
MULTICS TECHNICAL BULLETIN 651 page 1

To: Distribution

From: Keith Loepere

Date: March 15, 1984

Subject: Bootload Multics Phase 1

Bootload Multics (also known as the bootload command envi
ronment (bee)) is a new phase of Multics initialization. Its
purpose in life is to allow Multics to run without BOS which in
turn allows Multics to run on hardware on which BOS cannot run.
Bootload Multics is being provided in two phases. The first
phase, which this MTB describes, provides enough functionality so
that Multics may be run, albeit possibly not always as easily as
desired, without BOS. In phase 1, Multics will be normally
booted from BOS, however, and will rely on BOS for certain
functions, when it is desired. Phase 2 is an ongoing process in
which all of BOS' functionality is added to bootload Multics.

This first phase is being installed at this time for two
reasons. First of all, it contains the most important and
crucial aspects of bootload Multics, which will need considerable
exposure. Also, it is felt that certain enhancements provided by
bootload Multics would be desirable if installed now. Most
notable of these is the ability to set "probe" breakpoints in
hardcore segments and the ability to perform a "warm" boot from
disk.

This MTB describes the structure of bootload Multics in
general and its use and operation in particular. Detailed
descriptions of the internal operation of bootload Multics do not
appear here. For this information, the reader should refer to
MTB-652, the proposed new Initialization SDN.

Comments on this MTB should be sent to the author:

Keith Loepere (Loepere.Multics)

or via the bootload multics forum.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

1

TABLE OF CONTENTS

This MTB is split into five main sections. The first four
are the basis of the MTB proper as regards to describing bootload
Multics. The fifth section contains the documentation that goes
with bootload Multics~ as such it also contains the detailed
description of the operation of bootload Multics. The page
numbers within this fifth section are made to align, section
number-wise, with the manual to which they belong. As such,
these page numbers jump in no apparent order.

I Introduction
II Significant Changes and Features
III Impact
IV Detailed Proposal
V Documentation Changes

I. INTRODUCTION

In the current scheme of things, Multics is booted from BOS.
BOS is a very crusty and cryptic set of programs that runs
outside of Multics itself. It is entirely written in an obscure
dialect of alm. As such, it is difficult to maintain and
difficult to modify. Each hardware change that comes along
requires modifications to BOS (as well as Multics). To remove
future needs to modify BOS for such reasons, it is desired to
remove BOS.

To understand what functions are required of a BOS replace
ment, it is best to consider, as a start, the normal sequence of
events that BOS puts into motion to boot Multics.

First of all, BOS is capable of being booted directly from
its tape via operator's console· (or iom) switches. It places
firmware into the various mpcs so that disk and tape i/o can
proceed. It generates a conf ig deck de?cribing all hardware
units at the site. It sets system controller clocks. Once in
memory, "it can start the boot of Multics from the Mu1tics System
Tape (MST). Multics takes over from there. When Multics shuts
down, BOS regains control, ready to re-boot Multics. If Multics
crashes, BOS, by virtue of being outside of Multics, can run to
take a dump, for later analysis. It also forces Multics to
perform an emergency shutdown.

To replace BOS, then, at a minimal level, requires being
able to boot Multics directly from a MST on a completely cold
machine, to load firmware, to set clocks and to provide a config
deck before Multics, as it currently stands, can boot service.
Also, a safe platform that Multics can crash/shutdown to must be
provided from which dumps and emergency shutdown can be
initiated, as well as re-booting.

2

II. SIGNIFICANT CHANGES AND FEATURES

The most obvious operator visible change resulting from this
installation will be the installation of a new command level
(bee). This command level provides more power than the equiva
lent BOS command level: in particular, the power of Multics lies
behind it. Once bee is booted, either from BOS or from the
"switches", most operator activities previously performed at BOS
will be performed here.

A long desired feature for Multics provided by bee is the
ability to perform a "warm" boot from·disk. (Sorry, no "cool" or
"cold" boots.) That is, when at bee, one can boot Multics purely
from disk without a MST (Multics System Tape) being mounted on
the proper tape drive. Not only is this more convenient, but it
makes it easier to set up for automatic operation.

Changes to the conf ig deck are now made with the conf ig deck
editor (although BOS' "config" command can still be used). This
new editor uses qedx_ for text editing operations, providing more
convenient changing. Also, the conf ig deck editor understands
various labels for fields on config cards: it is no longer
necessary to remember the order of fields on these cards.

The bee equivalent of the BOS "runcom" facility will be
version 1 exec corns, a much more powerful and sensible facility.

BOS' "patch" and "dump" facilities are being merged into the
bee "probe" facility. This facility provide more power in
performing patch/dump operations than BOS. First of all, it
allows dumping of memory and disk in various formats, including
instruction. It can display machine conditions in interpreted
form. It allows various formats for data that is to be patched
into memory or disk. It can also trace stack frames.

An important feature of the bee "probe" facility is its
ability to set breakpoints in Multics and bee itself. The normal
probe requests of "before", "reset", "status" and "continue"
apply to them. It is hoped that this facility can reduce future
Multics hardcore and bee debugging times.

bee functions can be aborted in a cleaner manner than in
BOS. Within BOS, hitting REQUEST aborts a function (even if hit
accidentally). bee allows functions to be aborted to various
extents~ also, one can cancel an accidental hit of REQUEST.

The bee equivalent of the BOS firmware loader is more
intelligent also. Where as BOS requires one to specify the
location of an mpc and what firmware images to load into it, bee
can determine all of this information purely from an operator
supplied mpc name (and the config deck).

3

bee's operations on bee files are more powerful and more
Multics-like than the equivalent BOS functions.

Provided in this installation are various paramaterizations
for Orion support. Admitedly, this is no longer meaningful but
the placement of the paramaterizations will make future hardware
support easier.

III. IMPACT

The various paragraphs in this section discuss the impacts
resulting from this installation.

The foremost impact is the appearance of the new command
level. The operator must be trained to understand this and the
new commands.

Not all features of BOS are present in this installation.
Although it is claimed that one could survive without these
missing features, it will probably be desirable to utilize them
from time to time. Thus, one must remember which features one
must return to BOS for; one must also know how to return to BOS
and then back to bee.

Certain BOS functions become broken by this installation.
First of all, performing a dump, esd, etc. type operation from
BOS that examines the Multics image will not work since they will
examine the bee image. Also, they do not work generally because
of significant changes to segment generation (see below).

This installation significantly modifies the method of
allocation and creation of hardcore segments. All hardcore
segments, with the exception of fault vector, iom_mailbox,
dn355_mailbox, isolts_abs_seg and the abs_seg's used by page
control for examining memory frames, will now be created as paged
segments. Thus, they all take up an integral number of pages.
This causes more memory to be used for wired supervisor segments
than was true previously. Certain packaging of hardcore entities
was performed to regain some of this space. This making paged of
segments was added for several reasons. First of all, it is
required for future processor support. Also, it is a part of
hardcore breakpoint support. The page tables for these segments
are kept in segments maintained for the purpose. This making
paged breaks various BOS analysis tools; in particular, BOS fdump
ceases to function. Also, the ~ethods used by the Multics dump
analyzers to determine absolute memory addresses tends to fail.

bee requires two new disk partitions on the rpv. One is the
"file" partition, used to hold bee exec corns and config deck
sources. It is 255 pages long. The second is the "bee"
partition, used to hold the saved Multics image and to restore

4

bee, bee paged work segments, and the contents of the MST so that
"warm" boots may be performed. This partition is 2200 records
long. Thus, 2455 rpv records are used up. by bee. Since
rebuilding the rpv to create these partitions can be a problem,
bee includes a program that will dynamically rearrange the pages
on the rpv to lay down these partitions (assuming that there are
enough free records to do so}.

Two new collections are being added to the MST. Collection
1.2 contains config decks and exec corns (ascii files} that are
auto-loaded into the bee file system. Thus, a site may generate
a MST with their desired files on it and also generate a tape
that another site may cold boot from; without the other site
having to enter a config deck. Collection 1.5 contains paged bee
programs, as well as certain firmware objects. check mst is
modified to understand the new collections.

IV. DETAILED PROPOSAL

This section describes the set
and their purpose. It is divided
pertaining to areas of changes.

of modules to be installed
into several sub-sections

~ Multi-processor Paramaterization

The following modules were modified/added to support differ
ent processor types.

adp scu.incl.alm
bootload o.alm
bootload-cpu macros.incl.alm
bootload-fauits.alm
bootload-formline.alm
bootload-io.alm
bootload-loader.alm
bootload-tape fw.~lm
dbr_info:inc1:p11
ptw_info.incl.pll

Paging Hardcore Segments

adp scu.incl.pl1
bootload console.alm
bootload-error.alm
bootload-flagbox.alm
bootload-info.cds
bootload-linker.alm
bootload-slt manager.aim
bootload-tape label.alm
dbr util-.pl1-
ptw=util=.pl1

The making paged of almost all hardcore segments runs
through many initialization programs. First of all, those
segments whose sdws were built by template slt .alm had to have
page tables also built by template_slt_. Thus~ template_slt_'s
macros for generating slte/sdw entries have become considerably
more involved to also generate page tables. These macros

5

generate the page tables (and sdw's) for all processor types.
Also, bootload abs mode.alm, which prepares the way to leave abs
mode, must - copy and activate these page tables.
bootload loader.alm no longer establishes unpaged sdw's for the
segments it loads. Instead, it uses the new entrypoint
make core ptw in bootload dseg.alm to generate ptws. These
programs use the new include files unpaged page tables.incl.(alm
pll) to describe the page tables for these -formally unpaged
segments. The page tables are placed into one of two places.
For permanent hardcore segments (those that previously stayed
unpaged), the page tables are placed into the segment
unpaged page tables. Those segments to be made paged have their
page tables In int unpaged page tables (initialization and temp}.
The page tables for these two segments are within themselves,
respectively. With these new segments, collO segnos.incl.alm had
to be modified. These changes take care of collection 0
generated segments.

Collection 1 generated segments are made through get main.
(Segments created by make sdw are automatically paged.)
get main.pll was modified to also generate page tables in the
manner of bootload loader. It was also provided the entrypoint,
given address, for- use by init sst.pll (which allocates the sst
and core map} and others to generate the page tables for the
segments they hand allocate.

scs and clock init$early.pl1 was also changed to make the
early form of seas-paged.

move non perm wired segs.pll had to be modified to know how
to move such paged-segments.

Many other programs had to have their notion of "unpaged"
(i.e., not paged under the auspices of page control) fixed.
These programs now ask whether the address field in the sdw is
within the bounds of the sst (implies page control paged). Also,
some programs were just very bad at keeping straight the
difference between abs-segs and other segs and would trip over
some of these new segments. These included:

collect free core.pll
delete segs.pll
emergency shutdown.alm
get ptrs :aim
init sst-name seg.pll
make-segs paged.pll
page-fault.alm
privTleged mode ut.alm
syserr.alm- -
wire_proc.pll

6

idle_dsegs and idle_pdses were paged. The allocation
algorithm used by tc_init.pll (calling get_main) was optimized to
save space. start_cpu.pll understands the new layout.

To keep tabs on how much page table space is being used,
announce chwm.pll (core high water mark) was modified to print
the usage of the two unpaged page table segments.

The header of unpaged_page_tables contains the absolute
addresses of the start and end of unpaged page tables,
int unpaged page tables and sst seg. This information is-here so
that dump analyzers can determine in which of these segments the
page table for a given segment lies given the absolute address
found in the segment's sdw.

Finally, for other bootload Multics flagbox changes and so
that the flagbox (as a segment) could start at a page boundary, a
new flagbox.incl.(pll alm) include file was made to avoid
conflict with the old (fgbx.incl.(pll alm)) bos versions. The
f lagbox was also moved into the bee toehold. This means that the
bos_toehold flagbox has no use in BOS/bee communication. Modules
that needed recompilation are:

accept rpv.pll
azm why .pll
bootload error.alm
bootload-flagbox.alm
flagbox mgr.pll
init sst.pll
ol dump why .pll
setup dump segments.pll
shutdown fTle system.pll
start cpu.pll-
stop cpu.pll
structure library 2 .eds
sys troubie.alm - -
syserr_real.pll

Multiple Initialization Passes

Bootload Multics, as installed in MR10.2, was capable of
making an "early" initialization pass for booting without BOS.
For the real bootload Multics installation, bee needs to make
many possible passes for various purposes. To clean this up,
real_initializer.pll.pmac was modified to make collection 1 an
internal subroutine, keying off the new variable
sys info$collection 1 phase (whose values are described in
collection 1 phases:incl.pll). The purpose of the various passes
is described-below. Basically, the difference between passes is
the extent of resources used by them.

7

INITIALIZATION PASSES

The first pass, made only when bee is not booted from BOS,
is called the "early" pass. It is a special pass in that it must
generate a config deck, or at least reach a point where an
initial config deck can be entered ("cold" boot). Normally this
pass determines certain attributes of the site configuration from
polls made during collection 0 and from operator queries (on the
order of "Where is rpv?"). Once rpv is found, bee reads in the
config deck and is ready for other initialization passes. It
comes to an "early" bee command level so that the conf ig deck can
be straightened out.

The second pass, which to bee's point of view is the normal
pass, is called the "boot" pass. This pass uses the conf ig deck
to describe available peripherals. It, however, limits itself to
512k and one processor. When finished initializing tables for
such hardware, it comes to the "boot" command level, from which
most bee activities occur, such as booting Multics service.

The third pass, known as the "service" pass, uses all
peripherals and all memory. It starts by re-arranging itself to
utilize all available memory.

Other passes exist. If the "boot" pass fails, a "re_early"
pass is run. This pass is really identical to a "boot" pass, but
it is run with the safe config deck (that determined during
initial hardware polling) to re-establish an "early" command
level.

If the "service" pass fails, a "bee crash" pass is made,
using the saved conf ig deck that was capable of running the
original "boot" pass. This new pass (and resultant "bee crash"
command level) is provided under the assumption that a bee
utility died or that the operator screwed up the config deck at
the "boot" command level.

A "crash" pass exists, similar to the "boot" pass, to set up
to examine a crashed Multics image. It differs from the "bobt"
pass only in its verbosity and the actions that occur if it
fails.

Finally, the "shut" pass is run when Multics shuts down, as
opposed to crashing. It is similar to the "boot" pass except for
skipping the checking/loading of disk mpcs.

8

Addition of bee

Aside from creating multiple initialization passes, various
other levels of support were added to provide the bootload
command environment.

The disk space to run bee is obtained through three
programs. First, fill vol extents .pll provides the necessary
partitions in its defa~lt -list wlien "cold" booting the rpv.
init root vols.pl! checks for the presence of these partitions.
When-not found, it calls the new routine create rpv partition.pl!
to generate them. This program determines the-desTred placement
of the partitions on the rpv and then runs through all vtoces on
the drive, finding pages within this region, moving them else
where, updating the file map to show it and updating the vtoce
(done in the correct order, of course).

The first set of disk i/o's are performed only through the
bootload disk mpc found by find rpv subsystem. Once the conf ig
deck is read from the rpv, though, other disk mpcs may have been
discovered; these need firmware loaded into them. The routine
load disk mpcs looks for disk -mpcs that do not seem to be
runnTng. -It lists these mpcs and gives the operator a chance to
load them. The loading is done by bee fwload.

Mapping bee's pagible temp segments onto the "bee" partition
is done by establish temp segs.pll. Mapping
bootload file partition (bee file syitem)- unto the "file" parti
tion is- done by find file partition.pl!. These use the new
routine, map onto disk.pl!, to find and build an aste/page table
for the disk-space.

The bee command level is implemented via several routines,
whose functions are pretty much obvious from their names. These
are:

bee execute command .pll
- used by command processor ssubsys execute line to find and

invoke a bee command. - - -

bee get to command level.pl!
- calls-bee listen appropriately. It contains the commands

that leave command level, namely boot and reinitialize.
These commands leave command level through non-local goto's.

bee list requests .pll
- implements - the list_requests command via

bce_map_over_requests_.

bee listen .pll
- bee standard listener to read and execute command lines.

9

bee map over requests .pll
- runs a function over the entries in a request table (in this

case, bee request table). Used by bee execute command and
bce_list_requests=. -

bee ready.pll
- prints bee ready messages.

bee request table .alm
- ssu style request table, parsed by bce_map_over_requests_.

It contains all commands for all bee command levels. The
last unused flags in the request data structure are used to
record which levels allow a given command.

One of the most important requirements of bee is to be able
to regain control when Multics crashes or shuts down in a safe
way. This transfer is performed by toehold.alm, imbedded at the
beginning of collection O at a known memory address. It contains
the logic to save 512k of memory to disk, saving the machine
state, read in bee and invoke bee. It also can swap Multics back
in again and restart it. The toehold keys off two pieces of
information; the first is the iom, channel and drive number of
the rpv, maintained by reconfiguration; the second is a set of
dew lists to use to read/write memory. These lists are generated
by init toehold.pll. init toehold also saves a good copy ·of bee
to read-in upon a crash. -The saving of bee's machine conditions
so the toehold may start bee is done by save_handler_mc.alm.

The bee file system is provided by the routine
bootload fs .pll. It manages a primitive file system on the
segment -bootload file partition, mapped on top of the "file"
partition on rpv: It-maintains the directory entries contained
therein.

Warm Boot from Disk

Warm boot from disk consists of two parts. The first is to
save what is needed for a boot of Multics service (collections 2
and 3) away on disk. The second part is to boot by reading these
from disk.

The second part is relatively easy. segment_loader.pll and
load_system.pll were simply modified to call disk reader instead
of tape reader. disk reader.pll is a program that slides an
abs-seg aown the MST area of the "bee" partition to read records,
instead of reading tape records as did tape_reader.

The first part is embodied in load mst.pll. load mst is the.
master reader of the MST from after- collection 1 on. After
reading collections 1.2 and 1.5 into their proper places,

10

~ load_mst saves the rest of the tape (collections 2 and 3) on disk
pretty much as is for disk reader to find.

Since tape reading is not
tape reader.pll and boot tape io.pll
segs~ Also, boot tape io no
physical_record_buf fer: -

Multics support added to bee

needed past collection 1,
are now in collection 1 temp

longer needs to wire

The addition of Multics features to bee was done in one of
several ways.

First of all, some modules already on the MST were simply
moved down into collection 1. Some of these modules were
modified on the way to do the right thing in both (Multics and
bee) environments. These modules are:

active fnc err .alm
added-pass through to bee error.

com err .pll
- provided pass through to bce_errorscom_err.

cv_dec_.pll
added cv_binary_ and cv_binary_check_ entrypoints.

date time .pll
decode descriptor .pll
f ilemap_checksum_:alm

get temp segments .pll
- made to use-bootload_temp_N during bee usage for temp

segments.

match star name .pll
ondata .alm -
requote string .pll
stack header util .alm
sub_err_.pll

The second category are routines moved from other libraries
for bee usage. These modules will be deleted from their original
libraries. These modules are:

convert date to binary .rd
cp data-.cds- - -
get equal name .pll
move r or-t .aim
numeric to ascii .pll
pll_decat_char_.pll

11

The next group are modules- copied from other libraries.
They will be present on the MST and in their respective
libraries. These are modules paged within bee and therefore not
visible in >sll.

check entryname .pll
command processor .pll
egual.pll -
get addr .pll
op mnemonic .eds
plus.p11 -
search file .pll
substr:-pll -

The next group of modules are also copied from other
libraries. In these cases, though, significant modifications
were necessary. Depending on the type and amount of modifica
tions, one of two courses was followed. In the first course, the
module was converted· from foo.pll to foo.pll.pmac. These modules
generate from the single pmac source two different versions, one
for bee and one for Multics. They must be pmac'ed with the
control argument

-pm target """bee"""
or

-pm target """multics"""

They will not pmac if neither option is supplied. These modules
are:

edx util .pll.pmac
gedx .plI.pmac

The other group are those for which the changes made sense to
produce a different module which was largely stolen from an
original.

bee abs io data.incl.pll
- removes unneeded variables, moves work area.

bee display instruction .pll
- needed-to display-just one instruction (or multi-word

instruction), providing status of how much displayed.

bee display scu .pll
- needed- not to try to follow addresses, etc. found

within machine conditions.

bee exec com .pll
bce-exec-com-input.pll

- formed -out of exec com, abs io_, etc. Very much
simplified but maintaTning all pertainent functions of
the originals. The main changes dealt with differences

12

in storage management, switch handling and error recov
ery.

bce_get_flagbox.pll
does not call phcs_ and hphcs_ to do its work.

bee inst length .pll
- does not try to follow addresses found in xec instruc

tions.

bee relocate instruction .pll
- does not try to fiddle with xec instructions.

bootload_qedx.pll
uses different storage techniques.

The next group of modules are those already present within
bee (as of MR10.2) but modified to either fix problems or enhance
features. These are:

bee console io.pll
- for new bee switch strategy and for put_chars_alert

entrypoint.

bee error.pll
- made to have its messages follow com err . Also

provided com_err entrypoint for com err to call.

bee query.pll
- for new bee switch strategy.

bootload o.alm
bootload-1.alm

renumbered to match their containing collections.

dctl.alm
adds the entrypoints bootload read and bootload write.
They match the entries read sectDrs and write sectors
except that the system is wired at the time and that
the routine used for posting i/o completions is
bootload disk post.pll instead of vtoc interrupt.
(bootload disk post posts completions in an area
described-by bootload post area.incl.pll, maintained by
the caller of dctl$bootload (read write).) These
entries are used for high volume, overlapped disk i/o
by bootload Multics. Although not used in this instal
lation, they have been tested by use in programs.
currently under development. Bootload disk i/o's use
the "bootload" flag in a queue entry (see
dskdcl.incl.(alm pll)), replacing the obsolete "swap"
flag.

13

disk control.pll
-added support for bootload disk i/o's queued through
dctl.

establish config deck.pl!
simplified,-corrected as to when to read/write config
deck.

execute sc command .pll
renames the BOS command to bee.

fill vol extents .pll
-addi the deiault partitions "file" and "bee".

f im.alm
fixed a few fault paths that apparently only bee ever
encountered.

find rpv subsystem.pl!
-allows the "skip" or "skip_load" command
entering rpv data. This gives one a way to
loading firmware into the bootload mpc. The
was also modified to use hc_load_mpc to test
disk mpc.

formline .alm
understands bee switches.

before
bypass

program
the rpv

he load mpc.pll
- adaed the entrypoint "urc", which accepts a set of

firmware images to load. This entry does the right
thing for loading firmware overlays into urc mpcs.
Also added was the entrypoint "test controller", used
to see if a controller is dead (needs-firmware).

hphcs_.alm
entry hphcs_$call_bos modified to hphcs_$call_bce.

init bce.pll
-sets up bee switches.

init clocks.pl!
-makes clock setting friendlier.

init early config.pll
-follows latest conf ig card conventions.

init pvt.pll
-correctly sets the write limit for bee operation.

ioa • pll
- simplified, by virtue of allowing formline to under

stand bee switches.

14

ocdcm .pll
maintains the status
wired hardcore data$abort request, checked

bit
by

bee check abort. Also doesn't list consoles on
initialization pass.

"crash"

page fault.alm
-fixed a bug in the find core loop when the paging pool

is small.

privileged mode ut.alm
has renamed entrypoints bee and return and bee. These
know enough to invoke the bee toehold, rather than the
BOS toehold (since BOS is now useless at a crash).

pxss.alm
modified to poll disks when a page wait within collec
tion 1 times out. This makes bee's paging operations
more robust and more consistent with disk recovery
within Multics service.

read disk.pll
-added no test entrypoints to skip the call to test
disks. This speeds up certain bee disk operations.

sc parse . pll
- (with system control commands.incl.pll)

command to bee. -
renamed bos

seas init.pll
-to be quiet during crash initialization and to know

address of bee toehold.

scs.cds
bound with hardcore set seg and wired hardcore data for
space saving. - -

shutdown file system.pll
calls pmut$bce.

sys trouble.alm
- invokes the bee toehold instead of the BOS toehold.

syserr real.pll
now calls pmut$bce_and_return.

system startup .pll
calls hph~S_$call_bce for the renamed "bee" command.

wired hardcore data.eds
bound with scs and hardcore_sct_seg for space saving.

15

wired shutdown.pll
calls pmut$bce.

Other minor changes took place for bee sake. To make
certain routines work in bee where the segment length of buffers,
etc. is shorter (because of lack of disk space to page off of),
during bee operation, sys info$max seg size is set to the max
length of bee work areas. The correct value is saved and
restored when bee completes. The value of sys info$max seg size
used during bee can be found in sys info$bce max seg size,-used
by bootload fs to avoid inserting too big a file-within the bee
file system: The value of sys info$max seg size used is found by
dividing the amount of the wbce" pa~tition reserved for such
purposes (a constant of 128 pages) by the number of temp segments
found in the MST header (bootload temp 1 •. N). Thus, a site can
trade off buffer size for numbers of buffers and work areas.

New bee Command Routines

The following routines have been written for bee use.

Accessing locations in the saved Multics image is performed
through the routine bee appending simulation.pll. This routine
knows how to find any absolute or-virtual address in the saved
image, part of which is on disk and part of which is in memory.
It can also switch to different process address spaces by being
supplied different dbr values. This program provides virtual
access for the bce_dump and bce_probe programs.

·bee dump.pll performs the equivalent of the BOS fdump
program.- It is pretty much modeled after the later, as far as
its decisions toward what to dump. As such, its operation should
not surprise anyone. It does clean up, though, some aspects of
the argument processing faulty in BOS. The operation of the
program is best found in the description in the documentation
below.

bce_probe.pll.pmac and bee probe data.eds provide most of
the functions of bee's probe facility. bee probe contains a
request line parser (for dividing lines into tokens) as well as
most of the functions of probe. Separate internal routines exist
to parse addresses and values and to display data. A few special
routines are kept separate to resemble their Multics counter
parts. Also, bce_probe uses bce_appending_simulation. Support
routines for bce_probe are:

bee display instruction .pll
- routine to display a single (possibly multi-word)

instruction without trying to follow addresses within
the instruction.

16

bee display scu .pll
- displays scu data found within machine conditions,

again, without trying to go beyond the data found in
the machine conditions.

bee inst length .pll
- returns the length of an instruction, again without

examining address values.

bee name to segnum .pll
- maps segment -numbers to names, names to numbers, etc.

It traverses the slt in the saved image.

bee probe fetch .pll
- contains the logic to, given a generalized address,

fetch the required memory/disk/whatever.

bee· relocate instruction .pll
- performs address relocation on an instruction to be

breakpointed. Does not play with anything other than
what is supplied.

The config deck editor is imbedded in config deck edit .pll.
At the base level, this routine merely calls qedx - to do its
work. However, it uses the caller does io option -of qedx to
perform conf ig deck operations. -Whenever the file to- be
read/written by config_deck_edit_'s buffer i/o routine is a
normal file, the routine uses bootload_fs_ for the i/o. When the
filename is <config deck> (buffer 0), it performs the desired
direction of translation between the ascii form and the binary
deck. The new subroutine conf ig deck parse .pll understands the
conventions for labeling fields, types-of fields and conversions,
etc. This routine is unusually tolerant of errors and changes;
in particular, upon reading a card, if the format of a card
changes without config deck data .cds.pmac (descriptions of cards
and field names) being-updated, It can sense it and make the card
into a "user format" card with no further errors being detected.

bee alert.pll writes a message on the operator's console
with audTble alarm.

bee die.pll and bee alm die.alm query the operator and then
irretrievibly disable bee.

bee check abort.pll manages bee operation interrupting. It
is called within bee console io and within any purely
computational loop that can become-an infinite loop to see if the
current operation is to be aborted. (Within ring 0 it is very
difficult, if not impossible, to conceive of a routine that would
intercept the interrupt from the operator's console and manage to
signal quit on the correct stack at the right time. So, instead,
ocdcm_ simply records the desire to abort
(wired_hardcore_data$abort_request) which is checked by this

17

routine. Since this routine is called on the output side of
operations (in bee console io), it follows that most operations
will not proceed far (from-the operator's point of view) before
noticing the request to abort. Unfortunately, the few possibly
infinite loops in programs must call this routine also.) This
routine handles the protocol for aborting functions, as specified
by the operator's response.

bee continue.pl1 checks the validity of continue requests
and calls pmut$special_bce_return to invoke the toehold to
restart Multics. bee esd.pl1 modifies the machine conditions to
cause an emergency shutdown and calls bce_continue.

bee fwload.pl1 implements firmware loading. It scans the
conf ig deck to determine what firmware is required for the
specified mpcs. The actual loading is performed by hc_load_mpc.

bce_get_flagbox.pl1 implements flagbox setting and getting.

bee query af .pl1 implements the query/response active func-
tions. - -

bee severity.pl1 knows where to find the severity indicators
for various commands (currently only dump}.

bce_shutdown_state.pl1 reads the shutdown state from rpv.

bootlood f s cmds .pl1 contains the bee commands to invoke
bootload_fs_'-f ile prTmitives.

System Debugging Support

As mentioned elsewhere, bee provides a facility to dump
Multics (dump} and to patch and probe it (probe). These make up
the main part of system debugging support. However, since this
installation breaks BOS fdump, and since BOS will not be
available to provide a dump in the future, a way was needed to
provide a dump of early initialization. This is provided through
the early dump facility.

A simple program imbedded in collection O,
bootload early dump.alm is capable of dumping 512k of memory to
tape. (During times of failures like this, only the 512k of
memory used by bee is meaningful; nothing will be on disk.) The
tape produced by this dump is in non-standard form. It is read
and converted into a normal style on-line dump by
read_early_dump_tape.pl1. The early dump program is automatical
ly invoked upon any failure in collection O and any collection 1
failure when the normal toehold is not active. With this,
failures rather early in initialization can be dumped. Thus,

18

dumps can be taken even during new hardware testing, assuming one
can run far enough to get to the early dump program.

Breakpoint Support

Providing the ability for bee to set breakpoints in bee
itself and in hardcore in general required modifications to
hardcore segment creation/operation to add room for the
breakpoints and to various routines to handle the breakpoints.

The mechanism used to implement a breakpoint revolves around
a "drl -1" instruction being interpreted (in ring 0) as a
breakpoint. This requires f im.alm to special case this (when it
special cases derails in general). fim contains the breakpoint
handler which simply saves away machine conditions in
breakpoint page (after modifying the machine conditions to pass
the derail-instruction) and then calls pmut$bce and return. When
returned to, it restores the machine conditions: -

For this to work for bee, initialize faults.pll had to be
modified to set up f im$drl entry as the fault handler for derails
in collection 1 as well as-later.

The method of providing areas for breakpoints is imbedded in
various programs. First of all, bootload loader.alm looks for
all segments that are executable. For them~ it makes their page
tables one word longer. This extra word holds a ptw describing
breakpoint_page. All executable wired segments share this page
to hold breakpoints. Up to 120 breakpoints may be set in
breakpoint page (see bee breakpoint page.incl.pll). make sdw.pll
also checks for executable segments and adds an extra page. If
the segment is wired, it threads breakpoint page as that extra
page. Otherwise, it uses another "he" partition page. This
policy means that only one page of wired memory is used up for
hardcore breakpoint support.

A few programs m~st special case breakpointable segments
(slte.breakpointable is on). delete segs nulls out ptws
referencing breakpoint page before truncating them to avoid
having page control become unhappy. make_segs_paged,
collect free core and move non perm wired segs also need not to
free the breakpoint page- found when paging/moving/freeing a
segment.

New Tools and Tool Changes

Because of the addition of two new MST collections,
check mst needs another change to its tables to describe them.
Because some of these collections are loaded paged but their

19

linkages, etc. are wired, a new attribute was added to
check mst's data: "last text wired collection" (to complement
the existing "last_[anythTng]wTred_collection"). Various other
bug fixes were also made to check mst and friends so that the
checker output would be correct.

To handle the tapes generated by bootload early dump, the
new program read early dump tape.pll (redt) was created. It
reads the tape, creating-a sTmulated 512k memory. With the help
of ed appending simulation.pll, it pretends to be the bee dump
program and thereby creates a standard format dump.

get flagbox was modified to be able to set/get the new
flagbox Iield "return to bee command", named "bee command" to the
get_flagbox. - -

A primitive command (which may get enhanced one day),
bootload f s allows access during service to the bee file system.
Using hphcs_$(read write) partition, it can insert a new bee file
system. Options to bootload fs allow insertion, deletion,
renaming, etc. of files within- a copy of the bee file system,
which may be inserted during service.

To provide a level of compatibility between the labeled
config deck form, used by the config deck editor, and the old
unlabeled form shown by print configuration deck, the user ring
conf ig tools were updated to -allow the new- labeled form. Both
print configuration deck and compare configuration deck now take
the "=label" ("-lblw) control argumenI to display the output with
labels. (Also, compare configuration deck was changed to allow
two pathnames to -be supplied.) The new routine
convert configuration deck takes the output from
print configuration deck (with or without labels) and converts it
back Io binary. This operation is provided to allow a test of a
given ascii conf ig deck (trying a convert performs some level of
validation of cards) as well as allowing one to convert an ascii
form to binary for comparison with the current binary version.

Auto mode support

Auto mode support includes facilities added so that bee may
auto re-boot Multics upon a crash. Generalized, it is a set of
instructions that may be left for bee from either Multics or bee
to be executed whenever bee finds itself in control. This is
controlled mainly through the "return to bee command" field in
the flagbox (refered to as "bee command" to Tget set) flagbox).
This field overlays the old ."blast" message field, whi~h doesn't
work. Auto mode support starts with access to this new and other
flagbox variables, given the new flagbox mgr.pll,
get flagbox.pll, and hphcs .alm and phcs .alm changes Iherefor.
It -also includes the bee- command/active function for flagbox

20

queries, bee get flagbox.
examine Is - the
(bce_shutdown_state.pll).

Also in the realm of status for bee to
shutdown state of the rpv

To provide the equivalent of the BOS auto runcom, the
exec corns auto.ec, dump.ec, go.ec and rtb.ec are provided. Their
use Ts described in the documentation below.

21

V. DOCUMENTATION CHANGES

The documentation changes described below are meant to
describe only the initial installation of bee. As such, they
purposefully contain information describing the presence of both
BOS and bee in ways that will be removed once the other sections
of bee are completed.

The page numbers in this section align, section number-wise,
with the manual to which they belong and therefore appear to jump
about.

The documentation items that follow are (in order):

Commands and Active Functions
System Release Bulletin
Installation Instructions
Hardware and Software Formats
Multics Operator's Handbook

22

SECTION C-AF

COMMAND DESCRIPTIONS

Add the new command read_early_dump_tape to the System
Maintainer's Guide:

Name: read_early_dump_tape (redt)

The read early dump tape command reads the contents of a
tape produced-by the early dump facility of bee to produce a
standard format dump in a specified directory.

Syntax: read_early_dump_tape reel num {-control_args}

Arguments:
reel num

is the
may by

reel number of the early dump tape.
placed anywhere on the command line.

Control args:
-erf N -

This argument

generates a dump with erf (error report form) number of N.
This control argument is required.

-dump dir directory
places the dump into the specified directory. The default
is to place the dump into >dumps.

-density, -den N
sets the tape density to N. Unless site modified, early
dump tapes are written at 1600, which is the default.

-ring, -rg
mounts the tape with a write ring.

Add to the description of print_conf iguration_deck and
compare_conf iguration_deck:

-label, -lbl
displays cards with mnemonic labels for each field.

C-AF-1

-no label, -nlbl
- does not display field labels. This is the default.

Change the description of compare_conf iguration_deck as
follows:

Syntax: compare_conf iguration_deck pathl {path2} {-control_arg}

Syntax as active function:
{path2}]

[compare_conf iguration_deck pathl

Function: compares either a saved copy of the configuration deck
or the configuration deck for the running system to a saved copy.
When used as an active function, returns either "true" or "false"
to indicate whether the two configuration decks are equivalent.

Arguments:
pathl

is the pathname of a saved copy of the configuration deck.
path2

is the pathname
compared against
>sll>conf ig deck
system) is used.

of a copy of the configuration deck to be
pathl. If this argument is not supplied,
(the configuration deck for the running

Add the description for the new command
convert_conf iguration_deck:

Name: convert_conf iguration_deck

The convert configuration deck command converts an ascii
source form of a configuration deck, as produced by
print_conf iguration_deck, into a binary (system) form.

Syntax: convert_conf iguration_deck ascii_path binary_path

Arguments:
ascii path

Is the pathname of an ascii source form of a config deck.
Both labeled and unlabeled fields may appear on the conf ig
cards. The archive convention is allowed.

binary path
is the pathname of the resultant binary conf ig deck. The
form is compatible with the system conf ig deck.

C-AF-2

Notes:
This command is intended to be used to perform a level of
validation on a proposed new ascii conf ig deck. It may also be
used to convert an ascii conf ig deck into the form required by
compare_conf iguration_deck.

Add the description for the new command bootload f s:

Name: bootload fs

The bootload_f s command allows the user to operate on a copy
of the bootload Multics (bee) file system, including the ability
to extract the real bee file system and to replace it with this
operating copy.

Syntax: bootload fs operation {args}

Arguments:
operation

is an operation listed below under "List of Operations".
args

are arguments required by the designated operation.

List of Operations:

The operations are grouped into two categories. The first
group determines the location of the user's copy of the bee file
system: operations in this group can also extract the real bee
file system and overwrite the bee file system with the user's
copy. The second group operates on objects in the user's working
copy of the bee file system.

Operation: get~partition, get_part

The get partition operation reads the bee file system from a
specified dTsk partition into the user's working copy thereof
overwriting the previous contents of the user's copy.

Syntax: bootload fs get_partition pv_name part_name

Arguments:
pv name

- is the name of a mounted physical volume.
part name

-is the name of a partition on the specified volume to be
read.

C-AF-3

Notes:
Acess to hphcs_ is required.

Operation: put_partition, put_part

The put partition operation replaces the bee file system
found in the specified disk partition with the user's local copy.

Syntax: bootload fs put partition pv_name part_name
or bootload-f s {-force}

Arguments:
pv name

- is the name of a mounted physical volume.
part name

-is the name of a partition on the specified volume to be
read.

Notes:
If no arguments are supplied,- put partition will use the

identity of the partition last specifTed in a get_partition
operation. Specifying "-force" will suppress the query as to
overwriting the old partition.

Access to hphcs is required.

Operation: use_partition, use_part

The use partition operation
specified segment to become the
file system.

copies the contents
user's working copy

of a user
of the bee

Usage: bootload fs use_partition path

Arguments:
path

is the
current
system.

pathname
contents

of
of

a segment which
the user's local

Operation: save_partition, save_part

will overwrite the
copy of the file

The save partition operation saves the current contents of
the user's local copy of the bee file system into a segment.

C-AF-4

Usage: bootload fs save_partition path

Arguments:
path

is the pathname of a segment which will be overwritten with
the user's working copy of the file system.

Operation: discard_partition, discard

The discard operation discards the contents of the working
copy of the bee file system. This operation must be followed by
another get_partition, use_partition of init_partition operation.

Usage: bootload_fs discard_partition {-force}

Operation: init_partition, init

The init partition operation clears out the contents of the
working copy - of the bee file system. It differs from
discard partition in that the result is a file system containing
no files: the result of discard partition is no file system at
all. -

Syntax: bootload_fs init_partition {-force}

Operation: get_file, get

The get file operation extracts a file from the working copy
of the bee-file system and places it into a Multics storage
system file.

Syntax: bootload fs get_f ile file name path

Arguments:
file name

is the name of a file within the working copy of the bee
file system.

path
. is the pathname of the Multics
is to be copied.

Operation: put_f ile, put

C-AF-5

file into which the bee file

The put file operation places a copy of a Multics storage
system file In the working copy of the bee file system.

Usage: boatload fs put_f ile path file name

Arguments:
path

is the name of a file in the Multics hierarchy to be copied
into the bee file system.

file name
is the name the copy is to have within the bee file system.

Operation: list files, list

The list files operation
characters) of the files in
system.

Usage: boatload fs list files

Operation: delete file, delete

lists the
the working

names and
copy of

lengths (in
the bee file

The delete file operation deletes files from the working
copy of the bee file system.

Usage: boatload fs delete file file name

Arguments:
file name

is the name of a file that is to be deleted from the bee
file system.

Operation: rename file, rename

The rename file operation renames a file within the working
copy of the bce-f ile system.

Usage: boatload fs rename file old file name new file name

Arguments:
old file name

is the name of an existing file in the bee file system.

C-AF-6

; .

new file name
is fhe new name to be given to the old file.

C-AF-7

SECTION SRB

SIGNIFICANT CHANGES IN THIS RELEASE

This release contains the first installation of Bootload
Multics, also known as the Bootload Command Environment (bee).
Bootload Multics is a new phase of Multics initialization. It
allows the operation of Multics with or without BOS. The ability
to "warm" boot Multics from disk is provided by Bootload Multics;
that is, to boot without the MST mounted on a tape drive.

Bootload Multics provides a new ring zero command level.
The functions of warm booting, dumping and examining memory, and
emergency shutdown are performed from this command level. These
functions may no longer be performed from BOS. Also, automatic
operation is driven from the Bootload Multics command level. The
BOS functions of SAVE/RESTOR, SAVE COPY, CORE SAVE/RESTOR, as
well as a few specialized functions, are not yet available.
Also, printer support is not yet available.

The operation of
Section 5.5 of the
AM81. This material
this release. The
effect on any user's

Bootload Multics is described in detail in
Multics Operator's Handbook, Order Number
must be read prior to attempting a boot of

presence of Bootload Multics will have no
process or application.

Bootload Multics requires 2455 pages of disk space on the
rpv for its operation, split between the new "bee" and "file"
partitions. These partitions will be automatically created when
this release is booted for the first time; the site, however,
must assure that a sufficient amount of space on the rpv exists.

For a better discussion of the changes involved with
Bootload Multics, refer to Appendix X of this SRB.

This release provides the ability of site maintenance
personal to set "probe" breakpoints in hardcore. When a
breakpoint is encountered, Bootload Multics will be invoked to
allow the analysis of the machine conditions. The breakpoint
conditions may be modified and then Multics restarted.

SRB-1

SECTION SRB-X

BOOTLOAD MULTICS (BCE)

MR11 includes a new phase to initialization known alternate
ly as Bootload Multics or the Bootload Command Environment (bee).
This release provides the first installment of bee; future
releases will provide further enhancements. The goal of bee is
to allow Multics to be operated without BOS. This installation
provides the basic facilities that a site must have to run
without BOS. Certain facilities present in BOS, used at some
sites, may not be present in this installation of bee; for these
facilities, the site will use BOS, just as in previous releases.

The intent of this appendix is to describe bee in terms of
its difference from the previous method of operation (i.e. BOS).
This information should be used in conjunction with the descrip
tion of bee appearing in the MOH.

THE MST

bee, is not, as was BOS, on a separate tape from Multics.
Both bee and Multics originate on the same tape, the Multics
System Tape (MST). bee is an integral part of the Multics
initialization software. It both uses and is used by the Multics
initialization software.

bee/Multics may be booted from BOS or via the IOM/IMU boot
function. When booted from BOS, it is not necessary to load
firmware into the various controllers or set the system clocks
from bee, as this will already have been done from BOS. Also,
the configuration description needed by Multics is passed up from
BOS. When booted from the IOM, the firmware loading, clock
setting and conf ig deck preparation are all done from bee.

Once booted, bee has no further use of the MST. Multics
service can be booted directly from bee without the aid of the
MST tape. This is because the needed contents of the MST tape
are saved in a partition of the rpv. This is an important
difference from the previous BOS method of operation. Note,

SRB-X-1

then, that an MST tape is not kept mounted on a tape drive during
periods of auto-reboot-mode operation.

BOOTING

The equivalent of booting BOS is now to boot bee. Under
normal circumstances, bee is booted once within a given series of
boots of Multics service. It serves an equivalent function to
BOS in that it forms a platform from which Multics is booted and
to which Multics crashes or shuts down.

. The booting of bee has the same significance as did the
booting of BOS previously, even if bee is booted from BOS. That
is to say that Multics service, although grown from bee, is to be
considered as a separate entity from bee, just as Multics and BOS
were considered separate and distinct entities in the past. When
Multics crashes or shuts down, Multics, as an entity,
relinquishes control of the system; bee, as an entity, takes over
control. bee can then perform emergency shutdown and dumping of
Multics.

bee can be booted from BOS, if BOS will be needed later, or
bee can be booted alone. The actual sequences for booting bee
appear in the Installation Instructions and in the MOH.

The directive "boot" now has three possible meanings. When
used in BOS, it means to boot an MST, thus starting up bee. When
used at the bee "early" command level, it means to boot bee
(actually, to continue to boot bee). When used at the bee "boot"
(or "bce_crash") command level, it means to boot Multics service.

The next two sections provide some comments on the new
booting procedures.

Booting bee from BOS

When BOS is booted first, and bee is booted from BOS, BOS is
used for those hardware and configuration initialization func
tions for which it has always been used. Once bee is booted from
BOS, though, BOS is out of the picture as far as system operation
is concerned. bee/Multics will not return to BOS under any
circumstances unless the operator so directs. For this and even
more fundamental reasons, certain functions, previously performed
by BOS, can no longer be performed at BOS. These include ABS,
BLAST, DUMP, ESD, FDUMP and PATCH.

The process of booting BOS, as well as BOS itself, must
perform certain initialization functions before booting bee.
These are listed below, in order as they are performed.

SRB-X-2

The IOM/IMU INITIALIZE/BOOT function is invoked. The FWLOAD
function of BOS is read into memory in the process.

The bootload tape MPC is loaded by answering the prompt,
"Enter tape controller type:".

The other MPCs (disk MPCs as well as other tape and unit
record controllers) are loaded by supplying their types
and channel addresses to the FWLOAD prompts.

BOS is booted (which is irrelevant as far as bee is
concerned) .

The conf ig deck is generated or corrected.

bee/Multics is booted.

The BOS BOOT function is used as before to boot the
bee/Multics tape. The booting of Multics will appear as it would
in the past. The only visible difference is that Multics stops
at a new command level it did not have before. This is the bee
(ring-O, if you wish) command level. The bee command level can
be detected by the presence of the bee ready message:

bee (boot) TIME:

The word "boot" is sometimes replaced by other names, depending
on the system state. These are discussed later.

For more details on booting bee from BOS, refer to the MOH.

The normal day-to-day functions previously performed by BOS
will now be performed at this bee command level. The function of
booting Multics service takes place from bee. Also, when Multics
crashes or shuts down, the system will return to bee, instead of
BOS, so that emergency shutdown and dumping can be performed.

Booting bee from the IOM/IMU

The IOM/IMU INITIALIZE/BOOT function can be used to boot
bee. In this case, all hardware and configuration initialization
functions previously performed by BOS are performed by bee
itself. In most cases, the system requests the performance of
these functions in the correct order. It might be worthwhile,
though, to describe the initialization functions that must be
performed, in order, during the process of booting bee. For more
details, refer to the MOH.

The IOM/IMU INITIALIZE/BOOT funct.ion is invoked. Collection
O of bee will be read in as a result.

SRB-X-3

Firmware is loaded into the bootload tape controller. This
is done by answering the "Enter boot tape MPC model"
query.

The bootload disk controller is booted. This is done by
answering the query "Enter RPV data". This also
locates the RPV.

The conf ig deck is generated or corrected. During a cold
boot, the config deck is generated by using the config
deck editor at the "bee (early) TIME:" prompt. For a
normal boot, the config deck is read from the rpv
specified in the previous step and brought up to date,
if necessary, by the config deck editor. When this is
done, enter "boot" to complete the booting of bee.
(bee is not fully booted until it reaches the "boot"
state.)

The system clock is set. The time value is requested after
entering "boot" above.

All other disk mpcs are booted, if necessary. This is done
in the load_disk_mpc dialog.

All other controllers are booted. This is done with the
fwload (fw) command at the "bee (boot) TIME:" prompt.

Notice that the same initialization functions are performed
as were previously performed by BOS, but their order is differ
ent. The only function that the operator must explicitly
remember to do is to load the other MPCs at the "bee (boot)
TIME:" prompt.

Once the other mpcs have been loaded, bee can be considered
fully initialized. At this point, the system will be sitting
with the prompt

bee (boot) TIME:

This prompt signifies that the system is at bee command level, a
new (ring-0) command level. In the course of booting Multics,
this may be simply viewed as another command level (along with
the ring-1 and ring-4 command levels) in the process of booting.
However, this command level signifies that bee has control with
the same significance as we used to say that BOS has control in
the past. The function of booting Multics service takes place
from this command level (bee "boot" command level).

NORMAL OPERATION OF BCE

The types
subset of those

of operations to be performed
previously performed at BOS.

SRB-X-4

from bee are a
(Eventually all

functions BOS performed will be performable from bee.) These
operations include booting Multics service, taking dumps of a
crashed Multics system, and invoking emergency shutdown of
Multics. The commands to perform these basic operations are
similar in operation and appearance to their BOS counterparts.
In particular, these equivalences are:

BOOT -> boot
ESD -> esd
FDUMP SHORT -> dump -short
etc.

The invoking of the standard BOS runcoms is replaced by invoking
the corresponding bee exec_coms. Thus:

AUTO -> ec auto star
GOGO -> ec go
RTB -> ec rtb

Other than these standard operations, the commands within
bee differ considerably from BOS. The MOH should be consulted
for the operations of these commands.

The MOH lists the functions currently performed by bee.
Certain other functions such as SAVE/RESTOR must still be
performed from BOS. If such operations are desired (those
performable by BOS but not yet performable by bee), it is
necessary to return to BOS. If bee was booted from BOS, simply
use the bee "bos" request. The BOS GO request will restart bee
where it was. If bee was not booted from BOS, it will be
necessary to boot BOS. Boot BOS only after successfully shutting
down Multics service.

STATE OF THE SYSTEM

bee can be in various states. The state of bee can be found
from the bee ready message/prompt:

bee (STATE) TIME:

The "early" state normally appears only
bee initially. When bee is in this state, the
the operator generate or correct the conf ig
setting the clock when the system leaves this
"boot").

once, when booting
purpose is to have
deck, followed by

state (by entering

The "boot" state is the normal state of bee. In this state,
Multics service may be booted.

If bee should fail, the "bee crash" state is entered. When
this occurs, the dying bee is saved and can be dumped (if this is
desired). From the "bee crash" state, one can enter

SRB-X-5

"reinitialize" to return to the "boot" state from which one can
then boot Multics service. As a short cut, Multics service can
be booted directly from the "bce_crash" state by entering "boot"~
this performs a reinitialize and a boot of Multics service
without stopping at the bee "boot" command level.

When Multics crashes, bee is in the "crash" state. This
state exists just so that the operator is reminded that a dead
Multics exists which should be dumped and shut down (esd).

THE TOEHOLD AND 'EXECUTING SWITCHES'

BOS has a toehold. The toehold is a small program that was
the main driver when switching between Multics and BOS. It also
held the communication flags between BOS and Multics (the
flagbox). The toehold is located in memory at absolute address
10000 (octal).

bee also has a toehold used in much the same way as the BOS
toehold.

Since the BOS toehold is being kept around for this release
(as the driver for switching between BOS and bee (when BOS is
used)), the bee toehold (used for switching between bee and
Multics) must be at a different location. The bee toehold is at
absolute location 24000 (octal).

Thus, "executing switches" to force a manual return to bee
uses a different switch value than does forcing a return to BOS.
This switch value is "024000717200". When "executing switches"
on a L68 processor, this is the value to enter into the data
switches.

Since the toehold address to crash Multics has changed, the
DMP's BOS command is no longer used. Instead, it is necessary to
enter the above switch value into the data switches manually (CO
DATA 024000717200) and then force execute the data switches
(EX2).

The system will warn the operator if the data switches on
any processor are not set to the above value.

GENERAL OPERATION OF BCE

The operation of the bee command level differs both from the
old BOS command usage and the Initializer ring-1 and ring-4
command level usage. The syntax and usage of this bee command
level is much more that of standard Multics command level. (This
is described in the MPM Reference manual and will not be repeated
here.) In particular, active functions and command iteration are
used. exec corn's (version 1) are available. Normally, though,

SRB-X-6

commands are typed simply as a command name followed by a
collection of arguments, separated by spaces.

The commands within bee attempt to resemble their counter
parts (if any) within service Multics. For details of the
execution of any given command, refer to the MOH.

Some things to remember about bee operation follows.

The text editor used to edit bee files (equivalent of BOS
runcoms) is qedx. It bears no resemblance to the BOS EDIT
command. The description of qedx appears in the manual, Commands
and Active Functions. The version of qedx within bee differs
from the standard version in that there is a query if one tries
to exit qedx with unwritten modified buffers.

Config decks are edited with
request. The config command in bee
blance to the CONFIG command in BOS.
is in the config deck editor that one

the conf ig edit (conf ig)
bears absolutely no resem

One must remember when one
is really in qedx.

The bee equivalent of BOS runcoms is version 1 exec corns.
These have absolutely no resemblance to BOS runcoms. An Impor
tant thing to remember when converting BOS runcoms to bee
exec corns is that, when a BOS runcom invokes another runcom, that
second runcom will never return to the first. In bee, an
exec com will return to its invoking exec com. Also, a BOS
runcom that boots service regains control when Multics crashes or
shuts down. In bee, the invoking exec_com (and all exec_coms
which invoked the exec com that booted service) lose control
whenever a "boot", "esd" or "go" operation are performed. The
exec com that bee invokes whenever Multics crashes or shuts down
is determined solely by the "bce_command" flagbox variable. It
is this variable (and other f lagbox flags) that are manipulated
by the auto exec_com procedures.

Within BOS, functions were aborted by hitting RETURN or EOM
on the operator's console. There was no way to indicate that
this was an accident. Within bee, hitting RETURN or EOM allows
the operator to indicate the intention to abort a function. When
this occurs, the system will ask "Abort?" to which the operator
may answer "no" or "yes" appropriately to abort the current
operation. Other responses are allowed; refer to the MOH for
more details.

SRB-X-7

SECTION II-4

INSTRUCTIONS FOR SITES UPDATING FROM PREVIOUS RELEASE

STEP-1

Using the current BOS System, (i.e., not system MRll} perform
SAVE. A double save is recommended to avoid any possible tape
problems later.

With this release two new partitions are required on the rpv for
bee operation. These are the "bee" partition of length 2200
records and the "file" partition of length 255 records. These
may be created in one of two ways.

Automatic Partition Creation

A first boot of MRll is capable of .creating the required bee
partitions. To allow this to work, at least 3000 records (2455
for the new partitions and around 500 for rpv only segments
created during later initialization} must be free on the rpv. To
determine if this is so, execute the following (using the current
system):

list_vols -pv rpv

the second number appearing after the drive name is the records
available on rpv. If this number is greater than 3000, MRll may
simply be booted at this time. The required partitions will be
created at the high end of the disk, just below any partitions
currently at the high end. This generation takes on the order of
10 minutes during this first boot.

If there are not enough free records on the rpv, some segments
will have to be moved to other drives. Use the sweep pv command
to move small collections of segments to other physical volumes
in the RLV until enough free space exists.

II-4-1

Manual Partition Creation

The required partitions may also be created manually, using
rebuild disk performed with the current system.

Before starting the rebuild disk of the rpv, it will be necessary
to add to the config deck's-parm card:

PARM DIRW

Sites that don't normally run with the "dirw" parameter should
remove this from the conf ig after the rebuild_disk is complete.

Assume that the rpv is mounted on dska 01 and a scratch pack is
mounted on dska_02. Boot, using the current Multics System Tape
(MST), not the MR11 MST, to ring-1 command level by executing the
following:

boot N (where N is the drive number of the current MST)

rebuild_disk rpv dska_Ol -copy dska_02

The rebuild disk command will report information about the size
of the partitions found on the source rpv. This information
should be noted for use when constructing the new partitions on
the target rpv.

The rebuild disk command will prompt for input, at this point the
new partitTon layout should be entered as in the example that
follows:

request:
request:
request:
request:
request:
request:
request:
request:
request:
request:
request:

part alt high 141 (on MSU451/400 only)
part bos high 270
part log high 256
part dump high 2000
part file high 255
part bee high 2200
part he low 2500
part conf low 4
nvtoce <number>
list
end

When the rebuild disk is complete, shutdown and boot with the new
rpv located on dska 02. For sites with MSU500 type units, the
BOS SAVE COPY command can be used to move the temporary RPV back
to the original device.

Library Cleanup

Boot using the current Multics System Tape (MST) to Initializer
ring-1 command level and type:

II-4-2

boot N (where N is the drive number of the current MST}
alv -all
standard
admin
<admin password>

Due to the method by which unbundled software is dumped, normal
trimming during reloading of new software does not occur. To
ensure that unbundled directories are clean execute the follow
ing:

ldl >system_library_unbundled>**
ldl >ldd>unbundled>(source object)>**

Exit admin mode and continue on to the next step.

ame
shutdown

STEP-2

Step 2 involves booting bee for the first
create the partitions required by bee,
created in Step 1. A complete description
booting bee can be found in the Multics
AM81. A sample dialog follows.

time. This step will
if they were not so
of the procedure for
Operator's Handbook,

Place the MR11 Multics System Tape (MST} on a convenient drive
and initiate the INITIALIZE/BOOT sequence of the IOM/IMU. The
system will then proceed in the manner shown below.

boatload 0: Booting system MR11 generated 11/01/84 0000.0
est-Thu.

bootload_O: Enter boot tape MPC model: t500
bootload_O: Booting t500 A 12. with mtc500 rev.ul

firmware.
bootload_O: Booted tape MPC.
0000.1 announce_chwm: 347. pages used of 512. in wired

environment.
0000.2 announce chwm: 620. words used of 1024. in

int unpaged page tables.
Enter RPV data: -query
Enter RPV subsystem base channel, as Ice, or "cold". A22
f ind_rpv_subsystem: Enter RPV subsystem MPC model: 609
hc_load_mpc: Booting channel A22 with dsc500 Revision jl.
find rpv subsystem: Enter RPV disk drive model: 451
find=rpv=subsystem: Enter RPV disk device number: 5
f ind_rpv_subsystem: RPV is a model 451 drive, number 5 on

MPC A22.
Is this correct? yes

0000.4 init_root_vols: Adding bee file partitions to rpv.
0007.0 find_file_partition: Initting file partition. Data

II-4-3

not in expected format.
0008.0 load_mst: 627. out of 1048. pages used in disk mst

area.
bee (early) 0001.5:

At this time, bee has been booted. The previous boot of MR10.2
saved the conf ig deck in the "conf" partition of the rpv; the
current conf ig deck will be set to this. The operator should
ensure that this is so. The conf ig deck should be made correct
at this time using the conf ig deck editor within bee. Proceed
with the boot if the conf ig deck is okay.

bee (early) 0001.5: config
1,$p

(The config deck will print at this point.)
q
bee (early) 0001.7: boot

(The operator continues to boot bee.)
Current system time is 01/01/01 0001.8 est· Tue.
Is this correct? no
Enter time as yyyy mm dd hh mm {ss} : 1984 11 02 12 00
Current system time is: 11/02/84 1200.0 est Fri.
Is this correct? yes
load disk mpcs: Disk mpcs rnpca mpcc appear not to be

-operating.
Enter disk mpc names to be loaded, or "none" or "abort":

mpca mpcc
(The operator enters the names of other disk mpcs
to be loaded.)

he load mpc: Booting channel A20 with dsc500 Revision jl.
hc-load-mpc: Booting channel B20 with dsc500 Revision jl.
Enfer dTsk mpc names to be loaded, or "none" or "abort":

none
bee (boot) 1200.5:

At this time, the operator must load firmware into all other
controllers (i.e., not the bootload tape controller nor any disk
controllers). bee is then considered to be fully initialized.

bee (boot) 1200.5: boot
Multics MR11 - 11/02/84 1201.0 est Fri.
Command:

II-4-4

SECTION II-5

INSTRUCTIONS FOR SITES INSTALLING FOR THE FIRST TIME

STEP-3

Mount the Multics System Tape (MST) on Magnetic Tape Handler
(MTH) nn (nn is usually equal to 01). Mount the disk pack
formatted by T&D on the drive selected to be the RPV. Initialize
and boot the MST. Multics will prompt with:

bootload O: Booting system MR11 generated 11/01/84 0000.0
est-Thu.

bootload 0: Enter boot tape MPC model: t500

Normal response to this question should be "t610", "t601", "t500"
or "ipc". The system will boot the bootload tape controller, if
necessary, and continue. At this time, the intention to cold
boot is given. Multics will request the location of the rpv.
Once this is done, the init vol request loop will be entered to
accept the layout of the rpv: ·

bootload_O: Booting t500 A 12. with mtc500 rev.ul
firmware.

bootload_O: Booted tape MPC.
0000.1 announce_chwm: 347. pages used of 512. in wired

environment.
0000.2 announce chwm: 620. words used of 1024. in

int unpaged page tables.
Enter RPV data: -query
Enter RPV subsystem base channel, as Ice, or "cold". cold
Booting cold will destroy all data on the RPV.

Are you sure that you want to boot cold? yes
Enter RPV subsystem base channel, as Ice. A22
f ind_rpv_subsystem: Enter RPV subsystem MPC model: 609
hc_load_mpc: Booting channel A22 with dsc500 Revision jl.
find rpv subsystem: Enter RPV disk drive model: 451
find-rpv-subsystem: Enter RPV drive device number: 1
find-rpv-subsystem: RPV is a model 451 drive, number 1 on

-MPC-A22, and this is a COLD boot.
Is this correct? yes

II-5-1

Default RPV layout: (Respond "end" to use it.)

Average seg length = 2.00
VTOC size = 2792 pages, 13920 vtoces.
27840 paging records.
Constrained by average seg length.
part he 2792. 2500.
part conf 5292. 4.
part alt 38117. 141.
part bos 37847. 270.
part dump 35847. 2000.
part log 35591. 256.
part file 35336. 255.
part bee 33136. 2200.

These are the default partition assignments. Any changes to the
default partitions or RPV parameters can be redefined by using
the "startover" request iri init vol. The system installer should
review the write-up of init-vol in the MOH prior to the
installation.

Sizes for the various partitions and their locations can be
modified based on the needs of the site.

request: end

init empty root: Begin rpv initialization. This will take
-some time.

init empty root: rpv initialized~ 27840 records.
find-file partition: Initting file partition. Data not in

-expected format.
0010.0 load_mst: 627. out of 1048. pages used in disk mst

area.
bee (early) 0010.2:

Build the configuration description as follows:

conf ig
a

(Configuration fields as defined in the MOH.)

\f
w
q

Do not enter any part cards at this time, except for those
partitions defined on the rpv. Also, make the root card specify
only the rpv.

Continue booting bee.

II-5-2

bee (early) 0020.0: boot
Current system time is: 01/01/01 0020.1 est Tue.
Is this correct? no
Enter time as yyyy mm dd hh mm {ss} : 1984 11 02 12 00
Current system time is: 11/02/84 1200.0 est Fri.
Is this correct? yes
load disk mpcs: Disk mpcs mpca mpcc appear not to be

-operating.
Enter disk mpc names to be loaded, or "none" or "abort":

mpca mpcc
(The operator entered the names of other disk mpcs
to be loaded.)

he load mpc: Booting channel A20 with dsc500 Revision jl.
hc-load-mpc: Booting channel B20 with dsc500 Revision jl.
EnEer dTsk mpc names to be loaded, or "none" or "abort":

none
bee (boot) 1200.5:

At this time, the operator must load firmware into all other
controllers (i.e., not the bootload tape controller nor any disk
controllers). bee is then considered to be fully initialized.

bee (boot) 1200.5 : boot cold
Do you really wish to boot cold? yes
hdx: reregistered public lv root lvid 727353262340
hdx: Entry is not a branch. cannot make mdcs in lv root
hdx: reregistered pv rpv pvid 727353262301 in lv root
disk table : New disk table created.
MultTcs MRll - 11/02/84 1201.0 est Fri.

Ignore the messages prefaced by disk table and hdx.

II-5-3

SECTION HSF-7

MULTICS ENVIRONMENT

Changes to Hardware and Software Formats PLM:

The changes to the Hardware Software Formats PLM are
obviously enough all in the software section, Section 7, "Multics
Environment." Other sections in this manual are incorrect and
out of date but corrections to them do not appear here.

MAIN MEMORY MAPS

The following paragraphs describe the gross allocation of
main memory during the three distinctly different Multics opera
tional environments: BOS, bee and service.

In the address charts that follow, the addresses are
absolute octal memory addresses~ Whenever an add~ess appears in
brackets ([]), this means that the object described is contained
within the segment listed above it.

Common Areas

Certain areas are common between the three modes of opera
tion; these areas are dictated mostly by hardware requirements.

FAULT VECTOR

The fault vector area holds vectors and
for handling Interrupts and faults. This
below.

address

HSF-7-1

its pointers used
area is described

000000

000100

000200

MAILBOXES

interrupt vectors
contains interrupt pairs, each conta1n1ng a scu/tra
pair specifying absolute addressing. The target of the
addresses is in the "its" area.

fault vectors
contains fault pairs, one
containing a scu/tra
addressing. The target
"its" area.

for each defined fault, each
pair specifying absolute

of the addresses is in the

its pointers for fault and interrupt vectors
contains the its pointers that are the targets of the
scu and tra instructions above. Only these its point
ers are normally changed~ the scu and tra instructions
remain.

The mailbox area holds control areas used to converse with
-- the ioms and the fnps.

address

001200

001400
002000
002400
003000

003400
003700
004200
004500
005000
005300
005600
006100

IOM imw area
is used to determine which channel of the iom generated
an interrupt.

IOM A mailbox
IOM B mailbox
IOM C mailbox
IOM D mailbox

FNP A mailbox
FNP B mailbox
FNP C mailbox
FNP D mailbox
FNP E mailbox
FNP F mailbox
FNP G mailbox
FNP H mailbox

BOS Environment

BOS operates in segmented, nonpaged appending mode with
exactly eight defined segments. The eight pointer registers are
loaded with fixed segment numbers and the segment base and bound
values are manipulated according to the requirements of the code.

HSF-7-2

,.. address

,...

000000
000600
001200
006400

007740

010000
[010020]

011000

020000

022000

031000

040000

060000

fault vector
padding
mailbox area
padding

ds {descriptor segment)

toehold {BOS)
flagbox {BOS)
setup

bf {buffer)

com {common variable storage)

pgm {program area)

util {utilities)

rest of BOS memory, unused

The standard pointer register/segment assignments for BOS
are:

prO -> ds
prl -> pgm
pr2 -> bf
pr3 -> setup
pr4 -> {prog temporary)
pr5 -> f lagbox
pr6 -> com
pr7 -> mem {first 256k of mem)

bee Environment

The memory layout after the running of
loading of collection 1, i.e. bee) follows.
paged with the exception of fault_vector,
dn355 mailbox.

address

000000
000600
001200
003400
006400

fault vector
padding
iom mailbox
dn355 mailbox
padding

HSF-7-3

collection 0 {the
All segments are

iom mailbox and

010000
012000

024000
[024000]
[024000]
[030000]

046000

052000
054000
056000

060000

066000

070000
100000
104000

106000

bos toehold
conf ig_deck

bound bootload 0
toehold (bootload Multics)
flagbox (bootload Multics)
bootload early dump
toehold data -

unpaged_page_tables
int_unpaged_page_tables
breakpoint_page

physical_record_buf fer

dseg

name table
slt
lot

wired segments, fabricated segments, all other segments

Service Environment

The memory layout after the running of make segs paged,
collect free core and the deletion of init and temp- segs is as
follows~ All segments are paged except for fault_vector,
iom mailbox and dn355 mailbox.

address

000000
000600
001200
003400
006400

010000

012000

024000
[024000]

030000
046000

052000
054000
056000

fault vector
padding
iom mailbox
dn355 mailbox
padding

bos toehold

paging use

toehold (bootload Multics)
f lagbox (bootload Multics)
paging use
toehold data

unpaged_page_tables
paging use
breakpoint_page

HSF-7-4

060000

106000

paging use

wired
sst_seg
memory.

segments, fabricated segments,
is located at the high end of

HSF-7-5

paging use.
the bootload

SECTION MOH

MULTICS OPERATOR'S HANDBOOK

Global directives:

Change all references to the BOS
refer to the bootload console, iom,

console, iom, cpu
cpu and scu.

and scu to

Change all references to configuration cards to be in lower case
to emphasize that they should be in lower case.

Specific directives follow.

MOH-1

SECTION MOH-1

OPERATOR RESPONSIBILITIES

Change the paragraph describing the responsibility of the opera
tor to understand BOS to:

The operators must also understand the functions of the
bootload operating system (BOS) and the bootload command environ
ment (bee), which load Multics and perform various system
software maintenance activities. BOS controls the bootloading of
bee and can provide one type of save of the contents of the
storage system. bee controls the bootloading of Multics service
as well as performing memory dumps. Initially, BOS is contained
on a tape and must be bootloaded from the console into the
system. If a copy of BOS already exists on disk, it can be "warm
booted", preserving the contents of the disk that already
contains BOS. If there is no disk copy of BOS, it must be "cold
booted". bee makes up the first part of the Multics tape and is
usually bootloaded from BOS. bee can be booted from the console,
if necessary, without using BOS but then it cannot utilize the
BOS functions.

Acronym list

BCE bootload command environment

GLOSSARY OF TERMS

bee
the bootload command environment~ a set of programs within
Multics initialization that perform functions such as
bootloading Multics, dumping main memory and initiating
emergency shutdown of Multics.

boot load
to load a fresh copy of a set of programs. BOS, bee and
Multics can be bootloaded. Bootloads of BOS are "cold" if
they completely re-create BOS' operating environment and

MOH-1-1

BOS

"warm" if they assume that some information from previous
bootloads is to be used. Bootloads of bee and Multics are
"cold" if they re-create the file system, "cool" if they
maintain the file system but completely re-create bee's
operating environment and "warm" if they assume that some
information from previous bootloads is used. The period of
time between Multics bootload and shutdown is also spoken of
as a bootload, or service session.

the bootload operating system; a set of programs that
perform functions such as loading bee and dumping disks.

initializer process
change the reference to BOS to ref er to bee

MOH-1-2

SECTION MOH-3

CONFIGURATION

CALENDAR CLOCK

The BOS time command, or the bee invoked clock setting
function, if BOS is not used, is used to set the clock for the
4MW SCU

if the setting is inaccurate. Use the BOS TIME command, if
BOS is used, and the "clok" conf ig card to check for inaccuracies
in the clock setting.

,.. For further information, refer to the BOS TIME command in
Section 5 and the bootload sequence in Section 5.5.

change:

Obtaining Number to Set Calendar Clock

and what follows in the clock setting section to:

Setting Calendar Clock in 4MW System Controller Unit with BOS

1. At the operator console, enter BOS (if not already in
BOS). Make sure the "clok" card is loaded in the
configuration deck, and always type in the time in
local time as indicated on the "clok" card. Issue the
TIME command to BOS.

2. Type the d~te and time (according to your local time
zone) as follows:

MM DD yy hh mm SS

where:

MOH-3-1

MM is the month
DD is the day
yy is the year
hh is the hour
mm is the minute
SS is the second

When the date and time are typed, press EOM. The
seconds figure can be omitted: if it is, a value of
zero seconds is assumed. Choose a figure that is
slightly (a minute or less) in advance of the current
time, to allow time for the next step to be performed.

3. S is entered on the operator console and EOM is pressed
at the instant when the current time reaches the time
that was typed.

4. R is entered and EOM is pressed to read back the time
to verify correctness.

5. EOM is pressed to exit from the TIME command.

Setting Calendar Clock in 6000 System Controller with BOS

1. Type: TIME as above

2. Type: MM DD YY hh mm ss as above.

3. A series of numbers in the following form is returned:

NNNNN,NNNNNN NNNNNN TTTTTT TTTTTT MM/DD/YY HH::MM::SS.S

where TTTTTT TTTTTT is the
switches on the 6000 SC
below.

number to be entered in the
maintenance panel in step 5

4. At the CPU, the STEP CONTROL selector switch on the
maintenance panel is placed in the MEM position.

5. At the SC (which must be in TEST mode), the number
TTTTTT TTTTTT is entered in the upper row of the DATA
switches. All zeroes are entered in the lower row of
the DATA switches.

6. The INITIALIZE and the LOAD CLOCK pushbuttons are
pressed simultaneously, at the instant when the current
time reaches the time that was typed.

7. The STEP CONTROL selector switch on the CPU is turned
to OFF and the STEP pushbutton is pressed.

MOH-3-2

,..

8. R is entered and EOM is pressed to read the time from
the calendar clock and verify correctness.

9. EOM is pressed to exit from the TIME command.

Setting Calendar Clock in 4MW System Controller Unit without BOS

1. When BOS is not used, bee will automatically invoke a
clock setting function after leaving the "early" bee
command level. The operator must ensure that the
"clok" configuration card specifies the correct time
zone. All times entered are to be in local time.

2. The clock setting routine will start by asking a
question of the form:

3.

The current system time is DATE TIME.
Is this correct?

to which the operator should respond accordingly. The
operator may respond with "abort" to return to -the
"early" command level.

If the operator's answer to the above question is "no",
bee will prompt with:

Enter time as yyyy mm dd hh mm {ss} :

to which the operator should provide the current local
time. The values have the same meaning as they did for
the BOS time command, above. The seconds field need
not be specified. Choose a figure that is slightly (a
minute or less} in advance of the current time, to
allow time for the next step to be performed.

4. After the time is entered, bee will re-prompt with:

The current system time is DATE TIME.
Is this correct?

If this is not correct, the operator should respond
with "no" or "abort" as above. If this is correct, the
operator should answer "yes", pressing EOM at the
instant when the current time reaches the time that was
typed. bee will then continue with its initialization.

MOH-3-3

Setting Calendar Clock in 6000 System Controller without BOS

1. After leaving the "early" bee command level, the bee
clock setting function will be invoked.

2. bee will ask the correctness of the current time, as
above.

3. The operator may reply "abort" or "yes" as above. If
the operator answers "no", the time will be requested.
It is entered as above. bee will then respond with:

SCU Switches (octal) TTTTTT TTTTTT

4. bee will prompt with:

Enter anything after the switches have been set.

at which time the operator should perform
though 7 of the BOS instructions. When
completed, the operator should enter "y".

steps 4
this is

5. bee will repeat the question in step 2. This should be
answered appropriately.

MOH-3-4

SECTION MOH-4

I/O DEVICE OPERATION

USE OF THE OPERATOR CONSOLE

The operator may use the operator
initializer commands, commands to the
commands, commands to bee when bee
commands when BOS is in operation.

MOH-4-1

console to issue Multics
daemons, standard Multics
is in operation and BOS

SECTION MOH-5

BOOTLOAD OPERATING SYSTEM

BOOTLOAD OPERATING SYSTEM DESCRIPTION

remove the reference to initiating an emergency shutdown of
Multics

Summary of BOS commands

remove ABS, BLAST, DUMP, ESD, FDUMP and PATCH

Name: BOOT

remove the command and
description of their use.
notes.

keywords
Remove

fields from the command and
the BOOT STAR example from the

MOH-5-1

SECTION MOH-5.5

BOOTLOAD COMMAND ENVIRONMENT (BCE)

Add a new section describing bee
describing BOS as follows.

after the section

BCE DESCRIPTION

The bootload command environment comprises a set of programs
for performing functions such as the bootloading of Multics
service, dumping and patching main memory and disks and
initiating an emergency shutdown of Multics service.

bee is contained within the first two collections of modules
on the Multics system tape; it consists of the following major
parts:

1. collection zero
a series of
programs into
firmware into

ro~tines
programs capable of

memory; this series is
the bootload tape mpc,

2. collection one initialization

loading the other bee
also capable of loading
if necessary.

a series of programs that are part of Multics initialization
proper that also initialize the bootload command environ
ment.

3. toehold program
a small program
absolute location
with bee and with
functions.

permanently residing in main memory at
24000 (octal). It communicates closely
service Multics to perform administrative

4. bootload command utilities
a series of programs to provide the bee command level.

5. bee command programs
a number of programs that perform the operator directed
functions of bee.

MOH-5.5-1

CONFIGURATION REQUIREMENTS

bee requires the operator console; standard Multics error
recovery is used, however, in case of the failure of the main
console.

bee uses 512k of contiguous low order memory. All of bee's
functions can be performed within this memory.

Two special regions of the rpv are used by bee. These two
special regions have locations recorded in the label of the rpv.
The first is the "file" partition, which contains a simple file
system used by bee to hold bee exec corns and ascii sources of
configuration files. The second is tfie "bee" partition, used by
bee to hold the following:

a saved copy of memory used by service Multics when bee is
invoked upon a crash

bee itself and bee command programs

the programs needed to boot service Multics

LOADING BCE

bee can be loaded in two ways, via BOS or via the operator's
console. When booted via the operator's console (performed if
BOS cannot run on the current hardware configuration), the
facilities of BOS cannot be used.

Loading bee from BOS

bee can be booted from BOS very easily by entering:

BOOT drive number

where drive number is the number of a tape drive on the bootload
tape controller that holds a Multics system tape. The first
message should read:

Booting system SYS_ID generated TIME.

This may be followed by various informative messages, depending
on various parameters in the conf ig deck. The entire Multics
system tape will be read in stages. After this, bee will prompt
with the ready message:

bee (boot) TIME:

MOH-5.5-2

You are now at the normal bee command level.

Bootloading bee from the operator's console

bee is loaded from a Multics system tape into memory and
into the bee partition as follows:

1. Mount and ready the Multics system tape on a tape drive
appropriate for the density of the tape.

2. Set the tape MPC switches 5, 6, 7 and 8 to the number of the
tape drive on which the system tape is mounted. If the tape
MPC is not wired to be initialized when the INITIALIZE
button is pressed, it must be initialized at the MPC control
panel. The Honeywell field engine~r can advise the operator
whether or not the MPC is wired to be initialized when the
INITIALIZE button is pressed (if the reset out line (RSO) is
grounded, then initialization is suppressed).

3. Make sure that the CARD/TAPE switch on the IOM is set to the
TAPE position and that the tape channel number is set
correctly in the IOM switches.

4. At the operator console, press the RESET CONSOLE button.
(This button may not be present on some console models.)

5. For all consoles except the CSU6601, press the INITIALIZE
and then the BOOTLOAD button.

For the CSU6601, after pressing the INITIALIZE button, press
the RETURN key on the keyboard. Wait for the console to
respond with "CONSOLE READY", and then press the BOOTLOAD
button. If the system indicator panel is not present, the
boot sequence from the keyboard is:

esc ctl I return esc ctl B

Alternatively, press the INITIALIZE button and then the
BOOTLOAD button on the IOM to which is attached the tape
MPC.

6. If all goes well, the message:

Booting system SYSID generated TIME.

will appear on the console with an alarm. This will be
followed by the query:

Enter boot tape MPC model:

MOH-5.5-3

This information is requested so that firmware may be loaded
into this MPC. If firmware should not be loaded (or the MPC
does not allow being so loaded), the operator should answer
with "ipc". An answer of "shut" will stop (crash)
initialization at this point. A question mark will list the
valid MPC model names. Otherwise, the MPC model name should
be entered. Acceptable names are:

t500
t601
t610

A message of the form:

Booting MODEL IOM CHANNEL with FWID REVISION firmware.

followed by

Booted tape MPC.

signals successful booting of the boot tape MPC.

7. bee will proceed through various initialization programs,
possibly producing various status messages. The first
collection will be read from the system tape into memory.
After this is done, bee will request the location of the
rpv:

Enter rpv data:

The operator may answer "shut" at this time to abort
booting, typing "help" will provide some explanation and
typing "?" will cause bee to prompt the operator for each
item of information separately. Otherwise, the question
should be answered as:

rpv Ice MPC model DRIVE model DRIVE number

or

cold Ice MPC model DRIVE model DRIVE number

where:

I

cc

is the IOM number containing the base channel of
the MPC containing rpv

is the channel number on the IOM of the MPC (in
decimal)

MOH-5.5-4

MPC model
is the model of the disk mpc (in decimal). Valid
models are:

191 400 451 601 603 607 609 611 612

DRIVE model
Ts the model number of the drive containing rpv

DRIVE number
Ts the number assigned to the drive on the MPC

"cold" is specified only if this is a "cold" boot, that is,
one in which the Multics storage system is either
non-existent or has been destroyed.

When a satisfactory answer is entered, the mpc
described will have firmware loaded into it, if necessary.
Entering "skip" or "skip load", by itself and before
entering "rpv" or "cold" will suppress this load.

If this is a cold boot, the init_vol loop (described in
Section 7, Initializer Commands) will be entered. At this
time, the attributes of the rpv must be entered.

8. If the previous is successful, bootload Multics will come to
the "early" command level. This command level allows a
subset of the normal bee commands to be entered. The ready
message at this time is:

bee (early) TIME:

The purpose of this command level is to insure that the
conf ig deck (obtained from the "conf" partition on disk) is
good. If this is a cold boot, the config deck will need to
be entered at this time. (The commands to do all of this
are described below.) Reaching the "early" command level,
however, is only part of booting bee. To completely boot
bee, enter "boot".

9. bee will enter its clock setting phase. (See the descrip
tion of clock setting in Section 3, Configuration.)

10. Another initialization pass is then run to enable usage of
the peripherals described by the conf ig deck. The various
disk mpcs so described will be tested to see if they appear
to be running. If any are not, the message:

load disk mpcs: Disk mpcs NAMES appear not
to be operating.

Enter disk mpc names to be loaded, or "none"
or "abort":

MOH-5.5-5

The operator is to enter the names (from the set displayed
as NAMES, above)" of disk mpcs into which firmware is to be
loaded. The operator should continue to enter names (on
multiple lines, if desired), until all disk mpcs to be used
are loaded. After this, "none" should be entered. If
"abort" is entered, a return is made to the "early" command
level.

11. Initialization will then continue until normal bee command
level is reached, prompting with:

bee (boot) TIME:

The operator should load firmware into all other tape and
unit record controllers at this time, using the bee "fwload"
command. At this time, bee is fully initialized.

Error Recovery During bee Boot

the
boot
some

Several attempts are made to allow for error recovery during
boot process. The methods depend on the point within the
sequence. It is best to describe the recovery by describing
aspects of the internal operation of the boot sequence.

When booted from the switches, bee will pass through
collection O initialization, whose objective is to read in
collection 1 (bee proper). A config deck is synthesized from the
knowledge of the hardware found during this pass and through
questions to the operator. A first pass is made through
collection 1 to find the rpv and to read in the conf ig deck last
saved in· the "conf" partition on disk. If an error should occur
before this point (most likely a hardware or software failure),
the early dump facility is invoked (see below). Otherwise, this
environment (memory and the synthesized conf ig deck) is saved on
disk. The "early" command level is then entered. The operator
must then make sure the config deck (read from disk) is correct.
The operator then enters "boot" to actually boot bee.
Initialization continues with a second pass through collection 1.
If this pass fails (most likely either a hardware problem or an
error in the config deck), the saved environment will be restored
and the operator returned to the "early" command level. The
operator then retries the boot. Eventually this will succeed and
bee will come to the "boot" command level, having saved this new
environment and conf ig deck.

When bee is booted from BOS, collection O is still run to
read in collection 1. In this case, though, the config deck need
not be synthesized~ the conf ig deck used by BOS is used. The
first pass through collection 1 will be the "boot" phase. If an
error should occur during this first pass, the early dump
facility will be invoked. BOS can be manually entered at this

MOH-5.5-6

,.. time, if desired. If the pass is successful, this environment
(memory and the config deck) is saved to disk. The "boot"
command level is entered.

Once at the "boot" command level, the operator may perform
whatever bee functions are desired. "boot" is then entered to
boot Multics service. Another pass through collection 1 is made
to set up for Multics service. If an error occurs during this
pass (most likely hardware or a bad config deck), the environment
saved above is restored and the operator is returned to the
"bce_crash" command level. Also, if a bee utility should fail or
should encounter a breakpoint, this environment is restored and
"bce_crash" level entered. At this time, the operator may enter
"crash" level commands to examine the failed image (or to debug
bee), or "boot" level commands may be used to fix the config deck
(if necessary) and to retry the boot of Multics service.

An important thing to remember about coming to the
"bee crash" or returning to the "early" command levels is that
they use an environment and conf ig deck declared safe on a
previous initialization pass. As such, not all devices listed in
the "current" conf ig deck (the one visible with the conf ig deck
editor) may be accessible at this level. Generally speaking, to
access all devices, it is necessary for the config deck to be
correct and for an initialization pass (the "boot" pass) to be
made. If in doubt, entering "reinitialize" will run another
initialization pass.

Once the "service" pass of collection 1 completes, any
further failures of initialization or of Multics itself returns
to the "crash" command level, used for examining the crash. At
this time, the· config deck as used by Multics is used. This is
done to take into account any reconfigurations performed by
Multics service. At the "crash" level, a dump should be taken
and an emergency shutdown performed.

Config Deck and Device Accessibility

During Multics service, the set of devices that are accessi
ble (to the system as a whole) are precisely those described by
the config deck. The config deck is kept up to date with the
state of the devices. However, the real state of devices and
their accessibility is described by various control tables within
Multics. One of the main purposes of bootload Multics is to set
up these control tables. Since boatload Multics allows arbitrary
text editing upon the conf ig deck, it follows that the state of
the control tables may not match that of the conf ig deck. This
section describes some of these subtleties.

When at "early" command level, the control tables describe
only those hardware units truly known, the bootload tape drive,

MOH-5.5-7

the rpv, the bootload processor,
level, the operator is to make
describes all hardware units. These
this time, however.

etc. At the "early" command
sure that . the conf ig deck
units are not accessible at

Attempting a boot to "boot" command level builds control
tables describing all of these hardware units. If this boot
succeeds, all of these units are accessible from bootload
Multics. If it fails, bee returns to "early" command level with
only the initial hardware units accessible.

At the "boot" command level, the operator may again change
the conf ig deck. Any units added, for example, will not be
accessible at this time, since the control tables do not describe
them. However, if the operator boots Multics service, Multics
will be able to access them all, since Multics boot will build
control tables for them all. If this boot fails, bee will return
to the "bee crash" command levei, with these new changes not
described in the control tables (but visible in the config deck).

Any changes made to the conf ig deck will be reflected in the
control tables in only one of two ways. The first is to boot to
the next command level, or to Multics service. If the config
deck is correct, the devices become accessible. The other method
is to enter "reinitialize" which runs a new initialization pass
and returns to the "boot" command level. If this succeeds, the
devices become accessible. If it fails, bee returns to
"bce_crash" level, without the changes having been affected.

BOOTLOAD MULTICS TOEHOLD

The bootload Multics toehold is a program that resides in
main memory. The toehold communicates very closely with the
control program in the manner described below.

When Multics is running, the toehold may be invoked by
manually forcing the processor to execute an XED 24000 (octal)
interrupt inhibited instruction. The CPU must be in TEST mode
when the XED instruction is executed. The toehold saves the
processor registers and the 512k of low memory. It then reads in
a saved copy of bootload Multics from the rpv and transfers
control to it. Bootload Multics then enters its command level
with a prompt of:

bee (crash) TIME:

The toehold is also invoked as a result of the "go" or
"continue" commands issued within bee. In this instance, the
toehold restores the memory image that it had previously saved
and restarts the program that was originally running.

MOH-5.5-8

T~e toehold contains a flagbox of bits that may be ON or OFF
and which can be read and set both by bee and Multics.

To enter bee manually, set the processor STEP switch to MEM,
:nter 0?40007~7200 (XED 240~0 interrupt inhibited) in the
instruction switches (data switches), set the EXECUTE switch to
the EXECUTE SWITCHES position. Then, press the EXECUTE button
set the STEP switch to OFF and press the STEP button. bee i~
entered.

. If you~ site has.a DPS 8 system, the procedure for executing
switch:s will be different. Refer to Appendix M, "DPS 8
Operating Procedures", for details.

THE EARLY DUMP FACILITY

The early dump facility is a primitive facility within bee
that is capable of saving an image of memory to tape upon a
system failure early within initialization. It resides at a
fixed location in memory whenever bee is running (30000 octal).
It is invoked automatically whenever a hardware or software error
is detected prior to the establishment of the bootload Multics
toehold. It can also be entered manually, whenever bee is
present (but definitely NOT when service Multics is running}, by
forcing a transfer to 30000 (octal). This is done in a manner
similar to forcing a manual return to bee, except that the value
entered into the data switches is 030000710200 (tra 30000
interrupt inhibited).

Once entered, the early dump facility may· print a flagbox
message and then prompt with:

Enter tape drive number for memory dump:

to which the operator should provide the drive number on the
bootload tape controller on which a tape is mounted for writing.
Memory will be dumped onto this tape at a density of 1600. After
performing the dump, bee will disable itself. If bee was booted
from BOS, BOS may be entered manually at this time.

The tape written by
read early dump tape (redt)
Maintainer's GuTde.

BCE COMMAND LANGUAGE

this facility can be read by the
command, described in the System

The command language used within bee is the normal Multics
command language (actually the ssu_ request language), not to be
confused with the command language used at the Initializer's ring

MOH-5.5-9

1 and ring 4 command levels. (Refer to MPM AG91 - Reference for
a description of Multics command/subsystem language.) Full
support for active functions, iteration sets, etc. is provided.

Commands to bee are obtained from the bootload console,
using standard typing conventions. It is also possible for bee
commands to be placed into exec_coms. exec_coms are ascii files
containing commands and possible input to commands. They are
edited within bee via the "qedx" command and placed into
operation with the "exec_com" command.

Also, a command
Multics for bee to
down.

may be placed in the flagbox within bee or
execute whenever Multics crashes or shuts

Whenever at bee command level, bee responds with:

bee (boot) TIME:

(or "early" or "bee crash" or "crash", depending on the circum
stances). Some commands have sub-requests to them, such as qedx
and probe. The conventions for request lines entered for such
commands varies from command to command.

ABORTING BCE COMMANDS

Whenever the REQUEST button is pushed on the console (or the
RETURN key on the CSU6601) when such a request was not solicited
by bee, the bee abort routine is entered. This routine allows
bee operations to be aborted to variou~ extents. When c~lled,
the abort function prompts (on the console) with:

Abort?

to which various answers may be given. If the REQEUST button was
hit accidentally, the operator may enter "no" or "n" to return to
the interrupted operation. Answering "yes" or "y" aborts the
immediate operation. If this operation was a sub-request, only
this sub-request is aborted. Otherwise, the command in question
is aborted, returning either to the exec com which called it, if
one was present, or to bee command level: Answering "r", "req"
or "request" is equivalent to "yes". An answer of "command",
"com" or "c" aborts the current command, regardless of whether a
sub-request was in execution or not. Finally, an answer of "all"
or "a" aborts anything in execution, returning to bee command
level.

MOH-5.5-10

BCE COMMANDS

The current set of bee commands and active functions is
listed below. Various commands are valid only at certain command
levels; the valid levels for each command is provided in the
description of the command.

bee also includes most of the standard active functions; in
particular, the standard arithmetic, character, boolean and
comparison active functions are included. The current list
includes:

after, af
before, be
ceil
collate9
date time after, dtaf
date-time-equal, dteq
dee at -
equal
greater
high9
length, ln
low
ltrim
min
mod
ngreater
not
plus
quotient
reverse
reverse before, rvbe
reverse-index, rvindex
reverse-verify, rvverify
search,-srh
time after, taf
time=equal, teq
trunc
verify

Summary of bee commands

alert

and
bool
collate
copy characters, cpch
date-time before, dtbe
date-time-valid, dtv
divide -
floor
high
index
less
lower_case, lowercase
max
minus
nequal
nless
or
query
response
reverse after, rvaf
reverse-decat, rvdecat
reverse-search, rvsrh
rtrim
subs tr
time_before, tbe
times
upper_case, uppercase

Write an alert message on the console.

boot
Boot Multics.

MOH-5.5-11

bos
Return to bes, if present.

config edit, config
- Enter the config deck editor.

continue, go
Restart the interrupted Multics image.

delete, dl
Delete a bootload file.

die
Abort bee.

dump
Create a dump of Multics in the dump partition.

emergency shutdown, esd
-Perform an emergency shutdown of Multics.

exec_com, ec
Execute a file of bootload Multics commands.

fwload, fw
Load firmware into an mpc.

get flagbox, gfb
- Get the value of a f lagbox variable.

init files
Initialize the bootload file system.

list, ls
List bootload files.

list requests, lr
List bootload requests.

print, pr
Print a bootload file.

probe, pb
Examine/modify the Multics image.

qedx, qx
Edit bootload text file.

reinitialize
Re-perform Multics initialization.

rename, rn
Rename a bootload file.

MOH-5.5-12

set flagbox, sfb
- Set the value of a flagbox variable.

severity
Returns the severity of a bee request.

shutdown state, sds
Returns the shutdown state of the storage system.

MOH-5.5-13

Name: alert

The bee alert command writes a message on the operator
console with an audible alarm. This is useful in auto exec corns
to inform the operator that the system has crashed. This command
is valid at all bee command levels.

Usage

alert The system has crashed!!!

MOH-5.5-14

Name: boot

The bee boot command causes the next phase of initialization
to proceed. If bee is at the "early" command level, this causes
a boot of bee itself (bee passes to its "boot" state where it is
fully initialized}. If bee is at the "boot" or "bee crash"
command levels, this will boot Multics service. It is not valid
at the "crash" command level. The command can also supply
certain parameters that will apply to the bootload of Multics.

Usage

boot {command} {keywords} {cold}

where:

1. command is one of the following ring 1 command abbreviations:

star
mult
salv
st an

startup
multics
salvage dirs
standard

2. keywords can be one or more of the following:

nodt

nolv

rlvs

rpvs

3. cold

recreates the disk table; renames and ignores the
existing one.

recreates the logical volume registration directory
(>lv}; renames and ignores the existing one.

performs a volume salvage of the rpv (root physical
volume}, a directory salvage of all directories used .in
initialization and a volume salvage of all other member
volumes of the rlv (root logical volume}.

performs a volume salvage of the rpv and a directory
salvage of all directories used in initialization.

specifies that the root dir is to be re-created, thus
destroying the old file system hierarchy. This option
should only be used when a cold boot of bee was also
performed. The operator will be queried as to whether
bee should continue.

MOH-5.5-15

Name: bos

The bee bos command causes bee to return to BOS, if bee was
booted from BOS. BOS may return to bee with the use of the BOS
"CONTIN" or "GO" commands. This command is valid at all bee
command levels.

Usage

bos

MOH-5.5-16

Name: config_edit, config

The bee config command enters the config deck editor. This
editor is identical in function to the qedx text editor, except
that buffer 0 contains an ascii source form of the config deck.
This command is not valid at the "crash" command level.

Usage

conf ig_edit {file_name}

Notes

If a file name is supplied on the command line, the
specified file is read into the conf ig deck without entering the
config deck editor.

If not supplied a file_name, upon entry, the current config
deck (that found in the "conf" partition on the rpv) is read into
buffer O. It is converted to a labeled ascii form which is an
expanded form of that used in the configuration card description
section. Arbitrary text editing operations may be performed upon
this buffer, as well as any other. Performing a "w" (write)
request upon buffer 0 writes the edited buffer back into the
conf ig deck.

In the labeled form, each field, except for the card name,
may be optionally preceded by a label. Labeled fields may appear
in any order. The interpretation of a card in labeled form is
that all labeled fields are placed into their proper places: any
unlabeled fields then fill in the missing spaces. Thus,

iom -state on -port 1 a nsa

becomes

iom a 1 nsa on

in its standard form.

The various labeled forms appear in Section 6 (Configuration
Description). If a card is to be entered whose format has been
locally changed or of a otherwise unknown format or type, a "."
may be placed in front of the card name to avoid errors during
parsing of the card. Such a card may not have any labeled
fields.

The operator should keep in mind the discussion in "Conf ig
Deck and Device Accessibility", above for details on the implica-

,-. tions of this command.

MOH-5.5-17

Name: continue, go

When Multics is interrupted as the result of a manual return
to bee or as the result of encountering a bee probe breakpoint,
the machine image is saved. The bee continue command restores
the machine image and continues running the interrupted activity
(usually Multics). This command is valid at the "bee crash" and
"crash" command levels.

Usage

continue

MOH-5.5-18

Name: delete, dl

The bee delete command deletes files within the bee file
system (not the Multics storage system). The star convention is
allowed. This command is valid at all bee command levels.

Usage

delete star name { .•. star_names}

MOH-5.5-19

Name: die

The bee die command aborts all bee activities. It wipes out
the bee toehold, preventing any returns to bee, manual or
otherwise. It should be used only when it is desired to
absolutely kill off any remnants of bee. This command is valid
at all bee command levels.

Usage

die

Note

The die command queries the operator as to whether bee
should really be killed off. This query may be avoided by using
the "-force" ("-fc") control argument.

MOH-5.5-20

Name: dump

The bee dump command produces a diagnostic dump of system
memory and tables after a hardware or software failure, for later
analysis. The dump is produced by copying binary images of
segments and directories into the dump partition of the disk
described by the part dump conf ig card. Arguments to the dump
command specify which processes are to be examined and which
segments from these processes are to be dumped. (See "Notes" for
a general purpose command line.) This command is valid at all
bee command levels.

Usage

dump {macro keyword}
{-process group segment option { .•. segment options}}
{-force 1--fc} {-dump #} {-crash} {-bee} -

where:

1. macro keyword
specifies one of the following default group of processes
and segments to dump.

-brief, -bf is equivalent to -run he pp dir
-short
-long, -lg

is equivalent to -run he pp dir -elig he
is equivalent to -all wrt

2. process group
specifies a group of processes to be considered for dumping.
The segments that get dumped for processes in this group are
specified by segment options that follow the process group
keyword. Allowed groups are:

-running, -run
processes running on a processor (apte.state = running
or stopped)

-initializer, -inzr
the initializer process (first apte entry)

-eligible, -elig
all running and eligible processes (processes being
considered for running)

-all
all processes

3. segment option
specifies a class of
processes specified
classes are:

segments to be dumped for the group of
by the process group keyword. Segment

MOH-5.5-21

directories, dir
· < t d' "l"b) directory segments as e. irsw =

hardcore, he
the pds, kst, dseg and ring 0 stack for the
process(es). If a process is running, this also dumps
the prds for the processor in question.

per process, pp
- the segments contained within the process directory of

the process(es) (aste.per_process = "l"b)

stacks, stk
all stack segments in the process(es) not already
dumped by the he or pp keywords.

writeable, wrt
all segments to which the process(es) have write
access. This keyword produces a very large dump.

Writable ring zero segments (system data bases) other
than directories are dumped regardless of what keywords are
specified.

Prefixing a segment option with a circumflex {~)
reverts an earlier occurence of the given segment option.
Thus, one can turn use a macro keyword and turn off a
specific segment option within it. -

4. crash or bee

Notes

specifies what bee should dump.
saved Multics image. A dump of
be made by specifying -bee.

The default is to dump the
bee itself (the dumper) can

For general purpose dump analysis, the command line:

dump -run he pp dir -elig he stk -inzr he stk

should give the user all of the useful processes and segments. (to
produce a smaller dump, remove the "dir" keyword). For simplici
ty and to remove the possibility of operator error, this command
line should be placed into a bee exec com, either by itself or in
a site supplied crash exec_com. -

The dump command examines the active process table entries
(apte) within the specified image. For each entry, the criterion
specified through the keywords is used to decide if any segments
from this process are to be dumped. If any segments are to be
dumped, the segment options are applied to each segment active
within that process to decide whether or not they should be

MOH-5.5-22

dumped. As each process is dumped, dump will produce an output
line showing the apte number and the dbr value.for the process.
After scanning all apte entries, if the process in control when
Multics crashed was not one of the processes dumped, it is dumped
with a status line showing an apte number of zero. This process
is dumped with the running and initializer segment options.

Within the dump partition is kept a counter and a valid
flag. When a dump is placed into the partition, the valid flag
is set. It is reset when the dump is copied out during Multics
service (by the copy dump exec command). If the dump in the
partition has not been-copied, dump will query the operator if it
should be overwritten. This query can be avoided by specifying
the "-force" ("-fc") control argument to the dump command.

Dumps are assigned dump
The dump number may be changed
control argument.

numbers sequentially by default.
to a desired value with the -dump

The dump command provides a severity indicator, indicating
the successful of its operation. This indicator may be obtained
with the severity command/active function. The interpretation of
the severity status is:

O - dump was never called.
1 - dump was entered but never completed.
2 - dump was aborted because the partition contained an old

dump.
3 - the dump was successfully generated.

MOH-5.5-23

Name: emergency_shutdown, esd

The bee esd command starts an emergency shutdown of Multics.
It is only valid at the "crash" command level. It should be used
whenever the system crashes to prevent storage system damage.
Performing an emergency shutdown destroys the saved crash image
and should therefore only be done after a dump is taken.

Usage

esd

MOH-5.5-24

Name: exec_com, ec

The bee exec com command invokes a bee exec com. An
exec com is an ascTi file consisting of a series of commands to
invoke. bee uses exec com version 1, described in AG92 (Commands
and Active Functions).- This command is valid at all bee command
levels. This may also be used as an active function, as
described in AG92.

Usage

exec com ec name {ec_arguments}

MOH-5.5-25

Name: fwload, fw

The bee fwload command loads firmware into the specified
mpcs. It scans the config deck to determine the location of the
mpcs and the type of peripherals involved to determine the
firmware and overlays needed. This command is not valid at the
bee "early" command level.

Usage

fwload mpc name { ..• mpc names}

MOH-5.5-26

,... Name: get_flagbox, gfb

The bee get f lagbox command is used to determine the values
of various varTables maintained in the bee flagbox. These
variables are also accessible from Multics service and therefore
allow a small method of communication between bee and Multics
service. This command is valid at all bee command levels. It
also works as an active function.

Usage

gfb f lagbox_variable

where f lagbox_variable is one of the following:

N
where N is from 1 to 36. The returned value is the Nth
flagbox flag. These flags have true or false values.
Some of them are named and can be refered to by their
names, as listed below.

auto reboot
(also flag 1) Used by the auto bee exec com.
Appendix I (Continuous Operation Exec corns)
details.

Ref er to
for more

booting
(also flag 2) Used by the auto bee exec com.

rebooted
(also flag 4) Used by the auto bee exec com.

unattended
(also flag 5) Used by the auto bee exec_com.

bee command

ssenb

a command that is invoked by b~e whenever it reaches a
command level. The result is a character string,
quoted. This command may be set so that bee can be set
to automatically boot Multics upon a crash, etc. Refer
to Appendix I for more details.

a flag set by Multics service indicated whether or not
the storage system was enabled at the time of a crash.
A value of true indicates that an emergency shutdown
needs to be performed (or did not succeed).

call bee
indicates that bee was called through a program calling
call bee. This may be the result of the operator
having entering the bee command.

MOH-5.5-27

shut
indicates that Multics successfully shutdown. If nei
ther shut nor call bee is set, Multics either
encountered a breakpoTnt, crashed or was manually
brought to bee.

manual crash
indicates that bee was invoked manually, either by the
operator manually forcing a return to bee (XED 24000)
or by hitting the EXECUTE FAULT button.

MOH-5.5-28

Name: init files

The bee init~f iles command wipes out all files in the bee
file system. It is to be used only if a problem is encountered
with the bee file system. This command is valid at all bee
command levels.

Usage

init files

Note

init files will query the operator as to whether the bee
file system is to be cleared. This query may be avoided by using
the "-force" ("-fc") control argument.

MOH-5.5-29

Name: list, ls

The bee
set of star
can also be
names. When
the names of

Usage

list command lists the names of bee files matching a
names. It is valid at all bee command levels. It

used as an active function to return the set of
used as a command, providing no star names will list
all bee files.

list {star_names}

MOH-5.5-30

"

Name: list_requests, lr

The bee list requests request lists all requests valid at
the current command level.

Usage

list_requests

MOH-5.5-31

Name: print, pr

The bee print
bee file system.
levels.

Usage

pr file name

command prints the contents of a file in the
This command is valid at all bee command

MOH-5.5-32

..

Name: probe, pb

The bee probe command is used to examine, patch and
generally debug Multics hardcore, bee itself as well as providing
a ge~eral memory and disk patch/dump facility. Its requests have
a fair resemblance to those of Multics probe. It can be used at
all bee command levels.

Usage

pb {control_arguments}

where valid control arguments are:

-bee to examine bee itself

-crash to examine the saved crash image

-break to examine the active breakpoint

The default, when invoked at the "boot" command level is to
examine bee, when invoked automatically upon encountering a
breakpoint is to examine the breakpoint and otherwise is to
examine the crash image.

Notes

bee probe reads request lines from the boatload console.
Multiple requests may appear on one line separated by
semi-colons.· The syntax of these requests varies from request to
request. The recognized requests are listed below. Various
other aspects of bee probe are described in the following
sections.

ADDRESSES

what
take
forms

Several requests in bee probe take an address describing
should be displayed, modified, etc. These addresses can
many forms, depending on what is desired. Valid address
are:

N

MIN

specifies absolute memory location N.
any location in all of memory. N
octal.

N may describe
is specified in

specifies the virtual location N in segment M. The
interpretation of this virtual address depends on the

MOH-5.5-33

address space being examined~ refer to the "dbr" and
"proc" requests. Both N and M are octal values.

NAME IN
specifies the virtual location N in the hardcore
segment with the specified NAME. Thi7 interp:etation
is also subject to the address space being examined. N
is specified in octal •

• {+!-NJ
specifies the last location referenced (of any address
type} optionally offset by the value N. N is an octal
value.

reg(NAME)
specifies the named register in the crash image. This
address is not valid when examining the live bee.
Valid registers are:

prN (N = O to 7)
xN (N = 0 to 7)
a, q, e
t, ralr
fault, ext fault, mode, cache
dbr, bar

disk(DRIVE NAME,RECORD NUM,OFFSET}
refers to a specTf ic page of a disk drive. The drive
name is in the standard form, dska 04, for example.
Both RECORD NUM and OFFSET (within the page) are octal
values.

PROBE REQUESTS

before, b {ADDRESS}
sets a breakpoint before the specified address. If no
address is specified, "." is assumed. Refer to
Appendix O for more details about hardcore breakpoints.

continue, c
continues the saved image. It is the same as exiting
probe and entering "continue".

dbr VALUE1 {VALUE2}
sets the dbr (descriptor base register) value used in
the appending simulation used to access virtual
addresses in the Multics image. If VALUE2 is omitted,
the second word of the dbr value is obtained from the
dbr in effect when Multics crashed. Both VALUE1 and
VALUE2 are octal values.

MOH-5.5-34

display, ds ADDRESS {MODE {LENGTH}}
displays a set of locations in a specified mode. If
LENGTH is omitted, a value of 1 is assumed. For
virtual addresses, a LENGTH of "*" may be specified to
display to the end of the segment. If MODE is omitted,
octal is assumed. Valid modes are:

a - ascii characters d - decimal words i - instruction
format o - octal words (default) p - symbolic pointer
(double words)

The locations are displayed four to a line in the
desired format. The value of "." after this request
finishes is the first location displayed.

let, l ADDRESS= VALUE { ... VALUE}
modifies a series of locations starting at the address
specified. Each value is converted to a number of
words and catenated together to form the new value.
Valid values are:

"STRING"

N

No

Nb

MjN

a quoted string of characters. To place a quote
character into the string, it must be doubled.

a decimal number

an octal number

a binary number

a pointer to segment M offset N (double word)

NAME JN
a pointer to the named hardcore segment offset N
(double word)

list requests, lr
-lists the valid bee probe requests.

me ADDRESS {-long I -lg}
displays, in interpreted form, the scu data found
within the machine conditions at the specified address.
Specifying "-long" also dumps the machine registers
from the machine conditions.

name SEGNO
displays the name of the hardcore segment with segment
number SEGNO.

MOH-5.5-35

proc N
changes the address space used by the appending simula
tion for displaying virtual addresses to the Nth
process in the active process table. A value of 1
specifies the Initializer's process.

quit, q
exits probe.

reset, r {ADDRESS}
resets the breakpoint at the specified address. If
address is not specified, the currently active
breakpoint (if so existing) is reset. Refer to Appen
dix N for more details of hardcore breakpoints.

segno NAME
displays the segment number of the named hardcore
segment.

stack, sk ADDRESS
displays a stack trace starting at the given address.
If the word offset of the address is 0, the address is
assumed to refer to a stack header. Otherwise it is
assumed to refer to a stack frame. For each frame, the
stack frame offset, entry pointer, return pointer and
argument pointer is displayed.

status, st {SEGNOINAME}
displays a list of breakpoints set. If no argument is
supplied, all segments with breakpoints set are
displayed. If a SEGNO or NAME (of a hardcore segment)
is provided, then all breakpoints within that ·segment
are displayed.

MOH-5.5-36

Name: qedx, qx

The bee qedx command invokes the qedx text editor to edit a
bee file system file. All requests of the standard Multics qedx
editor are supported except for the "e" request. This command.is
valid at all bee command levels.

Usage: qedx {-control_args} {maero_file} {maero_args}

Notes

Refer to the description of the qedx command in AG92
(Commands and Active Functions).

MOH-5.5-37

Name: reinitialize

The bee reinitialize command causes bee to perform a new
initialization pass, thereby reflecting any changes to the config
deck made since the last such pass. This command returns the
operator to "boot" command level. It is valid at the "boot",
"bee crash" and "crash" command levels. When used at the "crash"
command level, the operator is asked whether to continue, thereby
destroying the saved Multics image. This query may be avoided by
using the "-force" ("-fc") control argument.

MOH-5.5-38

Name: rename, rn

The bee rename command renames files in the bee file system.
The star and equal conventions are used. This command is valid
at all bee command levels.

Usage

rename STAR NAME EQUAL_NAME { ••• STAR NAME EQUAL_NAME}

MOH-5.5-39

Name: set_flagbox, sfb

The bee set f lagbox command changes the values of various
flagbox variables. When used as an active function, it also
returns the previous value of the variable. It is valid at all
bee command levels.

Usage

where

set_f lagbox VARIABLE VALUE

VARIABLE
is a valid flagbox variable, as listed above under
get_f lagbox.

VALUE
is either a character
variable) or the string
flagbox variables.

string
"true"

MOH-5.5-40

(for the bee command
or "false" f~r other

,.. Name: severity

The bee severity command returns the severity, or extent of
completion, of a preceding bee command. This command is valid at
all bee command levels. Currently, the dump command provides
such a severity status. Future bee commands may also. This
command may also be used as an active function.

Usage

severity PROG NAME

MOH-5.5-41

Name: shutdown_state, sds

The bee shutdown state command returns the state of comple
tion fo the shutdown of Multics service. It does this by
examining the shutdown state flag in the label of the rpv. This
request is valid at -all bee command levels. It may also be
invoked as an active function.

Usage

Notes

shutdown state

The interpretation of the shutdown states follows.

0 - Normal Multics shutdown (no esd)
1 - esd part 1 started (memory flush of modified pages

of segments)
2 - esd part 1 completed
3 - shutdown or esd completed with lock errors
4 - shutdown or esd completed with no errors
other - shutdown completed with errors, or not completed for

one or more disk errors

MOH-5.5-42

SECTION MOH-6

MULTICS CONFIGURATION DESCRIPTION

Besides changing conf ig cards to appear in lower case, most
conf ig cards now have a labeled form. Add to each applicable
conf ig card description a new entry labeled:

Labeled format

with the appearance listed below.

Name: chnl

Labeled format

chnl -subsys device name -iom ioml -chn chnl -nchan nchanl
{ .•. -iom iom4 -chn chn4 -nchan nchan4}

Name: clok

Labeled format

clok -delta delta -zone zone -boot delta boot delta

Name: cpu

Labeled format

cpu -tag tag -port port -state state -type type -model model
{-cache cache size -exp_port exp_port}

Name: iom

Labeled format

iom -tag tag -port port -model model -state state

Name: mem

Labeled format

MOH-6-1

mem -port port -size size -state state

Name: mpc

Labeled format

mpc -ctlr ctlr name -model ctlr model -iom ioml -chn chnl
-nchan nchanl { •.. -iom iom4 -chn chn4 -nchan nchan4}

Name: part

Labeled format

part -part partname -subsys subsystem -drive drive

Name: prph

Labeled format

prph -device ccuN -iom iom# -chn channel# -model model#

prph -subsys dskN -iom iom# -chn channel# -nchan nchan
-model modell -number dl {-model model2 -number
d2 ••• -model model5 -number d5}

prph -device fnpN -iom iom# -chn channel# -state state

prph -device opcN -iom iom# -chn channel# -model model# -11
line_length -state state

prph -device prtN -iom iom# -chn channel# -model model#
-train train# -11 line_length

prph -device punN -iom iom# -chn channel# -model model#

prph -device rdrN -iom iom# -chn channel# -model model#

prph -subsys tapN -iom iom# -chn channel# -nchan nchan
-model modell -number dl {-model model2 -number
d2 ... -model model5 -number d5}

Name: root

Labeled format

root -subsys subsysteml -drive
subsystemN -drive driveN}

Name: schd

Labeled format

MOH-6-2

drivel { ... -subsys

schd -wsf wsf -tef irst tefirst -telast telast -timax timax
{-mine mine {-maxe maxe {-maxmaxe maxmaxe}}}

Name: sst

Labeled format

sst -4k sstl -16k sst2 -64k sst3 -256k sst4

Name: tcd

Labeled format

tcd -apt apt -itt itt

Name: udsk

Labeled format

udsk -subsys subsystem -nchan nchan {-drive drivel -number
countl •.• -drive drive6 -number count6}

MOH-6-3

SECTION MOH-7

INITIALIZER COMMANDS

Overall System Control

change the BOS command to bee

COMMAND DESCRIPTIONS

delete the BOS command and replace it with:

Name: bee

The
operation
sometimes
commands.

Usage

bee

bee command causes bee to be entered. All Multics
is suspended. When the system is in trouble, it is
necessary to enter bee to use the dump or probe
This command may be issued in ring 1 or ring 4.

causes the system to enter bee. Type:

go

on the bootload console to cause Multics to be restarted.

(The notes pertaining to the BOS command also pertain to the bee
command.)

Name: cripple

replace references to BOS with bee.

MOH-7-1 --

~ Name: init vol

add to the description of the
"file" of length 255 and "bee"
high end of the disk.

Name: message

default partitions the partitions
of length 2200, both added to the

The message command invokes the Multics qedx editor to edit
the file message of the day, which most (but not all) users print
out automatically when they log in.

Usage

message

to edit the message. Editing requests may then be entered.
Usage of qedx is described in MPM Commands and Active Functions,
Order No. AG92.

MOH-7-2

SECTION MOH-8

SYSTEM STARTUP AND SHUTDOWN

Replace the entire section "Overview of System Startup) with the
following. Keep the sub-section entitled "Bringing up Multics
(Step by Step)" but change its title to "Bringing up Multics from
BOS (Step by Step)".

OVERVIEW OF SYSTEM STARTUP

There are several steps to bringing up Multics service:

0 Configure the system. The drive rpv must be mounted.

o Bootload BOS. This step is optional.

o Mount the RLV (if not already mounted) and all logical
volumes required at the site for starting.

o Boot bee from the current Multics system tape.

o Boot service Multics from bee.

o Start up the answering service and log in the daemons
to perform backup, input/output, and any other
specialized procedures (such as network interaction).

Boot loading

A BOS bootload is the process of loading the programs that
make up the essential parts of BOS. BOS is used to bootload bee.
See "Loading BOS" in Section 5 for details on bootloading BOS.
It is not necessary to bootload BOS to bootload bee. However, if
BOS is not bootloaded, the functions of BOS may not be used in
conjunction with bee.

MOH-8-1

A bee/Multics bootload is the process of loading in the
programs that make up the Bootload Command Environment, who in
turn build up from themselves the Multics operating system. The
bootloading process loads the programs into memory, links them so
that they may refer to one another, and sets up any necessary
data bases. Whenever BOS is booted, bee must be re-booted. Any
number of service Multics boots may be made from a single bee
boot.

The programs on a Multics system tape are divide into
several collections. The first program on the tape, imbedded
within the tape label, is called bootload tape label. It reads
in the next set of programs, collection- O. -Collection 0 is
responsible for reading in collection 0.5, used to boot firmware
into the bootload tape controller. Collection O then reads in
collection 1 and links the programs therein. This operation
allows programs written in PL/I to be used. Collection 1
contains the necessary programs to enable paging, as well as to
start up bee. Collection 1 uses collections 1.2, which contains
canned bee exec corns and files and collection 1.5, which contains
some of the bee programs. bee also reads collections 2 and 3,
needed to bootload Multics service, onto disk.

When bee is finished, collection 2 is run to initialize and
set up the Multics storage system and the environment to do
reloads and other system startup activities. These programs (the
reloader) are found in collection 3.

Bringing ~Multics with BOS (Step £y Step)

(was Bringing Up Multics (Step by Step})

o Bootload bee by typing:

BOOT N

(where N is the tape drive on which the Multics tape
[MST] is mounted).

o When bee responds with:

bee ·(boot) TIME:

bootload Multics service by typing:

boot star

or by invoking the continuous operation exec com:

ec auto star

MOH-8-2

Bringing ~Multics without BOS (Step £y_ Step)

To bring up Multics, proceed as follows:

o If not already in bee:

Configure the system hardware (see Section 3).

Mount the Multics system tape on a convenient tape
drive. Set the switches on the tape MPC to indicate
the tape drive, as described in "Bootloading bee from
the Operator's Console" in Section 5.5.

Boot bee from tape as described in Section 5.5.

o bee types the ready message:

bee (early) TIME:

This time may not be correct since the time zone is not
necessarily known at this time.

o Make sure the conf ig deck is correct. Enter or modify
it if necessary.

o Enter

boot

to proceed to bee "boot" command level. This step will
check the validity of the clock. If 'the clock is not
valid, follow the steps described in Section 3 (Calen
dar Clock). This step also loads firmware into all
disk mpcs (except for the boatload disk mpc).

o Load firmware into all controllers, except for disk
mpcs and the boatload tape controllers (who have
already been loaded in the bee bootload sequence).

o Mount all required disk volumes.

o Press the INITIALIZE AND CLEAR pushbutton on the
processor configuration panel for all CPUs except the
one on which you are running.

o Bootload Multics service by typing:

boot star

or by invoking the continuous operation exec com:

ec auto star

MOH-8-3

0 After Multics types an introductory message and
requests a command, press the REQUEST button at the
operator console.

o Operate the initializer process as outlined in the
following paragraphs.

Administrative Ring Commands

... If a ring 1 command was specified in the boot command,
this command is executed automatically. For example, typing:

boot star

executes the star (startup) command in ring 1 ..••

SAMPLE STARTUP SEQUENCE

ec auto star

UNATTENDED AND AUTOMATIC MODES

Change all references to the BOOT command to refer
command and all references to the AUTO runcom to
auto exec com.

MOH-8-4

to the boot
refer to the

SECTION MOH-10

RECOVERY FROM SYSTEM FAILURE

SYMPTOMS OF SYSTEM FAILURE

o The system returns to bee without operator intervention.

Returning to bee

If the system loops or crashes and does not return to bee,
the operator presses the EXECUTE button to force the system to
return to bee. This can be done in one of two ways.

1. Usually bee is entered by causing an execute fault.
For this to occur, the EXECUTE SWITCHES switch must be
down when the EXECUTE button is pushed. (This switch
may have been left in the up position.) DO NOT put the
processor in STEP when using the execute fault. An
execute fault must be used to force a return to bee
when two or more cpus are in use.

2. bee can also be entered by executing the instruction
pair located at octal location 24000 in memory. In
this case, the 24000 is set in switches 0-17 and an
interrupt-inhibited execute double (XED) instruction is
set in switches 18-35 (the octal value of the switches
should be 024000717200). If the EXECUTE SWITCHES
switch is in the up position when the EXECUTE button is
pressed, the XED is executed; the processor should be
in STEP when the button is pushed. bee should be
entered with an XED only in cases noted below, or as a
last resort. This method does not stop any additional
CPUs. If, as a last resort, this method is used when
more than one CPU is running, all CPUs other than the
bootload CPU should be put into STEP, and the forced
execution performed on the bootload CPU.

MOH-10-1

If your site has a DPS 8 system, the procedures for
executing switches and placing a CPU in step will be different.
Refer to Appendix M, "DPS 8 Operating Procedures", for details.
(The procedure for executing fault will be the same.}

IOM Alarm

change all references to BOS to bee.

Recovery after a System Failure

change all references to BOS to bee.

Change as follows:

..• There are 36 switches set up in the bee toehold for
intercommunication between Multics and bee. These switches are
set either by the bee set flagbox command or the Multics
privileged command, set flagbox (described in Appendix I}. One
of these switches means "automatic reboot mode is on". When the
system is running in automatic mode and returns to bee, the
f lagbox bee command variable is set to a command that tests the
"crashed" Indicators to discover whether the system failed or
shut down normally. If the test indicates a system failure,
automatic recovery procedures begin. These procedures are
described under "Recovery Procedures" below.

RECOVERY PROCEDURES

Automatic recovery procedures do the following:

o Take a dump (using the bee dump command}. (See section
5.5 for description of this command.)

o Perform emergency shutdown (esd).

o Bring up the system again (boot). Required salvaging
is ·done automatically as the system is brought up

RECOVERY FAILURE

change:

0 System loop or failure to return to bee.
In this case, the operator enters bee via XED 24000.

MOH-10-2

0

0

0

0

bee senses this manual
perform the automatic
f lagbox bee command. The
recovery by-entering:

intervention and does not
operation specified in the
operator may invoke automatic

ec rtb

The system_start_up.ec never finished.
In this case, the booting flag is still on.
exec_coms take a dump and do an emergency shutdown,
abort automatic mode.

The
but

The auto reboot flag is off.
Automatic mode may be turned off by the set_f lagbox
command executed while Multics is running. As such,
the exec corns print a message and -recove_r ing.

Some disk volume cannot be accepted.
In this case, the initializer process
message and inhibited automatic startup.
waits at operator command level in ring 1
depending on where the error is detected.

dump failed.

exit after

has typed a
The system
or ring 4,

In this case, the operator may choose to try again
(type "ec rtb") or to try an emergency shutdown. If
the dump failed because the previous copy dump was not
successful (or not reached), and if the dump partition
is still full, the dump partition may be saved on tape
by BOS. This allows the new dump to be taken without
losing the old one. See "Saving the DUMP Partition"
later in this section.

o Explicit call to bee.
If bee is entered as a result of a call to
hphcs_$call_bce, the system assumes this is due to
operator intervention. The exec corns print a message
and await console input. The operator is queried as to
whether automatic recovery should be performed.

o Lock error during shutdown.
If errors are encountered during an attempted shutdown,
the exec corns print a message and await console input.

o Reboot loop.
If the system attempts to reboot itself repeatedly,
this may be a sign of some system problem that does not
prevent answering service startup but crashes the
system later. The standard system start up.ec does not
reboot the system twice without operator intervention,
because automatic mode gets turned off. If this plan
seems to be too conservative for certain installations,

MOH-10-3

the system start up.ec can be modified to take other
action. - -

Saving the Dump Partition

add a line specifying that
BOS can perform the dump.
restart bee.

Failures that do not crash

bee must first return to BOS before
Also, BOS must perform a "go" to

remove the reference to the BLAST command. Also change refer
ences to BOS to bee.

Change subsequent references to BOS to bee within the chapter
except for references to the BOS save and restore commands. Make
all bee command names lowercase.

MOH-10-4

SECTION MOH-12

STORAGE SYSTEM MAINTENANCE OPERATIONS

HOW TO MOVE A PACK

change:

•.. If any BOS runcoms or bee exec corns name specific
drives ••.

..• Load bee and Multics using BOOT.

MOH-12-1

SECTION MOH-A

SUMMARY OF OPERATOR COMMANDS

... Commands used within the boatload operating system (BOS)
or the boatload command environment (bee) are not included in
this list; for these see· Section 5, "Boatload Operating System",
Section 5.5, "Boatload Command Environment", and the summaries in
Appendices C and N.

In the summary, change the bos command to be named bee and to
refer to bee.

MOH-A-1

SECTION MOH-B

SUMMARY OF INITIALIZER COMMANDS

Change the bos command to be named bee and change references to
BOS to bee.

MOH-B-1

SECTION MOH-C

SUMMARY OF BOS COMMANDS

Delete the ABS, BLAST, DUMP, ESD, FDUMP and PATCH commands.

MOH-C-1

SECTION MOH-H

OPERATOR'S STARTUP CHECKLIST OF SWITCH SETTINGS

PROCESSOR UNIT (MAINTENANCE PANEL) SWITCHES

DATA SWITCHES Set to XED - Location 24000 (024000 717200)

MOH-H-1

SECTION MOH-I

CONTINUOUS OPERATION EXEC COMS

This appendix describes the bee exec corns supplied with the
system to implement automatic recovery after system crashes. The
operator usually types only the two command lines:

ec auto star

ec go

to initiate system bootload, with automatic restart if
a crash occurs.

to restart automatic operation after a manual return to
bee.

Descriptions of the get flagbox and set_f lagbox commands are
included at the end of this section.

FLAG USAGE

Several flags and indicators coordinate the bee and Multics
modes of operation. The bee and Multics get f lagbox and
set flagbox commands are used to examine and set, ~espectively,
flags in the toehold. Four flags have preassigned meanings and
are known by keywords in these commands:

1. auto reboot
TRUE if the system is to attempt to reboot itself after
it has crashed.

2. booting
TRUE during bootload. It is turned off at the end of
part 3 of system start up.ec, when bootload is over.
This flag prevents-the system from looping to reboot if
it crashes before coming up.

3. rebooted
TRUE if the system has rebooted as a result of
automatic operation.

MOH-I-1

4. unattended
TRUE if the system is not attended by an operator.

In addition, the "call bee" and "shut" flags may be examined to
determine the mode of Ece entry. The "ssenb" flag may also be
tested to see if the storage system has been enabled.

EXEC COMS

auto.ec starts automatic operation.

&command line off
&- automatic reboot ec for bee
&- Keith Loepere, January 1984.
&-
&print Begin auto boot.
set flagbox bee command ""
set-flagbox auto reboot true
set-flagbox bootTng true
&input line off
&attach
conf ig edit
gp/Acpu/
gp/Amem/
q
&detach
set f lagbox bee command "exec com rtb"
boot &rf 1
&quit

rtb.ec
determines what operations to perform upon a return to bee.

&command line ·off
&- ec to-handle returning to bee
&- Keith Loepere, January 1984.
&-
&if [not [get_flagbox call_bce]] &then &goto non_call_entry
&-
&pr int bee invoked via hphcs_$call_bce.
&-
&if [not [query "Should normal recovery procedures be used?"]]
&then &goto abort_auto_mode
&-
&label non_call_entry
&-
&- look at the state of things
&-
& if [not [get flagbox ssenb]] &then &goto ss not enabled
&-
&- storage system enabled~ take a dump and esd

MOH-I-2

&-
exec _com dump
&-
& if [nequal [severity dump] 3] &then &goto dump_okay
&-
&print Dump failed.
&quit
&-
&label dump_okay
&-
emergency shutdown
&- return-from above is back at rtb
&-
&label ss not enabled
&-
&- Is everything okay?
&-
& if [nequal [shutdown_state] 4] &then &goto okay_shutdown
&-
& if [nequal [shutdown_state] 3]
&then &print Shutdown with locks set.
&else &print Error during shutdown.
&goto abort_auto_mode
&-
&label okay_shutdown
&-
&- normal shutdown - see if we should reboot
&-
& if [not [get_flagbox auto_reboot]] &then &quit
&if [get flagbox booting] &then &goto system_cant_boot
&-
set_f lagbox rebooted true
&-
&- inform a.s. that we are doing an automatic reboot
&-
exec com auto star
&quit
&-
&label system_cant_boot
&-
&print System crashed during boot.
&-
&label abort auto mode
&-
set flagbox bee command ""
set-flagbox auto reboot false
set=f lagbox rebooted false
&quit

dump.ec
performs a standard dump.

MOH-I-3

&command line off
&- standard bee dump defaults
&- Keith Loepere, January 1984.
&-
dump -run he pp dir -elig he stk -inzr he stk
&quit

go.ec
restarts automatic operation after a manual return to bee.

&command line off
&-
&- restart auto operation after manual bee entry
&- Keith Loepere, January 1984.
&-
set f lagbox auto reboot true
set-flagbox rebooted false
set=f lagbox booting false
go
&quit

MOH-I-4

SECTION MOH-M

DPS 8 OPERATING PROCEDURES

Change all references to the BOS whatever to the bootload
whatever.

EXECUTING SWITCHES

2. Having typed "VIP", you will receive the CPU CMD prompt.
When you see this, type "CO DATA 024000717200" followed by "EX2".

3. When the system has returned to bee, you'll see the bee ready
message displayed on the system bootload console.

PLACING A CPU IN STEP

5. Having typed "VIP", you will receive the CPU CMD prompt.
When you see this, type "CO DATA 024000717200" followed by "EX2".

6. When the system has returned to bee, you'll see the bee ready
message displayed on the system bootload console.

VIP MODE COMMANDS (UNT CMD PROMPT)

Delete the BOS command.

MOH-M-1

SECTION MOH-N

SUMMARY OF BCE COMMANDS

The Multics bootload command environment is described in
detail in Section 5.5. All of the commands available to bee are
summarized in this appendix for quick reference. This summary is
formatted so that it can be removed from the manual for use as
reference cards or for machine-room posting.

alert

boot

bos

Usage: alert message

writes a message on the operator console with an audible
alarm.

Usage: boot {command} {keywords} {cold}

causes bee to pass through the next phase of initialization,
or to boot Multics service.

Valid commands: star, mult, stan, salv

Valid keywords: nodt, nolv, rlvs, rpvs

Usage: bos

causes bee to return to BOS.

config_edit, config

Usage: config_edit {file name}

enters the config deck editor.

MOH-N-1

continue, go

Usage: go

restores the machine image
interrupted activity.

and continues running the

delete, dl

die

dump

Usage: delete star names

deletes files within the bee file system.

Usage: die {-force I -fc}

aborts all bee activities.

Usage: dump {macro_keyword} {-process_group segment_option
{ •.. segment_options}} {-force I -fc} {-dump #} {-crash}
{-bee}

produces a diagnostic dump of system memory and tables into
the dump partition.

Valid macro_keywords: -brief, -short, -long

Valid process_groups:
-all

Valid segment options:
stacks, writeable

-running, -initializer, -eligible,

directories, hardcore, per_process,

emergency_shutdown, esd

Usage: emergency_shutdown

starts an emergency shutdown of Multics.

exec_com, ec

Usage: exec com ec name {ec arguments}

invokes a bee exec com.

MOH-N-2

fwload, fw

Usage: fwload mpc_names

loads firmware into the specified mpcs.

get_flagbox, gfb

Usage: get_flagbox variable

determines the value of a variable maintained in the bee
flagbox.

init files

Usage: init_f iles {-force I -fc}

wipes out all files in the bee file system.

list, ls

Usage: list {star_names}

lists the names of bee files matching a set of star names.

list_requests, lr

Usage: list_requests

lists all requests valid at the current command level.

print, pr

Usage: print file name

prints the contents of a file in the bee file system.

probe, pb

Usage: probe {-break I -bee I -crash}

used to examine, patch and generally debug Multics hardcore
and bee itself.

Allowed requests:

before, b {ADDRESS}

MOH-N-3

sets a breakpoint before the specified address.

continue, c

continues the saved image.

dbr VALUEl {VALUE2}

sets the dbr value used in the appending simulation.

display, ds ADDRESS {MODE {LENGTH}}

displays a set of locations in a specified mode.

let, l ADDRESS= VALUE{ ••. VALUE}

modifies a series of locations.

list_requests, lr

lists the valid bee probe requests.

me ADDRESS {-lg}

displays machine conditions.

name SEGNO

displays the name of the hardcore segment with segment
number SEGNO.

proc N
changes the address space used by the appending simula
tion to the Nth process in the active process table.

quit, q

exits probe.

reset, r {ADDRESS}

resets the breakpoint at the specified address.

segno NAME

displays the segment number of the named hardcore
segment.

stack, sk ADDRESS

displays a stack trace starting at the given address.

status, st {SEGNOINAME}

MOH-N-4

displays a list of breakpoints set.

qedx, qx

Usage: qedx {-control_args} {macro_f ile} {macro_args}

invokes the qedx text editor to edit a bee file.

reinitialize

Usage: reinitialize {-force I -fc}

causes bee to perform a new initialization pass.

rename, rn

Usage: rename star name equal_name { . . . star name
equal name}

renames files in the bee file system.

set_flagbox, sfb

Usage: set_flagbox variable value

changes the value of a flagbox variable.

severity

Usage: severity prog_name

returns the severity, or extent of completion, of a preced
ing bee command.

shutdown state, sds

Usage: shutdown state

returns the state of completion of the shutdown of Multics
service.

MOH-N-5

SECTION MOH-0

HARDCORE BREAKPOINTS

The hardcore breakpoint
facilities within Multics and
breakpoints to be set at most
They may be used largely as they
but with a few caveats.

BREAKPOINT MECHANISM

facility is a collection of
bee that allow probe style

bee and hardcore instructions.
are within normal Multics probe

This section describes the mechanism by which hardcore
breakpoints is implemented. This is largely for academic inter
est; however, a understanding of the mechanism will prevent the
user from setting a breakpoint in an incorrect path; in particu
lar, breakpoints may not be set in the breakpoint handler's path.

When a hardcore breakpoint is set at an instruction, the
instruction at that location is relocated to the end of the
segment containing it. Its addressing is changed to reflect its
new location. The original location is replaced with a transfer
instruction to a breakpoint block at the end of the segment which
executes a "drl -1" instruction. This causes the breakpoint to
happen. If the breakpoint handler returns without changing the
breakpoint, the next instruction in the block will be executed.
This is the relocated original instruction. After this, a
transfer is made back to the correct place in the original
program. It should be noted that the instruction moved cannot be
the second or later words of an eis multi-word instruction.

Derail faults are handled in f im. A "drl -1" instruction is
special cased to be a breakpoint. fim makes a call to
pmut$bce and return to implement the call to bee. Any program in
this path (this part of fim, pmut, connect handling in stopping
other processors, etc.) cannot have a breakpoint placed therein.
Also, the special casing of a "drl -1" to be a breakpoint only
applies for derails in ring o. Thus, breakpoints should not be

"'1- set in segments that will be executed in other rings.

MOH-0-1

When bee . is invoked via the toehold, it notices that a
breakpoint was the cause of the return to bee and invokes bee
probe directly. Probe is free to perform a continue operation
which eventually returns to pmut, restarts other processors,
returns to f im who restarts the breakpointed operation.

Breakpoints may be set within bee also. However, they
should be set only at the "boot" command level. When set at the
"early" command level, a breakpoint will cause a return to the
"early" command level. Also, a breakpoint set at the "crash"
level is useless since, upon a breakpoint/crash of the "crash"
command level, the toehold purposely does not save the crash
image to avoid ove.rwri ting the Multics image already saved.

BCE PROBE BREAKPOINT OPERATIONS

This section describes bee probe support of breakpoints.

Breakpoint requests

before, b {address}
sets a breakpoint to be executed before executing the_
instruction at the specified address. If no address is
specified, "." is assumed. The address must be a
virtual address. The breakpoint is added to the list
of breakpoints for the segment. Up to 120 breakpoints
may be set per hardcore segment; however, all wired
hardcore segments share the same breakpoint area so
only 120 breakpoints in total may be set in wired
segments.

continue, c
continue from a breakpoint. Multics is restarted.

reset, r {address}
resets a given breakpoint; that is to say, Multics will
no longer break when the instruction is encountered.
The breakpoint causing the return to bee can be reset
by not specifying an address.

status, st {name1segno}
either lists all segments with breakpoints set in them
(if no name or segno is specified) or lists all offsets
within a single segment at which a breakpoint is set.

MOH-0-2

r Breakpoint references

When a breakpoint causes a return to bee, bee does not
execute the bee command in the flagbox. Instead, it enters probe
directly. Probe will assume a default of "-break". Probe may be
exited at this time. This does not effect a return to Multics
however, only a return to bee ("crash" or "bee crash") command
level. Probe may also be entered with the control argument
"-break" to force examining the breakpoint conditions. The only
difference between "-break" and "-crash" for probe is the machine
conditions to use. "-crash" uses registers contained within the
toehold when the toehold was invoked. These registers are mostly
interesting when bee is manually entered. "-break" uses the
registers at the time of the breakpoint; these were saved by the
breakpoint handler. The registers will show the register con
tents at the time of the breakpoint; however, the instruction
counter will show the relocated instruction, not its original
location.

MOH-0-3

