
refer to the section titled "Per-format Modules" below, for
details.

With one exception, the mtape I/O module and its
subordinate Per-Format modules have a record oriented interface
and support sequential input, sequential output, and
sequential_input_output opening modes. The exception is the
Multics Per-Format module, which has a stream oriented interface
and supports stream_input and stream_output opening modes only.

An 1/0 switch can be opened and closed any number of times
in the course of a single attachment. All openings are governed
by the same attach description.

Open Description

The open description is an ASCII character string argument
to the iox $open file entry and provides a means of specifying
the attributes of-the desired file to be processed.

Page 19 MTB 600

mt ape_ mtape_

For input operations on one of the supported volume types, a
null open description may be specified since all file attributes
may be obtained from the file header label records or from
default values (See Default Values below)~ For output
operations, all attributes of a file must be specified either in
the open description or by using t9eir corresponding default
values.

For readability, the first specification in
description may be optionally non-hyphenated, followed
or as few hyphenated specifications as are necessary
the desired operations on the specified file.

the open
by as many
to define

Only those open description specifications that are generic
to all (or most all) of the supported standard labeled volume
types are defined below. For open description specifications
that are particular to a given type of labeled volume type, see
their definition in the section titled "Per-Format Modules"
below.

In general, the open description has the following form:

open_specl open_spec~ ...•. open_specrr

where:

1. open specl open spec2 and open specn
- are a sequence of file specific attributes and may be

chosen from the following:

-block b, -bk b
specifies
value of
specified

the block length in characters, where the
b may be dependent upon the value of r

in the -record control argument.

-comment STR, -com STR
specifies a user comment to be displayed on the
user output I/O switch, after the file has been
successfully opened. STR could be an informative
message providing a visual check point to the user,
when processing several files of a multif ile volume
set. For example, the comments "Begin processing the
student master file" or "Begin payroll run", might be
typical. If STR contains embedded white space (i.e.
spaces or horizontal tabs), then it must be enclosed
in quotes.

-display, -ds
specifies that the entire open description, after it

MTB 600 Page 20

mtape_ mtape_

has been parsed and any necessary defaults added,
will be displayed on the user_output I/O switch.

-expires date, -exp date
specifies the expiration date of the file to be
created or generated, where date must be of a form
acceptable to the convert_date_to_binary_ subroutine
which is described in the MPM Subroutines.

-extend, -ext
specifies extension of an existing file.

-force, -fc
specifies that the expiration date of the file being
overwritten is to be ignored.

-format f, -fmt f
specifies- the record format, where f is a format
code.

-last file, -lf
- specifies the file to be processed as the "last" file

of the volume set.

-mode STR, -md STR
specifies the
data, where
binary.

-name STR, -nm STR

encoding mode used to record the file
STR is the string ascii, ebcdic, or

specifies the file identifier of the file where STR
is from 1 to 17 characters.

-next file, -nf
- specifies the file to be processed as the "next" (or

first) file on the volume set. For output operation,
if -number and or -name are not specified, the values
for their respective fields (if any, for the volume
label standard being used), are fabricated as
follows:

The file sequence number is set to the last file
sequence number plus 1.
The file identifier is set to a character string
representation of the file sequence number (i.e.
FILE1, FILE99, etc.). If this fabricated file
identifier has an identical character
representation as a previous file identifier in
the file set, then an iteration suffix is

Page 21 MTB 600

mt ape_ mtape_

appended to the new file identifier (i.e.
FILE1.1, FILE99.1, etc.).

The -next_f ile argument is ignored if a -number or a
-name argument are also specified in the open
description. If an open description does not contain
either a -name, -number or -next file argument and if
a previous close_f ile operation did not specify
-beginning of_file in the close description, then a
-next_file-argument is inserted by default.

-number N, -nb N
specifies the file sequence number, the position of
the file within the file set, where N is an integer
in the range 1 ~ N ~ 9999.

-record r, -rec r
specifies-the record length in characters, where the
value of ~ may be dependent upon the choice of record
format. (See "Creating a File" below.)

Close Operation

The I/O switch must be open. Closing is made through the
iox $close file entry which supports a character string "close
des~riptio~" argument for supplying file specific attributes to
the per-format modules (See "Close Description" below). -The
iox_$close entry is supported in the sense that it will forward
the call to the mtape $close file entry, supplying a null close
description. - -

Close Description

The close description is an ASCII character string argument
to the iox $close file entry and provides a means of specifying
actions to Ee taken when closing the current file.

For readability, the first specification in
description may be optionally non-hyphenated, followed
or as few hyphenated specifications as are necessary
the desired operations on the specified file.

the close
by as many
to define

Only those close description specifications that are generic
to all (or most all) of the supported standard labeled volume
types are defined below. For close description specifications
that are particular to a given type of labeled volume type, see

MTB 600 Page 22

mt ape_ mtape_

their definition in the section titled "Per-Format Modules"
below.

In general, the close description has the following form:

close_spec! close_spec~ ••••• close_spec£

where:

1. close specl close spec2 and close specn
- are a sequence of attributes pertinent to the closing

of the current file and may be chosen from the
following:

-beginning of file, -bof
specifies that the tape volume is to be positioned at
the beginning of the current file, upon closing.

-comment STR, -com STR
specifies a user comment to be displayed on the
user output I/O switch, after the file has been
successfully closed. STR could be an informative
message providing a visual check point to the user,
when processing several files of a multif ile volume
set. For example, the comments "Completed processing
the student master file" or "End payroll run", might
be typical. If STR contains embedded white space
(i.e. spaces or horizontal tabs), then it must be
enclosed in quotes.

-display, -ds
specifies that the entire close description, after it
has been parsed and any necessary defaults added,
will be displayed on the user_output I/O switch.

-end of file, -eof
- specifies that the tape volume is to be positioned at

-leave

Note:

the end of the current file upon closing.

specifies that the tape volume is to remain at its
current position, upon closing.

The -beginning of file, -end of file and the -leave
control arguments-are mutually-exclusive. If more
that one of these control arguments appear in the
close description, then the last one will take

Page 23 MTB 600

mtape_ mt ape_

precedence. If none of these control control
arguments are specified, then the -leave control
argument is inserted by default.

Control Operation

The mtape I/O module
operations. -

change module
file status
hardware status, hws
volume_set_status, vsst

supports a variety of control

file set status, fsst
force end of volume, feov

• T - -r1ng_1n
volume_status, vst

In the descriptions below, info_ptr is the information
pointer specified in an iox_$control entry point call.

change_module OPERATION

This operation allows a user to switch to a different
per-format module to process some piece of a particular tape
volume if he so desires. The I/O switch must be closed. A
typical use for this control order is to switch from one of the
other per-format modules to the "raw" per-format module to
perform some raw operations. The change module operation also
allows a user to specify his own per-format module that doesn't
happen to be named one of the standard names {i.e. multics,
ansi, ibm, gcos, cp6, raw, or unlabeled, followed by the string
" tape io "). The info ptr points to a char {*) varying string
which -indicates what per-format module the user wishes to use
(i.e. For the standard per-format modules, this character string
would be "multics", "ansi", "ibm", "gcos", "cp6", "unlabeled", or
"raw"). A search is then made, using the search path mechanism,
for this string with " tape io " appended to it -for the desired
module. If the info ptr is null, then this is an indication that
the user wishes to "pop" back to the original per-format module,
which is allowed if the user is open for input. In that case the
current tape volume is repositioned to a known position by
rewinding before control is given back to the original per-format
module. If the info ptr was null but the "change_module"
operation has never been called and there is no other module to
"pop" back to, then the change_module control operation is
ignored. If the user performs any output type operations while
he is executing in the new per-format module, the request to
"pop" back to the original per-format module is rejected with an
error.

MTB 600 Page 24

..

mtape_ mtape_

file set status OPERATION - -
This operation may be used to obtain information about the

entire file set as opposed to just the current file. The
info_ptr should point to an extendable area which the mtape_ I/O
module will fill with a structure of the following form:

dcl 1 fsst aligned based (info_ptr),
2 fsst type fixed bin,
2 nf iles fixed bin,

where:

2 fs status (O refer (fsst.nfiles)),
3 file state fixed bin,
3 error code fixed bin (35),
3 file Id char (32),
3 begin vol index fixed bin,
3 end vol index fixed bin,
3 file sections fixed bin,
3 generation fixed bin,
3 gen version fixed bin,
3 creation char (5),
3 expiration char (5),
3 file format fixed bin,
3 blklen fixed bin,
3 reclen fixed bin (21),
3 mode fixed bin,
3 blkcnt fixed bin (35);

1. fsst_type

2. nfiles

3. fs_status

is the same as the label_type field defined in the
volume status operation defined below.

is the number of files in the file set.

is an array of structures of file set members, which
appears below in sequential order.

4. file state
is the current state of
of the following values:

this file and could have one

0 = No information available (I/0 switch never
opened)
1 = File not open
2 = File open
3 = File open and locked for error

Page 25 MTB 600

mtape_

·'

The ~locked for error" state referenced
defined as an error or circumstance that
continued processing of this file. For
parity error while reading, reached
information, no next volume available, etc.

mtape_

above is
prevents
example,

end of

5. error code
- is the error code when file_status.state = 3 above,

otherwise equal to o.
6. file id

is the file name or identifier as recorded in the
appropriate file label record. This field will be
blank for those formats that have no file identifier
field.

7. begin vol index
- Is an index to the first volume set member on which

this file resides.

8. end vol index
is an index to the last volume set member on which
this file resides.

9. file sections
is a count of the number
file resides.

of volumes on which this

10. generation
is the generation number of this file for those
formats that support several "generations" of files.
If this is the first generation, or if the format
does not support several generations, then this field
will be equal to O.

11. gen version
- is the generation version number for those formats

that supports file generations. If this is the first
generation, or if the format does not support several
generations, then this field will be equal to O.

12. creation
is the Julian creation date of this file.

13. expiration
is the Julian expiration date of this file.

14. file format

MTB 600

is the
Although

numeric value of the current
this is per-format module

Page 26

file format.
specific, the

mtape_

15. blklen

16. reclen

17. mode

18. blkcnt

mtape_

following generic values will be recognized by all
per-format modules:

a = not specified
1 = FB (fixed length blocked)
2 = DB or VB (variable length blocked)
3 = S (spanned)
4 = SB (spanned blocked)

is the maximum block length of each block within this
file.

is the maximum record length of logical records
within this file.

is a numeric indication of the recorded mode of this
file. The following values are acceptable:

1 = ASCII
2 = EBCDIC
3 = Binary
4 = BCD

is the number of tape blocks contained in this file.
If this file is still open for input or output, this
number represents the number of blocks processed thus
far.

hardware status OPERATION

This operation returns a structure that contains the raw IOM
status and the english language description of this status,
generated by the last tape I/O operation. The I/O switch must be
open. The structure to which info_ptr points, is declared as
follows:

dcl 1 hardware status based (info ptr) aligned,
2 IOM bits-bit (72),
2 description char (256) varying;

where:

1. IOM bi ts
is the raw IOM hardware status.

Page 27 MTB 600

mtape_ mtape_

2. description
is the English language description of this hardware
status.

ring in OPERATION

This operation will cause subsequent volume mounts to be
requested with write rings installed. The I/O switch must be
closed and the info ptr set to null. The effect of this
operation is to cause the current volume to be demounted and the
write ring indicator to be set in the internal data base
maintained by mtape • At the time of the next file opening, the
appropriate volume will be requested to be mounted with a write
ring installed. If write rings have already been requested to be
installed, either by the use of the "-ring" attach description
argument, or by a previous invocation of the ring in control
operation, then the ring_in control operation is considered a
"no-op" and has no effect.

volume status OPERATION

This operation retu~ns a structure that contains the status
of the current volume. If the I/O switch is open, the current
volume is the volume on which the file section currently being
processed resides. If the switch has never been opened, the
current volume is the first (or only) volume in the volume set.
If the switch was opened, but is now closed, the current volume
is that on which the last file section processed resides. The
structure to which info_ptr points, is declared as follows:

dcl 1 volume status based (info ptr) aligned,
2 volume-name char (32), -

where:

2 volume-id char (32),
2 label type fixed bin,
2 volume seq fixed bin,
2 device-name char (8),
2 read errors fixed bin (35),
2 write_errors fixed bin (35};

1. volume name

2. volume id

MTB 600

is the name of the current volume as specified in the
volume sequence list (i.e. attach description).

Page 28

mt ape_ mtape_

is the name of the current volume as recorded in the
volume label. For unlabeled volumes, this field will
be blank.

3. label type
- is the label type of this volume and could have one

4.

5.

6.

7.

volume

device

of the following values:

0
1
2
3
4
5
6
~

_se9
lS

name

=
=
=
=
=
=
=

unlabeled
ANSI
IBM
Multics
CP6
GCOS FRC
GCOS UFAS

the order of this volume within the volume set.

is the name of the tape device that this volume is
mounted on (e.g. "tape 01"). If the volume is
currently unmounted, this field will be blank.

read errors
is a count of the current number of read errors that
have occurred on this tape volume.

write errors
is a count of the current number of write errors that
have occurred on this tape volume.

file status OPERATION

This operation returns a structure that contains the current
status of the file specified in the open description. If the I/O
switch has never been opened, no information can be returned;
this situation is indicated by file status.file state = O. If
the switch was opened, but is now closed, the current status of
the file is its status just prior to closing. The structure to
which info_ptr points, is declared as follows:

dcl 1 file status based (info ptr) aligned,
2 file-state fixed bin, -
2 error code fixed bin (35),
2 label-type fixed bin,
2 file Td char (32),
2 file-seq fixed bin,
2 begin_vol_index fixed bin,

Page 29 MTB 600

mtape_ mtape_

2 end vol index fixed bin,
2 file sections fixed bin,
2 generation fixed bin,
2 gen version fixed bin,
2 creation char (5),
2 expiration char (5),
2 file format fixed bin,
2 blklen fixed bin,
2 reclen fixed bin (21),
2 mode fixed bin,
2 blkcnt fixed bin (35);

where:

1. file state
is the current state of this file and could have one
of the following values:

0 = No information available (I/O switch never
opened)
1 = File not open
2 = File open
3 = File open and locked for error

The "locked for error" state referenced above is
defined as an error or circumstance that prevents
continued processing of this file. For example,
parity error while reading, reached end of
information, no next volume available, etc.

2. error code
is the error code when file status.state = 3 above,
otherwise equal to O.

3. label type
- is the same as the label type field defined in the

volume status operation defined above.

4. file id

5. file_seq

is tll.~ file name or identifier as recorded in the
appropriate file label record. This field will be
blank for those formats that have no file identifier
field.

is the order of this file within the file set.

6. begin vol index
- Ts an index to the first volume set member on which

this file resides.

MTB 600 Page 30

,....

mt ape_ mtape_

7. end vol index
is an index to the last volume set member on which
this file resides.

8. file sections
- is a count of the number of volumes on which this

file resides.

9. generation
is the generation number of this file for those
formats that support several "generations" of files.
If this is the first generation, or if the format
does not support several generations, then this field
will be equal to o.

10. gen version
- is the generation version number for those formats

that supports file generations. If this is the first
generation, or if the format does not support several
generations, then this field will be equal to o.

11. creation
is the Julian creation date of this file

12. expiration
is the Julian expiration date of this file.

13. file format

14. blklen

15. reclen

16. mode

is the numeric value of the current file format.
Although this is per-format module specific, the
following generic values will be recognized by all
per-format modules:

O = not specified
1 = FB (fixed length blocked)
2 = DB or VB (variable length blocked)
3 = S (spanned)
4 = SB (spanned blocked)

is the maximum block length of each block within this
file.

is the maximum record length of logical records
within this file.

is a numeric indication of the recorded mode of this
file. The following values are acceptable:

Page 31 MTB 600

mtape_ mtape_

1 = ASCII
2 = EBCDIC
3 = Binary
4 = BCD

17. blkcnt ·'
is the number of tape blocks contained in this file.
If this file is still open for input or output, this
number represents the number of blocks processed thus
far.

f eov OPERATION

This operation forces the end of a volume and initiates
volume switching when writing a file. The switch must be open
for output. The operation is equivalent to detection of the end
of tape reflective strip. The info_ptr should be a null pointer.

MTB 600 Page 32

..

mtape_ mtape_

,...
~ volume set status OPERATION - -

This operation may be used to obtain information about the
entire volume set as opposed to just the current volume. The
info_ptr should point to an extendable area which the mtape_ I/O
module will fill with a structure of the following form:

dcl 1 vsst aligned based (info_ptr),
2 vsst_type fixed bin,
2 nvols fixed bin,
2 vs status (0 refer (vsst.nvols)),

3 volume name char (32),
3 volume-id char (32),
3 mounted bit (1),
3 device name char (8),
3 read errors fixed bin (35),
3 write_errors fixed bin (35);

where:

1. vsst_type
is the label type of this volume set and could have
one of the following values:

2. nvols

3. vs status

0 = unlabeled
1 = ANSI
2 = IBM
3 = Multics
4 = CP6
5 = GCOS FRC
6 = GCOS UFAS

is the number of volumes in the volume set.

is an array of structures of volume set members,
which appears below in sequential order.

4. volume name
- is the name of this volume set member as specified in

the volume sequence list (i.e. attach description).

5. volume id
is the name of this volume set member as recorded in
the volume label. For unlabeled volumes, this field
will be blank.

6. device name ,..

Page 33 MTB 600

mtape_ mt ape_

is the name of the tape device that this volume set
member is currently mounted on (e.g. "tape_Ol"). If
the volume is currently unmounted, this field will be
blank.

7. read errors
is a count of the current number of read errors that
have occurred on this tape volume.

8. write errors
is a count of the current number of write errors that
have occurred on this tape volume.

Detach Operation

The I/O switch must be closed. Detachment is made through
the iox $detach entry which supports a character string "detach
description" argument for supplying volume-set specific
information for the disposition of the volume-set (See "Detach
Description" below). The iox_sdetach_iocb entry is supported in
the sense that it will forward the call to the mtape_Sdetach
entry, supplying a null detach description.

If the I/O module determines that the membership of the
volume set might have changed, the volume set members are listed
before the set is demounted; volumes not listed are available for
incorporation into other volume sets.

Detach Description

The detach description is an ASCII character string argument
to the iox $detach entry and provides a means of specifying
actions to be taken when detaching the current volume set.

For readability, the first specification in
description may be optionally non-hyphenated, followed
or as few hyphenated specifications as are necessary
the desired operations on the specified file.

the detach
by as many
to define

Only those detach description
generic to all {or most all) of the
volume types are defined below.
specifications that are particular to
volume type, see their definition
"Per-Format Modules" below.

specifications that are
supported standard labeled

For detach description
a given type of labeled

in the section titled

In general, the detach description has the following form:

MTB 600 Page 34

..

mtape_ mtape_

detach_spec! detach_spec~ •••.. detach_spec£

where:

1. detach_spec! detach_spec~ and detach~spec£ .
are a sequence of attributes pertinent
detachment of the current volume set and
chosen from the following:

to the
may be

-comment STR, -com STR
allows the optional specification of a message to be
displayed on the operators console at the time the
volume set is to be detached. The comment text, STR,
may be from 1 to 64 characters in length and must be
quoted if it contains embedded white space.

-display, -ds

-unload

-rewind

specifies that the entire detach description, after
it has been parsed and any necessary defaults added,
will be displayed on the user output I/O switch.

specifies that
currently mounted
detachment.

any members of the volume set
are to be demounted at the time of

specifies that any members of the volume set
currently mounted are to be rewound to load point at
the time of detachment. This is the default in the
absence of the -unload control argument.

Modes Operation

The mtape_ I/O module does not support the modes operation.

Position Operation

In general, the mtape I/O module supports all positioning
modes when the I/O switch- is open for input or input_output.
Some restrictions apply to the individual per-format modules.
See the section entitled "Per-Format Modules" for details.

Page 35 MTB 600

,I

mtape_ mt ape_

Read Length Operation

The I/O switch must be open for sequential_input, or
sequential_input_output.

Read Record Operation

The I/O switch must be open for sequential_input, or
sequential_input_output.

Write Record Operation

The I/O switch must be open for sequential_output, or
sequential_input_output. Unlike previous tape I/O modules,
non-mod 4 byte records may be written.

Get Chars Operation

The I/O switch must be open for stream _input, or
stream input output. - -

Put Chars Operation

The I/O switch must be open for stream_output, or
stream _input_output.

Control Operations from Command Level

All control operations supported by this I/O module can be
executed from command level by using the io call command. The
general format is:

io call control switchname operation -control_arg where:

1. switchname
is the name of the I/O switch that is attached
through the I/O module to an ANSI tape file-set.

2. operation
is any of the
described.

control operations previously

3. control arg
Ts an operation control argument.

MTB 600 Page 36

·•

mtape_

Queries

Under certain exceptional circumstances,
queries the user for information needed for
continue or instructions on how to proceed.

·'

mtape_

the I/O module
processing to

Querying is performed by the command query subroutine. The
user may intercept one or more types of -query-by establishing a
handler for the command question condition, that is signalled by
the command query subroutine. Alternately, the answer command
(described -in the MPM Commands) can be used to intercept all
queries. The use of a predetermined "yes" answer to any query
causes those actions to be performed that attempt to complete an
I/O operation without human intervention.

In the following list of queries, status_code refers to
command question info.status code. See the MPM Reference Guide
for information regarding the command_question condition and the
command_question_info structure.

status code = error_table_$f ile_aborted

This can occur only when the I/O switch is open for output.
The I/O module is unable to correctly write file header
labels, trailer labels, or tapemarks. This type of error
invalidates the structure of the entire file set. Valid
file set structure can only be restored by deleting the
defective file or file section from the file set.

The user is queried for permission to delete the defective
file or file section. If the response is "yes", the I/O
module attempts deletion. The attempt may or may not
succeed; the user is informed if the attempt fails. If the
response is "no", no action is taken. The user will
probably be unable to subsequently process the file, or
append files to the file set; however, this choice permits
retrieval of the defective file with another I/O module. In
either case, the I/O switch is closed.

status code = error_table_sunexpired_volume

This can occur only
A volume must be
however, the first
unexpired.

when the I/O switch is open for output.
either reinitialized or overwritten;
file or file section on the volume is

Page 37 MTB 600

mtape_ mtape_

The user is queried for permission to initialize or
overwrite the unexpired volume. If the response is "yes",
the volume is initialized or overwritten and processing
continues. If the response is "no", further processing
cannot continue, and the I/O switch is closed.

status_code = error_table_suninitialized_volume

A volume requires reinitialization or user verification
before it can be used to perform any I/O. The I/O module
distinguishes among four causes by setting
command_question_info.query_code as follows:

query_code = 1

query code = 2

query_code = 3

query_code = 4

the first block of the tape is
unreadable. The tape is either
defective, or recorded at an invalid
density. This query code can occur only
if the I/O stream is opened for output.

the first block of the tape is not a
valid volume label for the volume type
specified in the "-label" attach
description control argument. This
query code can occur only if the I/0
stream is opened for output.

the volume identifier recorded in the
volume label is incorrect. The volume
identifier does not match the volume
name.

the density at which the volume is
recorded is incorrect. The volume
density does not match the specified
density. This query code can occur only
if the I/O stream is opened for output.

If the I/O switch is opened for output, the user will be
asked whether he wants to initialize or re-initialize the
volume. If the I/O switch is opened for input, the user
will be asked whether he wants to continue processing in
spite of the discrepancy. If the response is "yes", the
volume is reinitialized and processing continues. If the
response is "no", further processing cannot continue, and
the I/O switch is closed.

MTB 600 Page 38

mtape_ mt ape_

status code = error_table_sunexpired_f ile

This can occur only when the I/O switch is open for output.
A file that must be extended, modified, generated, or
replaced is unexpired.

The user is queried for permission to overwrite the
unexpired file. If the res~onse is "yes", processing
continues. If the response is "no", further processing
cannot continue, and the I/O switch is closed.

status code = error_table_sno_next_volume

This can occur when reading a multivolume file, or when
writing a file and reaching physical end of tape. The I/O
module is unable to determine the name of the next volume in
the volume set.

The user is queried for permission to terminate processing.
If the response is "yes", no further processing is possible.
If the I/O switch is open for output, the I/O switch is
closed. If the response is "no", the user is queried for
the volume name of the next volume. (See status code = 0
below.)

status code = 0

This occurs only when the response to the above query is
"no". The user is requested to supply the name of the next
volume. The response may be a volume name, optionally
followed by a mount message. Even if the volume name begins
with a hyphen, it must not be preceded by the -volume
control argument. If a mount message is to be specified,
the response takes the following form:

volume name -comment STR

where STR is the mount message and need not be a contiguous
string. See "Volume Specification" above. This is the only
query that does not require a ~yes" or "no" response. If a
preset "yes" is supplied to all queries, this particular
query never occurs.

Page 39 MTB 600

mt ape_ mtape_

Default Values

As an ease of use feature, all control arguments and their
associated values that a user may specify in the attach, open,
close and detach descriptions, is supplied with a reasonable
default value by mtape_ and or the per-format module currently in
execution. There are two classes of defaults contained within
mtape_ and its associated per-format modules:

Global defaults
default values that pertain to all formated tape types.

Per-Format defaults
default values that differ
per-format module.

{or may differ} for each

All default values are created at first reference in the
users default value segment {normally located at [home_dir]>[user
name].value). The global default values are created by mtape_
proper and the per-format defaults are created by each per-format
module, during its initialization sequence. After their initial
creation, the default values can be changed and manipulated by
the user, using the value_set command.

Each default value has a three component name, with the
global defaults being in the form of "mtape .global.<value name>"
and the per-format defaults being in the- form
"mtape_.<vol_type>.<value_name>". The values themselves are
stored as an ASCII character string. Numeric values are
converted when used by mtape , and bit string switches are stored
as "true" or "false". Listed below are the global defaults, with
the default name, its initial value and other possible values.
The per-format defaults will be listed in the documentation of
each per-format module.

Default Name

mtape .global.density
mtape:.global.label

mtape .global.no labels
mtape:.global.ring
mtape .global.tracks
mtape-.global.device
mtape-.global.speed

MTB 600

Initial
Value

1600
ansi

false
false
9
1
O (any)

Page 40

Other Possible
Values

BOO, 6250, 200, 556
ANSI, ibm, IBM, gcos,
GCOS, multics, Multics,
cp6, CP6, raw, RAW
true
true
7
2, 3, 4, 63
75, 125, 200

mtape_ mt ape_

Per-Format Modules

In order to process a variety of different tape volume
formats, the mtape_ I/O module employs standard subroutine
interfaces to what are known as Per-Format modules. The generic
name of each of these Per-Format modules or subroutines is
<vol_type>_tape_io_, where <vol~type~ represents the identified
name of the volume format which is to be processed. Seven
Per-Format modules are currently planned in support of mtape_.
They are:

ansi tape io
ibm tape To -
multics tape io
gcos tape io- -
cp6_tape_To_
unlabeled_tape_io_

raw_tape_io_

For ANSI standard tapes
For IBM standard tapes
For Multics standard tapes
For GCOS standard tapes
For CP6/CP5 standard tapes
For unlabeled or unrecognized format
tapes
For processing tapes in a "raw" or
user controlled fashion

The Per-Format modules are externally callable and are found
in the storage system via the search_path mechanism. For tape
input, RCP returns the volume type of the tape volume just
mounted, as one of the <vol types> mentioned above (except for
the raw per~format module -which must always be explicitly
requested with the "-label raw" attach description argument).
For tape output, the volume type is determined from either the
attach description "-label" specification or by the appropriate
default value of same. After the volume type has been determined
by this procedure, mtape_ searches for the appropriate module in
the search paths.

From the above discussion, it should be easy to see that a
user could substitute his own versions of these standard modules
by first writing his own subroutines and then changing the search
paths so that his version would be found before the standard
system version.

Per-Format Module Selection

Selection of the appropriate Per-Format module to process
the desired volume set is performed at attach time. Information
returned by RCP after a successful volume mount, as well as the
presence of the "-label" and "-no labels" attach description
arguments or their current default values, are all used in the
Per-Format module selection process. However, there is no
knowledge available at attach time that specifies whether the
user will open for tape input or output. Even the presence of

Page 41 MTB 600

mtape_ mt ape_

the "-ring" attach description argument is no guarantee that the
user will open for output operations. The Per-Format module
then, may have to take some action upon opening to fulfill
requirements of special situations. The table below, and the
annotated comments that follow it, illustrate the relationship
between the Per-Format module selection process and any special
action that must be taken at open time, by the selected
Per-Format module.

MTB 600 Page 42

mt ape_ mtape_

Volume -lbl & -nlbl Per-Format Special action
type attach module upon

returned description selected OEening
b:t RCP values l.n2ut I out2ut

ans1 none ansi tape io I
ibm none ibm_tape_To_- I
gcos none gcos tape io I
multics none multTcs_tape:io_ I {1)
multics -lbl multics multics tape io I {1)
cp6 none cp6 tape io - - I
unlabeled none unlabeled_tape_io_ I N/A
unlabeled none ansi tape io {2) N/A I
unlabeled -nlbl unlabeled-tape io I
unreadable none ansi tape-io (2)- { 3) I
ansi -lbl - "T" -

I { 4) raw raw_tape_10_
unlabeled -lbl ibm ibm_tape_io_ (5) I {6)
unlabeled -lbl ibm -nlbl ibm_tape_io_ I
ibm -lbl ibm -nlbl ibm_tape_io_ (7) (4)
unlabeled -lbl gcos gcos tape io {6)
unlabeled -lbl gcos -nlbl gcos-tape-io-
ansi -lbl ibm ibm_tape_To_- (8) { 4)
ibm -lbl gcos -nlbl gcos tape io (8) (4)
unlabeled -lbl cdc cdc_tape_To_-(9)
unlabeled ~lbl dee dec_tape_io_ (9)
unreadable -lbl ibm ibm_tape_i·o_ (3)
unreadable -lbl raw raw_tape_io_

I
any I

readable matching label I
tape vol type or none <lab_type>_tape_io_I (10) {11)

but not at I
req. dens I

(1) The volume label is re-written each time it is opened for
output.

{2) This is really the value of the global default,
mtape_.global.label and not necessarily ansi. This default
value is set (created at first reference) by mtape_ but may
be changed by the user at any time. Note that in the case
of an unlabeled tape being detected by RCP and no "-label"
(-lbl) or "-no labels" (-nlbl) specification, the unlabeled
Per-Format module is selected for input operations while the
default Per-Format module is selected for output operations.
This would seem to break the rule that no knowledge of
opening mode is known at the time the Per-Format module is
selected. In actuality, the unlabeled Per-Format module is
selected at attach time. However, when the open operation
is executed and the opening mode is known, a special feature
of the unlabeled Per-Format module is invoked when it is

Page 43 MTB 600

mt ape_ mtape_

{3)

{4)

{5)
{6)
(7)

(8)

(9)

(10)

(11)

determined to be an output mode. This special feature
determines what the current default Per-Format module is and
does the equivalent of a "change module" operation to call
the current default Per-Format module into execution.
Although a "-label" {-lbl) specification was given, the
Per-Format module will abort.. during its volume
initialization sequence. Only the "RAW" {or a user defined)
Per-Format module is allowed to process a tape volume for
input, whose label is deemed unreadable.
The user is queried before allowing the destruction, or
potential destruction of any labeled volume set.
The volume is processed as unlabeled.
Volume is initialized with standard labels.
Since RCP determined that this is a standard labeled volume,
the "-no_labels" {-nlbl) specification is ignored.
This is considered an error because the attach description
label specification and the actual volume label determined
by RCP, do not agree as to their type, causing an
inconsistency to exist. The opening is aborted.
These are examples of the use of user defined Per-Format
modules. Note that the value used in the "-label" (-lbl)
attach description specification, has the string "_tape_io_"
appended to it to complete the Per-Format module name that
is searched for.
Input operations will proceed at the density returned by
RCP, and any density specification requested by the user is
ignored.
In general, the tape volume (including the volume label(s))
will be re-written at the user requested density. If it is
determined that the tape unit on which the tape volume is
currently mounted does not have the capability of writing at
the user requested density, then the user is queried if he
wants to write at the RCP determined density, or have the
tape volume re-mounted on a different tape unit and initiate
output operations at the user requested density.

Per-Format Module Interface

In order to provide adequate processing capabilities for
each of the Per-Format modules, seven {7) standard entry points
have been defined. They are:

<vol_type>_tape_io_svolume_open
<vol_type>_tape_io_svolume_close
<vol_type>_tape_~o_$f~le_open
<vol_type>_tape_10_$f1le_close
<vol type> tape io sread
<vol:type>:tape:io:swrite
<vol_type>_tape_io_sorder

MTB 600 Page 44

mtape_ mt ape_

Below is a discussion of each of these entries and the
general function of each:

<vol_type>_tape_io_svolume_open entry

The task of this entry is to process the volume label (or
labels) and do any house keeping functions that may be required
by the individual per-process modules {e.g. Fill in pertinent
information in the "volume info structure" either from the volume
label on input or from the attach description on output. On
input, compare the recorded volume name to the volume sequence
list and check for discrepancies, read and save any user volume
labels for later requests by the user to "see" these label
records. On output, write the standard volume label sequence,
etc.).

Usage

dcl <vol type> tape io $volume open entry
(ptr, fixed bin (35>>: -

call <vol_type>_tape_io_svolume_open (vol_info_ptr, code):

where:

1. vol_info_ptr
is a pointer to the volume info structure defined
below. (INPUT)

2. code
is a standard I/O system status code. (OUTPUT}

volume info structure

The volume info structure is the "root" of a tree structured
linked list of volume set and file set information structures.
It is allocated and initialized during attachment, with values
for initialization coming from either the attach description,
defaults or from RCP. It is updated with volume set and file set
information as new volume set members are added to the volume
sequence list and new files are created or recognized. The
volume_info structure is deallocated (freed) at detach time.

Page 45 MTB 600

mt ape_ mtape_

dcl 1 volume info aligned based (vol_info_ptr),
2 version fixed bin,

where:

2 label_type fixed bin,
2 first_~ile_ptr ptr,
2 last_f1le_ptr ptr,
2 vs head ptr,
2 vs:tail ptr,
2 vs_current ptr,
2 density fixed bin,
2 tracks fixed bin,
2 speed fixed bin,
2 mode fixed bin,
2 ring bit (1},
2 attach_desc_ptr ptr;

1. version
is the version number of this structure, currently 1.

2. label type ·
- is the label type of this volume set and could have

one of the following values:

0 = unlabeled
1 = ANSI
2 = IBM
3 = Multics
4 = CP6
5 = GCOS FRC
6 = GCOS UFAS

3. first file ptr
- is a pointer to the first file info structure.

4. last_file_ptr

5. vs head

6. VS tail

is a pointer to the last file info structure.

is a pointer to the first volume set member, defined
below in the volume set structure:

is a pointer to the last volume set member, defined
below in the volume set structure:

7. vs current

MTB 600

is a pointer to the current volume set member defined
below in the volume set structure.

Page 46

•

mtape_

a. density

9. tracks

10. speed

11. mode

12. ring

mtape_

is a numeric indication of the volume set density and
has the following possible values: -

0 = unspecified
1 = 800 BPI NRZI
2 = 1600 BPI PE
3 = 6250 BPI GCR
4 = 200 BPI NRZI
5 = 556 BPI NRZI

is an indication of the number of recorded tracks on
each volume of the volume set and can have a value of
7 or 9 for 7 or 9 track tapes.

is the tape unit speed to request that the volume set
be mounted on and may have the following values:

0 = Unspecified, use any speed device
75 = Use a tape device whose speed is 75 IPS.
125 = Use a tape device whose speed is 125 IPS.
200 = Use a tape device whose speed is 200 IPS.

specifies the hardware mode to be used in processing
the volume set and has the following possible values:

O = unspecified or variable modes
1 = binary
2 = nine
3 = bed

specifies if a write ring is to be installed in each
volume of the volume set. A value of "O"b = no write
ring and a value of "l"b = install write ring.

13. attach desc_ptr
- is a pointer to a copy of the original unparsed

attach description.

volume set structure

Each volume of a volume sequence list has a volume set
structure associated with it. As each volume specification in
the attach description is parsed, a volume set structure is
allocated and initialized for it. For a multi-volume volume set,

Page 47 MTB 600

mtape_ mt ape_

these volume_set structures are chained together in a linked list
and comprise the volume sequence list. Information in this
structure is updated as each volume is mounted. If the volume
set membership is increased as the result of a user query (See
"Queries" above), then a new volume set structure is allocated
and initialized for each new volume added by the user. Each
volume set structure is deallocated (freed) at detach time.

dcl 1 volume set aligned based (vs_ptr),
2 version fixed bin,

where:

2 mounted bit (1),
2 ever mounted bit (1),
2 pad fixed bin,
2 device name char (8),
2 prev_vs_ptr ptr,
2 next_vs_ptr ptr,
2 volume name char (32),
2 volume-id char (32),
2 volume-comment char (64),
2 first_vl_ptr ptr,
2 last vl ptr ptr,
2 first uvl ptr ptr,
2 last uvl ptr ptr,
2 read-errors fixed bin (35),
2 write errors fixed bin (35);

1. version

2. mounted

is the version number of this structure, currently 1.

is an indication as to this volumes current mounted
state. "O"b => not mounted, "l"b => mounted.

3. ever mounted
is an indication as to whether this volume has ever
been mounted. "O"b => never mounted, "l"b =>
currently or was mounted.

4. device name
is the name of the tape device that this volume is
mounted on. (e.g. "tape 01"). If the volume has
never been mounted, this field will be padded with
blanks. If the volume has been mounted, but is
currently unmounted (indicated by the state switches,
mounted= "O"b, ever mounted= "l"b), this field will
contain the device name of device last mounted on.

5. prev_vs_ptr

MTB 600 Page 48

•

mt ape_ mtape_

is a pointer to the previous volume set members
volume set structure.

6. next vs ptr - - . pointer to the next volume set members lS a
volume set structure. -

7. volume name
is the volume name specified in
oescription for each volume set member.

the attach

a. volume id
is name of this volume set member as
volume label. For unlabeled volumes
have yet to be mounted, this field
with blanks.

recorded in the
or volumes that
will be padded

9. volume comment

10.

- is the attach time comment to be displayed on the
operators console when the current volume is mounted,
and may be blank.

f irst_vl~tr .
is a pointer to the first
structure, defined below
structure.

volume
by the

label record
label record

11. last_vl_ptr
is a pointer to the last volume label structure,
defined below by the label record structure.

12. first_uvl_ptr
is a pointer to the first user volume label record,
if any and may be null.

13. last uvl ptr
- is a pointer to the last user volume label record, if

any and may be null.

14. read errors
is a count of the current number of read errors that
have occurred on this tape volume.

15. write errors
is a count of the current number of write errors that
have occurred on this tape volume.

Page 49 MTB 600

mtape_ mt ape

label record structure

All supported labeled volume types have associated with them
volume label records and most have file label records as well.
Each label record, as it is recognized as such, has a label
record structure allocated for it as a member of a linked list of
from 1 to N label record structures for each volume and or file.
Storage for each label record structure (as well as for the
contents of the label record), is allocated as each volume is
mounted or each file is recognized respectively. Each label
record structure is deallocated at detach time.

dcl 1 label record aligned based (lr_ptr),
2 version fixed bin,

where:

2 mode fixed bin,
2 prev_lab_ptr ptr,
2 next lab ptr ptr,
2 conversion fixed bin,
2 lab length fixed bin,
2 lab:ptr ptr:

1. version

2. mode

is the version number of this structure, currently 1.

is the hardware mode this label record is recorded
in. Numerical values are assigned to mode as follows:

1 = binary
2 = nine
3 = bed

3. prev lab ptr
- -is a pointer to the previous label record structure,

if any.

4. next_lab_ptr
is a pointer to the next label record structure if ,
any.

5. conversion

MTB 600

is a numeric indication of any character set
conversion which must be done on the data being read
from the tape or the data being written on the tape.
The following values are acceptable:

O = no conversion
1 = ASCII <--> EBCDIC

Page 50

mtape_ mtape_

2 = ASCII <--> BCD

6. lab length
- is the length of the actual label record data in 9

bit bytes.

7. lab_ptr
is a pointer to the actual data in the label record
which is volume format type specific.

<vol_type>_tape_io_svolume_close entry

The task of this entry is to close out processing of the
current volume. This may mean writing the end of volume sequence
on output, performing volume switching, etc.

Usage

dcl <vol type> tape io $volume close entry
(ptr, fixed bin <35)); -

call <vol_type>_tape_io_svolume_close (vol_info_ptr, code);

where:

1. vol info ptr
- -is a pointer to the volume info structure defined

above. (INPUT)
2. code

is a standard I/O system status code. (OUTPUT)

<vol_type>_tape_io_$file_open entry

The task of this entry is to process the file label (or
labels) and do any house keeping functions that may be required
by the individual per-process modules (e.g. Fill in pertinent
information in the "file info structure" either from the file
label on input or from the open description on output. On input,
read and save any user file labels for later requests by the user
to "see" these label records. On output, write the standard file
label sequence, etc.).

Usage

dcl <vol_type>_tape_io_$file_open entry
(ptr, fixed bin (35));

call <vol_type>_tape_io_$file_open (file_info_ptr, code);

Page 51 MTB 600

mtape_ mtape_

where:

1. file_infoTptr
is a pointer to the file info structure defined
below. (INPUT)

2. code ·'
is a standard I/O system status code. (OUTPUT)

file info structure

As each file is created on output or
file info structure is allocated for
structure is chained together in a
information about this file is readily
reference. All file info structures are
detach time. -

recognized on input, a
it. Each file info

linked list so -that
available for future

deallocated (freed) at

dcl 1 file info aligned based (file_info_ptr),
2 version fixed bin,
2 label type fixed bin,
2 vol_info_ptr ptr,
2 prev file ptr ptr,
2 next-file-ptr ptt,
2 position,-

3 begin_vol_ptr ptr,
3 end_vol_ptr ptr,
3 cur vol ptr ptr,
3 phy-file fixed bin (35),
3 phy-block fixed bin (35),
3 log:file fixed bin (35),
3 log_record fixed bin (35),
3 log record ptr ptr,

2 file format fixed bin,
2 file-id char (32),
2 seq number fixed bin,
2 block size fixed bin (35),
2 record size fixed bin (35),
2 char size fixed bin,
2 conversion fixed bin,
2 open mode fixed bin,
2 first_~ile_lab_ptr ptr,
2 last_f1le_lab_ptr ptr,
2 first_uf_lab_ptr ptr,
2 last uf lab ptr ptr,
2 first file trail ptr ptr,
2 last_file_trail_ptr ptr,
2 first uf trail ptr ptr,
2 last_uf_trail_ptr ptr,
2 open_desc_ptr ptr;

MTB 600 Page 52

mtape_ mt ape_

where:

1. version
is the version number of this structure, currently 1.

2. label type
- is the label_type duplicated from the volume info

structure above.

3. vol _inf o~tr
lS a pointer to the volume info structure for the -volume set.

4. prev file ptr
- "T" pointer to the previous files file info lS a

structure.

5. next_file~tr .
is a pointer to the next files file info structure,
and may be null.

6. position
is a group of like information, indicating the
current position of the file.

7. begin vol ptr
- Is a pointer to the volume set structure for the

first volume on which this file resides (i.e. first
file section).

B. end_vol_ptr
is a pointer to the volume set structure for the last
volume on which this file resides (i.e. last file
section).

9. cur_vol_ptr
is a pointer to the volume set structure for the
current volume on which thTs file resides (i.e.
current file section).

10. phy file
- is the current physical file number within the

current volume.

11. phy block
- is the current physical block number within the

current physical file.

12. log_file

Page 53 MTB 600

mtape_ mt ape_

is the number of the current logical file within the
file set.

13. log record
- is the number of the current logical record within

the current block.

14. log_record_ptr
is a pointer to the current or last logical record
within the current block.

15. file format
is the numeric value of the current file format.
Although this is per-format module specific, the
following generic values will be recognized by all
per-format modules:

0 = not specified
1 = FB (fixed block)
2 = DB or VB (variable blocked)
3 = S (spanned)
4 = SB (spanned blocked)

16. file id
is the file identifier of the current file.

17. seq number
- is the sequence number of the current file.

18. block size
is the maximum block size of all blocks in the
current file.

19. record size - is the maximum record size of all records in the
current file.

20. char size
is a numeric indicator
characters of the datum
can be 1, for one bit,
for nine bit characters

of the number of bits in the
of the current file. Values

6, for six bit characters, 9
etc.

21. conversion

MTB 600

is a numeric indication of any character set
conversion which must be done on the data being read
from the tape or the data being written on the tape.
The following values are acceptable:

O = no conversion

Page 54

mtape_

1 = ASCII <--> EBCDIC
2 = ASCII <--> BCD

mtape_

22. open mode
- is the numeric value of the iox mode (defined by the

include file iox modes.incl.pll), for which this file
is opened.

23. first file lab ptr
- is-a pointer to the first file label record structure

defined above.

24. last file lab_ptr
- is a pointer to the last file label record structure.

25. first uf lab ptr
- Ts a pointer to the first user file label record

structure, if any.

26. last uf lab ptr
- -is -a pointer to the last user file label record

structure, if any.

27. first file trail ptr
- is-a pointer to the first file trailer label record,

defined by the label record structure above.

28. last file trail ptr
- is a pointer to the last file trailer label record,

defined by the label record structure above.

29. f irst_uf~trail_p~r
is a pointer to the first user file trailer label
record structure, if any.

30. last uf trail ptr
- -is a- pointer to the last user file trailer label

record structure, if any.

<vol_type>_tape_io_$file_close entry

The task of this entry is
current file. This would mean
sequence on output, etc.

to close out processing of the
writing the end of file trailer

Usage

dcl <vol_type>_tape_io_$file_close entry

Page 55 MTB 600

mtape_ mtape_

(ptr, fixed bin (35));
call <vol_type>_tape_io_$file_close (file_info_ptr, code);

where:

1. file_info,J>tr
is a pointer to the file info structure defined
above. (INPUT)

2. code
is a standard I/O system status code. {OUTPUT)

<vol_type>_tape_io_$read entry

The task of this entry is to read logical records from a
physical block and return the information to the user. This may
include character set translation {i.e. EBCDIC to ASCII, BCD to
ASCII), or format translation (i.e. expand compressed deck card
images for gcos tapes, etc.)

Usage

dcl <vol type> tape io $read entry
(ptr, ptr~ fixed bin (21), fixed bin (35));

call <vol_type>_tape_io_sread
(file_info_ptr, rcd_ptr, rcd_len, code);

where:

1. file info ptr
- Is a pointer to the file info structure defined

above. (INPUT)
2. rcd_ptr

is a pointer to the logical record. (OUTPUT)

is the logical record length. (OUTPUT)
3. red len

4. code

Note:

Usage

is a standard I/O system status code. (OUTPUT)

The read entry point is data demand driven. When the
current tape block is exhausted, a common mtape subroutine
entry point is called to obtain the next block. -This common
subroutine is defined below:

dcl mtape_sread_block entry

MTB 600 Page 56

..
mt ape_

(ptr, ptr, fixed bin (21), fixed bin (35)):
call mtape $read block

(file_Info_ptr, block_ptr, block length, code):

where:

mtape_

1. file info ptr
- Is a pointer to the file info structure defined

above. (INPUT)

2. block_ptr
is a pointer to a buffer containing the requested
block. (OUTPUT)

3. block length
- is the length of the block in 9 bit bytes. (OUTPUT)

4. code is a standard I/O system status code. (OUTPUT)

<vol_type>_tape_io_swrite entry

The task of this entry is to write logical records to a
physical block. This may include character set translation (i.e.
ASCII to EBCDIC, ASCII to BCD), or format translation (i.e.
compress source card images for gcos compressed deck formated
tapes, etc).

Usage

dcl <vol_type>_tape_io_$write ent:y
(ptr, ptr, fixed bin (21), fixed bin (35)):

call <vol type> tape io swrite
(file_info:ptr,-rcd_ptr, rcd_len, code):

where:

1. file info ptr
- "T" is a pointer to the file info structure defined

2. red ptr

3. red len

4. code

Note:

above. (INPUT)

is a pointer to the logical record. (INPUT)

is the logical record length. {INPUT)

is a standard I/O system status code. {OUTPUT)

Page 57 MTB 600

mtape_ mtape_

The write entry point is data demand driven. When the
current tape block is full, a common mtape subroutine entry
point is called to write out the block to tape. This common
subroutine is defined below:

Usage

dcl mtape swrite block entry
{ptr,-ptr, fTxed bin (21), fixed bin (35));

call mtape swrite block
(file_Tnfo_ptr, block_ptr, block_length, code);

where:

1. file_info_))tr
is a pointer to the file info structure defined
above. {INPUT}

2. block ptr
- is a pointer to a buffer containing the requested

block. (INPUT)

3. block length
- is the length of the block in 9 bit bytes. {INPUT)

4. code is a standard I/O system status code. (OUTPUT)

<vol_type>_tape_io_sorder entry

The task of this entry is to process any control orders that
are format specific and outside the realm of mtape_.

Usage

dcl <vol type> tape io $order entry
(ptr, char (*)~ ptr, fixed bin (35));

call <vol_type>_tape_io_sorder
(file_info_ptr, order_name, info_ptr, code};

where:

1. file info ptr
- Is a pointer

above. (INPUT)
2. order name

MTB 600

is the name of
not recognized

to the file info structure defined

the control order. Any control order
by mtape_, will be passed on to the

Page 58

.. '

mtape_

3. info ptr

4. code

mtape_

per-format module. (INPUT)

is the information pointer present in the
iox $control call. The value of info ptr may be
null. (INPUT)

is a standard I/O system status code. (OUTPUT)

Page 59 MTB 600

