
MULTICS TECHNICAL BULLETIN HT B - 080 

TOI 01strlbut1on 

FROHI Gary c. Dixon 

DATE& Hay 28, 1974 

SUBJECT& Creating Special-Purpose Translators 

Of ten, system programmers must def 1,e a new, spa c1al •purpose 
I anguage and wrlte a comp! I er, interpreter, or other form of 
translator for that language. Usually, such languages are usedl 
to specif v the cont en ts of, or to man lpu I ate 1 tems ln, a 
particular data base; to generate ALM ::ode; or to specl fy some 
process to be performed. Examples of such languages ln Hultlcs 
1nctude& exec_com control tanguagel runoff control language; 
bind control language; the input language for set_search_rules; 
error_table_ language; IO Daemon parameter language; proJect 
master f 11e language; IO complier language; etc. 

Languages 11 ke exec_com, bind contro I and run off cont ro I 
language are used heavl IV and therefore deserve speclal•purpose 
translators which are optimized for peak performance. However, 
most special-purpose languages are used infrequently as part of 
some maintenance or development process. The translators for 
s uc h · I i g ht I v- used I an gu ages s ho u I d b e ~ u 1 ck to wr it e , s i mp I e t o 
understand and maintain, and easy to extend, rather than being 
optimized for high performance. 

Hultlcs should provide a tool whlcn creates a translator 
from a simple speclf icatlon of the svntaic and semant lcs of the 
tanguage to be translated. Suc:h a tool would 11ake it easter to 
write special-purpose, lightly-used trcmslators. In addition, 
the use of a slngle trans•ator generation tool would guarantee 
that all of the translators would have the same structure anc 
would share the -same method of processing their input language. 
Instead of 20 translators with 20 different methods of language 
specification and 20 uniQue translation algorlth11s, there would 
be 20 trans I a tors whlch trans I ate I anguages de fined in a common 
language definition language and which share a common language 
translation algorithm. This would greatly simptJ.fv the task of 
understanding and maintaining all of t~e translators which seem 
to be proliferating 1n Hui tics at an a5arm1ng rate. 

HIJ•s course 6.251, "Programming Systems .. , presented such a 
language def1n1tlon language called the reduction language. In 
this language, the phrases ln the language to be translated are 
defined ln Backus-Naur Form CBNF). A set of action routines are 
associated wlth each of the defined phrases. These action 
routines assign some semantic meaning to input strings which 
match the defined phase. The reduction language ls easy to use, 
can define a large class of languages, and can be complied into 
an ef ficlent, table-driven translator. 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 



HULTICS TECHNICAL BULLETIN HT.B - 080 

To test out the theoretical be.,efUs of a translator 
co11pl ler, I have created a compi I er for the 6.251 reduct ion 
language. As input, thls reductlon_compiler accepts an ASCII 
segment contalnlng a set of reductions defining the language to 
be transa"ated, and a set of PL/I subroutines Mhich are the act lon 
routines referenced bV those reductions. The complier converts 
the reductions into Pl/I declarations for the tables which drive 
a pre-coded translation subroutine. The complier outputs the 
table declarations, the translation subroutine, and the action 
routines into a PL.II source segment, whlch can then be complied. 

I found slgn1flcant benefits in the code generated bV the 
reductlon_compller. First, 1 t ls· easier and faster to generate a 
translator with the reduction_complter than to generate an 
equivalent translator by hand. The reduct ion_compi ler was used 
to bootstrap itself, and the total time for coding and 
bootstrapping Mas about tMo man-days. Tom Vanvleck used the 
reduction_complter to create a new version of cv_pmf in aoout one 
man-day. Ross Klinger used the reductJon_comp11er to create the 
tape_in/tape_out command, the translation portion of which took 
about one man-day to code. 

Second, the very nature of the reduct ion language forces the 
~rcg~am~er to separate the definition of language syntax from the 
coding of action routines. This separation In the code forces a 
benef icla I separat lon ln the mind of the programmer in a way 
which si11pHfies the process of defining the translator. The 
separation also makes the translator easier to understand for 
other programmers who must maintain or eJCtend the translator at a 
later date. 

Third, an important side effect :>f the separation between 
syntax analysis and actlon routines ls the ease of debugging 
reduction-generated translators. Because the translation code ls 
coiwptler-generated, lt ls error-free, th"s eliminating what ts 
usually an important source of bugs in most translators. Also, 
the bugs which do appear are isolated fram one another and are 
easy to i dent 1 f Y• In general , they are caused by a bad re duct ion 
statement which causes one phrase ln the language being 
translated to be reJ ected by the translator; or they are caused 
by a bad act ion routine which causes onlt one or a few phrases to 
be translated improperly. 

Fourth, the structure of reduction-generated translators 
makes is easy to create one action royf lne that can be used in 
several different translators. For eKample, I have created an 
error 11essage action routine which prints a complier-style error 
111essage from a table of messages. The subroutine substitutes 
values into the error message text, reports the error severity 
and line number, and prints the statement or 11ne which Mas in 
error. This ease of sharing useful routines could facilitate the 
development of a library of general-purpose action routines whlch 
would further simplify the creation of a compiler, while at the 



MULTICS TECHNICAL BULLETIN HTB - 080 

same time easing the maintenance problem by promoting the use of 
co111111on code. 

Finally, since the translation is a table-driven process 
which uses an efficient translation algorithm, translator 
performance J.s competitive with the most carefully hand-coded 
translators. VanVleck•s new version of cv_pmf operates aoout 30X 
faster than the lnstal led version. Some of this performance 
improvement ls due to the use of EIS instructions in the 
reductlon_compJ.ler and its associated garsing routine, but I 
believe the tab.le-driven translation process accounts for at 
least a 10X speed-up in the translation. 

Given these benefits, I feel that it would be useful to 
install the reductlon_compiler or a s.imilar tool. I would 
appreciate your comments on this proposed installation. 

If you are interested in detaJ.ted speclflcations for the 
reduction language which is input to the reductlon_compl ler, or 
for the lex_strlng_ lexical analyzer which ls an adJunct of the 
reductlon_compiler, you can dprlnt the fol lowing runoff segments. 

>udd>pdo>gd>doc>p>reductlon_compller.sps.runoff 
>udd>pdo>gd>doc>p>lex_strlng_.sps.runoff 
>udd>pdo>gd>doc>p>lex_error_.sps.runof f 

If you want to try out the reductlon_co11pl ler, you 111111 need the 
include segments J.n 

>udd>pdo>gd>installed_source 

and the obJect programs in 

>udd>pdo>gd>obJect 


