
Multics Technical quf letin MT9-053

To: nistrlbutl~n

Fro~: Robert A. Freiburqhouse

~uh1ect: A Unified Command Language {~evision 1>

Dat ei t-'arch 20, 1971+.

This document defines a command language and command
processor that is Intended to be a user select~d alternative to
the current Multics command processor. The langu~ge ls suitable
for use as an l~tPractlve or absentee Job control language, and
It also ls a suitable language in which to perform simple
calculations.

1. Provide a single unified la~guage containlnq the essential
functions of calc, abbrev, ao, exec_com~ absentee ard the
current Multics command lanquage.

?· Proviae a command language th~t can cal I subroutines and
functions wrltten in standard languages in a natural manner
oassing argum~nts and receiving values having any of the
scalar data tyoes of the standard lan~u~ges. Any procedure
whose ar~ume,ts and return values are scalars can be invoked
from the command processor exactly as it w~uld be invoked
from another orocedure, thus eliminating the need for active
functions and commands to be written in ~ nonstandard style.

3. Provide a language whose implementation will perform a
given operatlo~ using less CPU time and storage than used by
the existing command processor and related facilities to
perform the equivalent oper~tlon.

The comman1 language ls a very simple algorithmic tanguage
whose largest syntatlc unit ls a <command>. Each <command> Is a
conditional or unconditional imperative state~ent which· can
contain references to named variables, expressions, and other
<command>s. Expressions are the familiar oarenthesized infix and
pr·ef.i.x expressions of Fortran or PL/I.

Multics ProJect internal working document3tlon. Not to be
reoroduce1 or distributed outside the Multics Pro)ect.

Page 2 · MT 8- 05 3

Th?. ..;omm::rnrl processor is "'r interoreter that executes a
seque~ce of <command>s. Interpretation of each <command> is
performed as a two staJe process. nuring the first staqe, the
<command> is proce~5ed as a seQu~nce of ch3racters without regard
tc its syntatic construction or puroose as a command. It ls
duri'"lg this first stage that abhreviations and parameters are
r~olaced as de~cribed later. CurlnJ the second stage of
lntPrpretation, each <command> is oarsed (identified) and
executed.

The command processor can be called by a <command>. ~ach

invocation creates a new set of ~rguments, a new set of local
variables, a new command input tile, and a new "current"
abbreviation file.

co input s1 s2 ••• sn
or

co lnout
or

cp

where l'"lput ident_i fies the command input file, an1 s1 s2 ••• sn are
the strings which are arguments of the new invocation of the All\
comm3nd processor. If input is omitted, commands are read from
user_lnout. A more precise definition of the relationship
between an lnwocati~n of the command processor an~ its I/O
attachments ls Qlven ln Appendix A.

q e f or e . each <co mm and> i s exec u t e d , t he f o I I ow in g st e p s a r e
pi::rfor'Tied:

1. ~ach ~Kor lrK, where K is an <inte1er>, ls reolaced by
the Kth argu~ent to this invocation of the command
processor. If no such argument ex·ists, the 6.K or lrK is
removed. ThP. r4'>otacet1 text ls rescanned from
left-to-right. Parameters of the form &rK cause the
replaced text to be Quoted and any contained quotes to be
doubled. This step is complete when the first ; or
new I i T'I e no t c o n ta l n e d l n o u o t e s i s enc o u n t er e d •

2. If thP string oroduced by step 1 begins wlth an !, the
is removed ":Jnd orocessinq continues with step 3.

If the current instance of the abbrev I/O switch ls
attached, the f lie is used ·3S an abbreviation file. Any
token defined by the abbreviation f lie ls replaced by
text fr.:>m the abbrevi":Jtlon file. The replaced text ls
not rescanned. The first token only feature of abbrev is
supoor ted.

MT~-0~3 Page 3

~. Each occurrence of (<expression>] i~ evaluated and the
v a I u e o f t he < e x pr es s i o '1 > i . .; us e d t o r e p I a c e t he
[<expression>]. The value must be 3 ch3racter string.

4. If the input string does not t>egln with a ., perfor"' the
following steps:

a. Parse the input strinq using the fol lowing syntax:

<symbol-list>::= <symbol> •••

<symbol>::= <Quoted string>l<unauoted string>

<quoted string>::= "<char> ••• "

<char>:i= ""IAny ASCII character except"·

<unauoted string>::= <notend> •••

<not~nd>::= Any ASCII character except blank,
tab, newline, or ;

b. If an <unquoted string> begins with (, it must satisfy
the syntax (<expression>).

c. Surround al I <unquoted string>s except those described
ln h. with Quotes.

d. Rew r i t e t he l n p u t st r in g as :

.ca I I s1 Cs2, s3, ••• , sn)

Note, the actions performed for step 4 al low cal Is to be
typed with a minimal syntax very similar to the syntax used by
the current com~and orocessor. Parentheses are used to embed
expressions into this type of command. 'Square brackets are used
a~ active functions In any command line and are processed as part
of the strlng processing that occurs prior to execution of the
c om man d as de s c r i b e d i n s t e p 3 • The spec 1 a f s l gn i f l can c e o f [J <)

~ and : can be suporessea by use of the escane character -.

Note that by usln1 abhrevlations the user can eliminate the
• required on each command and C8n change the svntax of commands
to a I imlted extent.

Page 4 MTB- O:d

<command>::= <attach>l<det3ch>l<do>f <exit>I
<whl le>I <if>I <let>I <cal I >l<return>I <print> I
<on>l<abort>l<for>

<attach>::= .attach<switch> <source>

<switch>::= command_lnput1us?r_lnoutlabbrev

<~ource>i:= switch <expres~ion>l
p3t~ <expression>!
string <expression>

causes the att3chment of the current in5tance of the <switch> to
be "pushed down"• and the <switch> to be attached to the
<source>. If <~ource> ls string <expression> the character
string value of the <expression> serves a~ the file.

<de t ::i ch> : : =· • d et a ch < s w .i t ch>

causes the attachm~nt of the current inst~nce of the <switch> to
he "popped up", that· ls, reotaced by the previou~ attachment of
that <switch>.

<do>::= .do <group>

< gr o up> 1 : = <co mm an d > t (< c o mm a n d > C : < co mm and> J • • • >

causes the <command>s of the <qrouo> to be executed b·y the
current invocation of the command processor. Normailv a <do> is
used as part of a compound <command> such as <If>, <while>, <for>
or <on>.

<exit>::= .exit

causes the execution of the current <do> to be terminated and the
<co~m~nd> following the <do> to oe executed. It is an error to
execute an <~xit> ~utside of a <do>.

<while>::= .while<expression><do>

It <expression> is true, the <do> ls eva1uated; otherwise, it
not. Upon completion of the <do>, the <while> is repeated.
<expression> must yield a logical value.

is
The

,...

MTA-or::;~ Page 5

<if>::= .if<exoresslon><do>

If <exoresslon> ls true, the <rfo> ls evaf uated; otherwise, it ls
not. The <expre~~ion> must yield a logic31 value.

<let>~:= .let<name> be <expression>

c~uses <name> to be defined as a local variable al1ocated In the
current stack frame.; The value of the variable ls the value
produce~ by ev~lu~tlon of the <exoresslon>.

<call>::=
.cal I <expresslon>([<expresslon>C,<expresslon>J ••• l>

Ev~luation of the first <expre~sion> must vi~ld a string giving a
pathname that ~d~ntlfies an obJect segment entry point.

The arqument <expression>s are evaluated and converted to conform
to the data types speclf ie~ by thP entry definition of the obJect
segment as desc~ibed later.

<return>::= .return

causes control to return
command process~r.

from tt>e current Invocation of the

<print>::= ~print <expresslon>C,~expresslon>J ••• /

causes the value of each <expression> to be
user_outout in a suitable format.

<on>::= .on <expression> <do>

wr 1 t t er on

causes the <dn> to be established as an on-unit for the condition
identif led bv the ~tring v3lue of the <expression>. The
<Pxpresslon> must yield a strln~ value. The execution of an
<exit> or the normal termination of the <do> causes control to
retur~ to the siqnaller. If control is to be returned to the
<command> fol lowing the <command> whose execution caused the
slqnal, an <abort"> "'ust be executed.

<dbort>::= .a!:>ort

causes executinn of the <command> fol towing the <command> whose
execution caused the most recent signal. It ls an error to
ex~cute an·<ahort> "ot continued within d <do>, used as an
or-\.nit.

Page & MTB-053

Let n be the number of <expr~sslon>s. For k=1,2, ••• n, the kth
<exnresslon> is Pvaluated and its res~lting value .assigned to the
local variable <n3me>, and thP <do> is evaluated. A <f-0r>
defines its <name> as a local variable Just Ilk~ a <let>~

<name>::= .<identifier>

<ldentltier>1:= <lett~r>C<letter>l<dlg!t>l=l •• ~.

<expres~lon~::= <lnflx>l<pref ix>f<oaslc>

<infix>:~= <pxpr~sslo~~<lnfix-oo><expresslon>

<infix-op>::= +1-1•11J ••1= 1-= I>= 1<= l<l>l&lllil

<basic>:~= (<expreslson>>t<name>l<constant>l<function>

<constant>::= <ldentifier>l<Quoted string>l<int~ger>
l<real>ftruelfalselnul I

<lnteger>a·:= <digit> •••

<real>::=
C<l"teger>.C<lnteqer>lt.<lnte1er>}[eC+l-J<integer>]

<function>::= <expresslon>(C<exoression>l,<expression>J ••• J)

A function works like a call, except that d return vaf~e ls
exoected and is converted to the correspondinq command language
data type.

A local variable ls allocated in the stack frame of the
.command orocessor. Each variable is capable of possessing watues
of any data tyne.

The oosslhle 1ata types 3ret

integer
real
logical
string
address

(f lxed bln (35) >
(float decC1B))
(bit(!))
(char (256) varying'
(pointer, pointer)

These data tyoes are designed to accommodate all PL/I and Fortran
data type~ except camplex numbers. The c6nversions bet~een these
tyoes and PL/I types are given in the fol low~ng sectlo".

Page 7

A v1rlable ls defined by the appearance of lts <name> in a
<let> or <for>. Rec~use the com~and languaqe has no conc~pt of
multiple scooe~ of ~amPs anu no 1eclared attrlbutes, no
declarative statemP.nts are required. The tyoe of a variable is
the type of the v1fue it currently possesses.

r r an entry definition specifies no parameters, the
argu!Tlents, if any, are passPd without conversion.

T~ the entry definition specifies a sin~le one-dimensional
array, the arguments are converted to the data type of the. array
and e~ch 3rgument ls transformed into an element of the array.
The lower bound of the array de~crlotor is set to 1 and the uoper
~ourrl is set to n, where n is the number of arguments given.
Uslrg this ~cheme, a PL/I procedure can easily receive 3 variable
number of arguments while remai~ing wlt~ln the standard language.

If t~e e~try def inltlon ~oecif ies one or more scalar
arguments, each arqument is converted to the aata type of its
correspondinq parameter. If an argument ls a reference to a
loc3I varlabl-e, it is P"l:>sed by-reference; otherwise, it is
pass'i'd tJy-value. When an argument is passed by-reference, it ls
co~vPrted to conform to the data tyoe of the corresponding
oarameter, anrl upon retu~n it ls co~verted hack to the original
type of the arqument.

If the expected dat~ type of a cal led orocedure is any kind
of PL/I arithmetic uata, both integer and real can be converted
to trP expected type. "ln r~turn, al I PL/I arithmetic types,
excemt co!TlpJex, can be converte'1 either to integer or real.
Large decimal values are rounded and a warning produced.

Aggregate values cannot be Passed or received.

Pl/I blt strings, other than bitC1),
character strin~s.

are convlO!·r ted to

Fxcesslvely long (>256) character strlnqs are truncated with
a wi'!rn inq.

tlecnuse th~ command I anguaqe stores addres::.es as polnter
palrs, it can hold po.i.nter, offset, label, entry, format, file,
and area values as address value~.

P agE> B MTB-05J

Appendix A

~ach invocation of the corrmand oroce~sor establishes a new
lnstar"lce of three ·I/O s•itches: command_inout, user_lnput, and
abbrev. These three swlt<:hes are attached in the fol lowinq
m3 nn~r.

command_inputs

If this invocatloh of the command processor received one or
more arquments, the f lrst argument· ldent if ies the file to
which command_input is attached. If the .. first argument is
of the form

swltch(<identlfier>)

a synonym
<identifier>.

this form, ·it
is attached

the command lnnut is attached as
switch wh~se switch name is
argument ls given but is not of
pathname, and command_ input
identified by that pathname.

for the I/O
If the first

must be a
to the flle

If no arguments are given, command_.i.np'-Jt is attached as a
s.vnonym for the orev lous instance of command_input. If no
previous instance exists, lt ls attached as a synony~ for
user_inout.

user_input:

user_lnput is attached as a synonym for
Instance of user_:lnput. If this ls the first
is attached as a synonym for user_io.

abbrev 1

tne previous
instance, it

3bbrev ls attached as 3 synonym for the previous instance of
abbrev. If this is the first instance it 1-s not attached.

