
~ultlcs Technical Bulletin MTB- 070

To: Distribution

From: Steve Herbst

Subject: New mall commands

Date: May 1, 1974

OVERVIEW

This document Is about a mall command called "mall" and a
mail command called "send_mail". Both use the same ring 1
mailbox. The first, to be Installed soon, sl.mulates the current
mail command. In addition, It offers extended mailbox protection
and some upwards-compatible improvements. The second uses a
different command Interface and can accomodate features that mail
cannot.

The new mall command will have a subrout·ine-callable entry
mail_ enabling .programs to send mail. In time, there will be a
true subroutine send_mail_ and another called read_mall_. Both
are described near the end of this MTB. A new command, send_mail,
w i 11 do a 11 its work using send_ma I l_. Subsequent 1 y, the ma 11
command with some new options will use read_mail_ to read. It may
eventually use send_mall_ to send.

A secure mail command calls ring 1 primitives that
all user access to a message segment in terms
extended-access bits. "mall" is concerned with the first
which enable a user to:

(add) a
(delete) d
(read) r
(own) o

(status) s

add a message
delete any m~ssage
read any message
read or delete only a message
that he himself sent
find out how many messages
are In the mailbox

define
of 7
five,

In the proposed Implementations, mail and send_message use the
same mailbox. A bit associated with each message says whether
that message was put there by mail or by send_message. The
remaining two extended-access bits affect whether send_message
can send a wakeup when it adds a message. The bits are:

(wakeup) w
Cu rgent) u

wakeups of normal urgency allowed
urgent wakeups allowed

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB- 070

The sender name and the date and time sent are secure. They
are gotten automatically by the ring 1 primitive that adds
messages, and cannot be read unless the message can be read.

A mailbox is any message segment whose name ends In ".mbx".
The default mailbox resides in the owner's default working
directory with the name "(Person>.mbx". The acl 'son a mailbox
pertain equally to all kinds of messages.

~ PRIMIT! YES

Gate entries mailbox_$entry called by mail programs are
analogous to gate entries message_segment_$entry for the queue
message segment factl ity.

Entries mbx_mseg__$entry in the ring 1 primitive facility
which dispatches all work to be done are analogous to entries
queue_mseg_$entry for queue message segments. Like the latter
entries, they require that a message segment has "rew" access
with brackets [1,1,1] on all acl 's and has a minlmum default acl
for *.SysDaemon~*. CA newly created message segment automatically
gets 11 adros 11 <Person>.<Project>.•.) Unlike ·the latter entries,
they

1) require the suffix ".mbx" on a mailbox, as opposed to
".ms 11 on a queue message segment. Allll\

2) recognize the 11w11 and "u" extended access bits.

3) add an acl giving "a" extended access to *·*·*·

4) assume the first portion of each message to contain
coded information, and perform various checks
concerning the type of message that is being processed.

The message pointer points to a structure defined by an
include file:

/*BEGIN Mailbox Message Include File•/

dcl mail_format_ptr pointer aligned;

dcl 1 mai l_format aligned based (mat l_format_ptr),
2 version fixed blnC17) al lgned,
2 sent_from charC32) aligned,

/* a terminal ID, program name,
Installation name, etc. */

2 switches aligned,
3 wakeup bit(l) unaligned,
3 urgent bit(l) unaligned,
3 has_been_read bit(l) unaligned, ""'
3 others bit(69) unaligned,

2 text char(4096) aligned;

JvlTB-070 Page 3

/* END Mailbox Message Include File*/

5) check the text of every message that is added for
illegal ASCII characters and replace these with ¢177's.

mbx_mseg_ then calls the same ring 1 procedures that queue_mseg_
calls.

FIRST IMPLEMENTATION .Q.E "mall"

Because most users and many exec_coms rely on the current
interfaces to mail and send_message, the new mail command should
work the same as the old one. The following differences are
11ecessary:

1) differences related to mailbox_$entries.
For example, a new mailbox 11 <Person>.mbx 11 replaces the
old "mailbox". When the new mail command is installed,
the first time a user types "mail", a default mailbox
is created. From this moment on, mail is directed to
the new mailbox. Typing 11 old_mail" prints the remaining
contents of "mailbox". When a user tries to send mail
to someone who has on 1 y a "ma i 1 box", ma 11 ca 11 s
old_mail$old passing a pointer to its argument 1 ist.
old_mail Is just the old mail command with a few
modifications. mail types "Input:" whereas old_mail
types "Input".

2) Only the number of messages and not the number of lines
is printed at the top when reading mail.

3) If someone has 11 0 11 extended access but no "r" extended
access, mall tells him about his own messages in the
ma i 1 box. It says, "Your messages: 11 , or "You have no
messages In <path>." This feature is useful when a
mailbox is protected in ring 1. However, 11 0 11 access
also gives someone the right to delete his own
messages. Many people would prefer not to have mail
removed from their mailboxes, so 11 0 11 has been left off
the default acl for *·*·*·

4) A spec i a 1 co.mmand is needed to de 1 ete the mail box
because it is in ring 1. Commands are also needed to
create a mailbox with a name other than the default
name, to manipulate access and to list access. The
entries 11mbcr 11 , "mbdl", "mbsa", "mbda" and "mbla"
belong i r. a progrd111 ca 11 ed (tentative 1 y)
"extended_access_commands". See MTB-064.

(One more difference which is not necessary:)

5) Messages print from earliest to latest instead of the

Page 4 MTB-070

other way around.

OVERHEAD QE ~ IMPLEMENTATION

Calls into ring 1 make up the added overhead in mail. These
are as follows:

1) one call into ring 1 to open the mailbox.

The segment is initiated in ring 1. The ring 1
primitive keeps a pointer and passes an "index" to ring
4.

2) one call into ring 1 to get the message count.

See rJOTE below.

3) one call into ring 1 per message read.

Each call to mailbox_$read_index or
mailbox_$incremental_read_index returns only one
message (the first/last or the next/previous) so as not
to keep the message segment 1 ocked for a long ti me.

4) one call into ring 1 per message deleted.

5) one cal 1 into ring 1 per message added.

6) one call into ring 1 to close the mailbox.

This means terminating it In ring 1.

NOTE: 1) and 2) are saved in the case where there is no mail by a
call to hcs_$status_ to get the correct bit count of the
segment and by a calculation to determine whether all of
this is header. The primitives have to keep an accurate bit
count on the mailbox.

FUTURE I MPROVE1•1ENTS .IQ. "ma j 111

These are upwards-compatible extensions to mail.

1) Reverse option

11 -rev" tells mall to print messages from latest to
earliest.

2) Deleting single messages

1v1TB- 070 Page 5

The ring 1 entries read only one message at a time,
usually relative to the last message read. The mail
command, nevertheless, asks one question at the end and
deletes all the messages. To do this it uses an array
of message id's. Any one of these id's could be used to
delete a single message. If we want to delete only the
5th message, say, we should do so \''hi le mail still has
the array.

Implementation: The printed message header begins with
a number:

11 5) From: Sam.Spade 03/12/36 1435.2 mst Thu"

The final query "Delete?" accepts
answers:

the following

"yes" or "al 111

i.l. i .D.

"save i.l <path>"

or "save <path>"

3) Classes of messages

delete all messages
printed

delete the numbered
messages

save message in a segment
and query again

save all messages in a
segment and query again

We can define new types of messages at one bit per
classification. mail and send_message use the 11 wakeup 11

bit; mail prints only messages for which that bit is
off and print_message prints only those for which it is
on.

In the future, either program can make use of the
"has_been_read" bit to print each message the first
time only. mailbox_$read primitives should turn this
bit on. If a message is not deleted after it is read,
mail never prints the message again unless the user
specifies "mail -all". ·

4) Forwarding

One way to forward mail is simply to create a link to
another mailbox. A drawback to this method is that it
does not inform the sender of what is happening and
why.

Implementation: A bit in the message segment header is
called the forwarding bit. When this bit is on Cit is

Page 6 MTB- 070

turned on by a command), mail looks In a segment called
"<Person>.fwd" in the mailbox owner's directory. The
first 168 characters of this segment are a path name
for forwarding. The rest is a message of explanation,
telling the sender where his mail is being forwarded
and perhaps giving him a phone number or address where
the owner can be reached.

A more sophisticated use of <Person>.fwd has bits at
the beginning of the segment telling:

whether to forward mail
whether to save wakeup messages
whether to forward wakeup messages
whether to notify the sender

A less sophisticated method eliminates <Person>. fwd
altogether and does not forward. The forwarding bit in
this case says print a standard explanation: "<Person>
will not be inspecting his mail."

Mail can query the sender as to whether in fact he
wants his mail forwarded, and as to whether he wants it
put in the intended mailbox anyway.

5) Subroutine entry "mall_"

The call:

call mail_Cname, project, pointer, length, code);

sends one piece of mail to one user. A Daemon or
absentee processor can use this call to send a
notification when it completes a particular task. As
with the mail command, length cannot exceed 36864 bits
or 1 page. mail_ is an entry in "mail".

6) Reading mail by sender and so forth

Various data returned by the primitives or residing in
the info structure mail_format can be used to select
mail for printing. The following options ought to be
available when reading mail:

-from
-name
-project
-type
-date
-time

-len.r;th

sender ID
Person only
project only
sent_from ID (in mail_format)
on or before date
at or before time on given
date or current date
up to number of characters

MTB- 070 Page 7

To implement these options, mail calls read_mail_,
which takes similar options. read_mail_ keeps calling
read primitives until it has a message that meets its
specifications. mail prints that message, keeps its id
in the array for deletion, and calls reaJ_mail_ again •

.IliE "send ma j l" CQMMAtJD

"send_ma i 1 11 is a command that sends mail. It is not intended
to replace "mail" but to offer features that mail cannot offer
because of Incompatibility. (For example mail's ".NL" to send a
message is incompatible with edrn's ".NL'' to edit a messar;e.) The
user types:

s end_ma i l a r r-,.,l • • • a r gn

where argi is either:

a destination of the form Person.Project
or just Person (see 4 below)
Call destinations are optional -- see 3 below)

one of the following control areuments:

-pn

-1 is t

-dl

the next argument is the path name of a
segment to be sent. If this option is not
used, send~nail takes its input from the
console.

see below

see below

The user will still type "mail" to read mail.

SPECIAL FEATURES OE "send mail"

1) Mailing list option

The control argument "-list" tells send_mail that the
next argument is the relative or absolute path name of
a mailing list. The mailing list is a sequence of
Person.Project's separated by spaces or newlines. If
send_mail is unable to send to somebody on the list, it
prints a suitable message.

2) Delete option

The control argument 11 -dl" when a path is given tells

Page 8 MTB- 070

send_mail to delete the input segment after it has been
sent successfully to all destinations. Use of this
option is preferable to an explicit delete statement in
an exec corn because the segment is not deleted if for
some reason it could not be sent.

3) Ca 11 i ng edm

~Jhen send_mail responds with "Input", it is in edrn edit
mode. All of edm's operations are available in editing.
For example~ it is possible to write the edited message
into a segment by saying "w (path>". Write without a
path name is, as usual, not allowed. In order to send
the edited message, there is a new command:

z artl ••• argn

where argj_ is a destination. z with
the message to the destinations
send_rna i 1 command 1 i ne. Si nee z
conversely, no destination need
send_mail command 1 ine.

no arguments sends
specified in the
takes arguments,

be specified in the

q quits out of editing and out of send_mail.

Implementation: send_mail calls a new entry edm_, which
may or may not be part of edm. The call is:

where:

call edm_Cinput_ptr, input_length,
w_entry, q_entry, hadcom_entry);

input_ptr and input_length define a piece of storage
to be edited. send_mail does not use these.

w_entry is an entry which edm_ calls when it gets
the command "w <path>", passing a pointer, a length
and a path name.

q_entry is an entry which edm_ calls when it gets a
quit request.

badcom_entry is called whenever edm gets a command
which it does not recognize, for example, the z
command. edm_ passes the name of the command and a
pointer and leneth defining the edited text. The
code in send_rnail that handles a z command tries to
put the text into 1 page of automatic storage. lf
the text is too big, it issues a complaint and
returns to edm_.

The following is a sample edit run:

MTB-070

send_mail Sam.Spade
Input

Page 9

''lr. Spade, I desperately need some assistance.
A certain valuble relic has been lost to me and
I am in dangerous competition with a man who,
it appears, will stop at nothing to get it into
his own hands • .
Edit
1 valuble
A certain valuble relic has been lost to me and
s/valuble/valuable/
A certain valuable relic has been lost to me and
b

Input
I vdll call you at your office at 9:00.

A Client

Edit
z Miles.Archer /*does not send to Spade*/
1 his own hands
his own hands.
a Tell me if one million dollars is too much.
w corr3/12/36
z /* does not send to Archer */
q

r 1230 3.079 5.700 73

4) Sending by name only

send mail needs a table in which to look up the
Person.Project of a user given only the user's name. It
would of course be nice for users to add entries freely
to such a table, designating as a lookup name not only
their registered last name but any nicknarne, special
interest group or subsystem title by which they desire
to gather mail. Likewise, a user should have the option
of being unlisted in the table.

The drawbacks of a user-maintained table are:

1) send_mail would need
encountered multiple
name.

a special query when it
entries with the same lookup

2) the table would quickly grow to enormous size.

3) everybody should have add and delete permission on
their own entries and only read on the others,
therefore the table would end up being a message

Page lll

se~nent with extended access.

A viable alternative to the user-maintained table is a
system-created table:

>system_control_dir>mail_table

made from the URF (User Registration File, which
includes PNT entries, users who are no longer
registered, ARPANET users, etc.) and residlng in ring
4 with r access to *·*·*· Whenever the URF is updated,
a new mail table is made. Each user is allowed only t\'oJO
lookup names, his registered last name and his alias,
both of which are unique to him. His entry in
mail_table gives a single default mailbox in some
directory. A bit in the URF keeps an entry from
appearing in mail_table.

~Jhen send_rnail sees a destination argument without a
period, it interprets the argument as a lookup name. If
it finds the corresponding entry in mail_table, it
sends the message without further ado.

~Al.ill. .B.EAJl SUBROUTINES

\Jhen send_ma i l I edm_ gets a z command,
111ore ca 11 s to send_ma i 1 :

it dispatches one or

call send~nail_Cname, project, ptr, length,
option_ptr, code);

If project is blank, send_mail_ looks up name in
Then it sends messag~ char (length I 9) based (ptr),
options in an optional structure based on option_ptr.
describe:

whether to forward

mail_table.
governed by
The options

whether to send a wakeup, what kind, and how it should
be handled (so send_messaY,e can use send_mail_)

how to treat illegal ASCII

what version of message to send

whettu~r to save an unsent message

A cal 1 to read~nai 1_ reads one message, always the "next"
111cssage, of which it keeps track using an internal static messa~e
id and flag. The call is:

HTB-070

ca 11 read_rna i 1_(path, pt r, 1 ength,
option_ptr, code);

Par:e 11

path is al so kept in internal static, and rend_ma i l r;ets an
index the first time it opens the mailbox. When there are no more
rnessages to read, read_mail_ returns an error code.

A structure based on option_ptr contains information ahout:

the order in which to read

specifications for a message, including name, date,
etc. options and the various bits in mail format

whether to delete and whether to query

