
MULTICS TECHNICAL BULLETIN MTB-187

To:
From:
Oater
SubJect:

Olstrlbution
M. Weaver
Aor11 23, 1975
Chan~es to ObJect Segment Format

This MTB describes proposed changes to the standard obJect
segment format that wil J make use of entry parameter d~scriptors
more efficient, allow for the maximum efflclency in prellnklng
and facllltate certaln functions of system lnltlalizatlon. It ls
related to MTB-16g about the prooosed oreJlnklng scheme.
Although the changes are not hard to implement, they affect many
other parts of the system and many programs w11J have to be at
!east recompiled to work with the new format. These changes wlJ1
also. affect some users. This MTB will explain the changes and
describe thelr effects on various system orograms. AIJ of these
changes can be Incorporated lnto the system wit~out a flag day.
MPM documentation descrioing the changed structures ls attached,
with a "•" before each new item.

THE CHANGES

There are four basic changes being orooosed. These ares

t> ootlonaJRy moving "static" storage from the linkage
section to a section of its own (and hence reformatting
the obJect map),

2) changing the location of the entry bound indicator for
gates from an arbJtrarv convention In the deflnltion
section to a standard In the obJect map,

3} adding the capability for teKt embedded linkage pairs
{prlmarlly for system lnltlaJlzation) and

4) moving entry parameter descriptor pointers from the
definition section to the text section.

The ob)ect segment format resulting from the f lrst three changes
ls an alternative to, not a repJacement for, the current standard
ob)ect segment format. Many of these changes w!J I normally be
used only by system programs or user programs with special needs.
However, the entry sequence change and the new version of the
obJect map are reo,acements. The changes are descrlbed below ln
more detail.

Mu1tlcs Project Internal working documentation. Not to be
reproduced or distributed outside the Multics ProJect.

MTB-187 page 2

SEPARATING THt STATIC SECTION

Currently the Internal stat!c "section" of an obJect segment
ls ln th~ linkage section between the Jinkage header and the
links. The intention was to put all of the obJect segment•s
unshared (impure) data in one section and to copy that sectlon at
runtime (into the combined linkage segment). Both statlc and
1 lnks faJJ Into this category and both are addressed vla a
pointer to the copy of the Uinkage section. Now, however, there
ls a proposed prellnklng scheme which snaps the llnks in some
procedures at system initlalization time, thus reducing t~e
overhead of dynamic linking and saving pages lf the links are
shared. To galn the most efficiency from prellnklng, only the
internaJ static of these programs ls copied at runtime. Because
these Jinks ~nd static will reside ln two different segments at
runtime, they have to be addressed independently. Thls is all
made simpler if static ls considered a distinct section, separate
from the llnks. It wll 1 have its own entry in the ob]ect map
(see attached descrlotlon of the proposed obJect map) and will
normally be located between the linkage and symbol sections. The
mechanism for maklng thls sectlon usable by the process ls
explained In MTR-169. Adding a new section means adding two
other features for consistency. One ls a new deflnltlon class,
4, soeclfying a segdef ln a separate section. The other ls a new
sectlon va1ue for the self-referencing llnks, types 1 and 5. The
value ls 3 and ls represented symbolically as •statlc. In order ~

to avoid changlng the symbol section by adding another relocation
structure, seoarate static sections are restricted to having only
absolute re1ocatlon.

This change ls not re!evant for most user programs because
there ls less overhead when the linkage section and static are
combined (one template to copy, one pointer register to
r~ference>. so having separate static wlll be optlonat. Most
system programs wl~ 1 be recomolled to have lt for preiinking. In
addition. programs that know about obJect segme~t formats such as
the compl1ers, the blnder, the linker, stu_, ob)ect_lnfo_ and all
its ca11ers, etc •• must be modified to handle tne separate
stat le. More detailed information about the changes Involved ls
given later in this MTB.

MOVING THE ENTRY BOUND INDICATOR

Having an indicator wlthln a gate obJect segment of where
the entry transfer vector ends facilitates manlpuJatlon of gates.
8ecause aJJ gates are ln aim, onDy that Janguage ls affected.
Currently, by convention, one lnc~udes the segdef "tv_end'" at the
end of the transfer vector, which causes a definition to be
constructed. It would be much less awkward to have this value in
the new version of the ob)ect map now that there ls one anyway.
There ls a new aim pseudo-op, entrybound, to delimit the transfer
vector. Non hardcore gates do not yet have their entry bounds
set ln their branches, wnich means that they do not use tv_end

MTS-187 page 3

dnd are not affected vet by thls change. Hardcore gates must
continue to use tv end until the MST generator ls changed to
retain ob)ect maos, slnce the entry bounds used are picked up
from the "obJect" segments during system inltializatlon.

TEXT EMBEDDED LINKS

With thls change a threaued Hst of Hnkage pairs would be
allowed in the text section. Each pair wound ~ook like a normal
1lnk except that the first 18 bits in each pair would point to
the next oair instead of to the !lnkage section header, with the
first palr pointed to by the ob)ect map. The original motlvatlon
behind this proposal was to simplify system lnitiallzatlon.
There are alreadv several hardcore programs that have pointers ln
the text filled ln by specla~ lnitlabization programs. This
scheme would ~I low the pointers to be filled in by the system
oreJlnking mechanism. Moreover, with pre]inklng of the user ring
system as weJJ, te~t embeaded links couJd be used in other
programs (such as Pl/I progra~s) to e1 lminate linkage sections
altogether and to prevent unllnklng. For now, however, only aim
wilJ produce them. These Jlnks would comprise a logically
Independent section since they are pointed to by the ob)ect map.
The reason for not having them actually be together as a separate
section ls so th~t each link can be placed in the text near where
lt ls usea; this would minimize paging. These links would be
snapped at system lnltlaJ ization time. It ls not intended that
the tinker be changed to handle thls unusual format; it could be
done falrJy easlDy but the obJect segments involved wou]d have to
be either moalfiable or copied on write. AJthough ln practice
these Jinks would probabJy not be faulted on, they wlll start out
as Jinkfau1ts (fault tag 2> In case lt is decided In the future
to have the linker handle them in some way, for example to snap
I Inks left unsnapped by the preJinker. It ls cJear that besides
the convenience, aB-Jowing text embedded Jinks would open up
severaJ research opportunities.

MOVING fNTRY DESCRIPTOR POINTERS

The current standard ob]ect segment format specifies that
the pointers to an entry•s parameter descriptors, if they exist,
be appended to the deflnltlon. At the time this was designed, lt
was not clear exactly how and when they would be usea. So far
they are used only by get_entry_arg_descs_, which ls called by
trace and trace stack. Now, however, the command processor ls
belng changed to look at the entry parameter descriptors and lt
has only a Pointer to the entry seQuence In the text. It does
not want to go to t~e troub~e of looking at the definition,
especiaJty since the parameter descriptor pointers are JoglcalJy
more a part of the entry seQuence than of the definition. The
command processor wii J be the heaviest user of the descriptor
Pointers so it ls worthwhile to optimize what It does. The

MT8-187 page ~

expense of looking at the deflnltion involves at least touching ~
an extra page in many cases, since the deflnltlon would otherwise
not be p~ged ln after the first Invocation (or at alJ under
pre1lnklng for system commands), and getting a pointer to the
definition section from the ~lnkaJe section copy whose location
ls ln the LOT. Moreover with the Jlnker ln the user rlng, the
ready-made definition section oolnter cannot be guaranteed.
Thus, to be safe, the command processor wou~d have to cal I Into
ring 0 to qet the bit count and then caJl ob)ect_lnfo_ Just to
get a pointer to the deflnltlon section. Getting everything from
the entry sequence ls clearly preferable.

The other users and potential users of the descriptor
pointers include get_entry_arg_descs_, the binder and runtime
parameter checking, which are not as heavl ly used as the command
processor (note that with prelinklng, parameter checking wltJ not
be performed for system-called subroutines except perhaps at
oreJlnklng time) and which will not have trouble with the new
format. They elt~er start out with the entry pointer or can
get it very QuickJy from the def lnition. Paging should not be
slgnlflcantJy lncreasea necause of this change if at al1.

The actual changes being proposed are to add some more entry
flags to the word containing the definition offset, to put a
relative pointer to the descriptor pointer array in the word
preceding the flags, and to move the pointer array from the
definition to the text section. The revised MPM description ls
attached. The flags are defined so that one can determine the ""'
exact parameter setup from the entry seQuence. In order to telJ
the PL/I compiler when to turn on the variable flag, a new
option, variable, wll I be available for the procedure and entry
statements.

EFFECTS OF OBJECT SEGMENT CHANGES

listed beJow are most of the system routines that have to be
changed to handle the new ob1ect segment format, a1ong with an
explanation of the changes and how they can be made compatibly.

The assembler needs severa1 ne~ pseudo-ops and extensions to
some old ones. The new ones are:

1> I lnk_in text <segment_name>IIentrynamel+exp,mod
indicates that a text-embedded llnk should be Inserted ln
the text at the current location.

2> entrybound
inaicates that the entrybound fleJd ln the object map should
be set to the current location.

The extensions ares ~

MTB-187 page 5

1> The Join pseudo-op wi1J also accept /static/. If and
only lf this ls specified a separ~te static section ls
created. Specifying both Jotn /llnk/ and Join /static/ in
the same program ls not aJEowed. Oeflnltlons for segdefs
defined in static are given the deflnltlon cJass 4.

2> <•statlc> wll1 be accepted as a legaJ segment name both
ln the segment field of addresses and by the link pseudo-op.
It w111 cause the generation of a link of type 1 or 5 to the
static section. Thls specification ls a1so not al mowed in
the same program with a Joln /Jink/ statement.

3) The push pseudo-op will cause a transfer to a new push
operator if a seoarate static section ls usea so that the
static pointer can be set. aim programmers who use separate
static must take care to reference their own static
locations via a static polnter, which the push ooerator will
return at pr6J28, instead of via the Jlnkage pointer, pr4.
If desired, a command can be provided to check for
references to static via pr4.

The PL/I compiler wilt create a separate static section in
the obJect segment if the -separate_statlc (-ss> controi argument
ls given. In this case, Internal static variabJes are referenced
vla the static pointer, obtained by the entry operator, Instead
of vla the Jlnkage pointer. <Most users wllJ want to keep their
static and itnkage combined to reduce overhead.) The entry
oarameter descrlptor pointers w111 be moved from the deflnltlon
to the entry sequence in the text section.

Alternate operators wlll be provided for each PL/I entry
operator which witJ be Identical except that the static pointer
~111 be obtained and stored at pr6J28. The current entry
operators will continue to be used when a separate static section
ls not generated. The aim entry operator wlJI be changed to
always obtain the static pointer and store it at or6128. A new
aim operator would have meant another operator pointer the the
cramped stack header.

The binder must be able to handle al i three oblect segment
formats, including the one used before the current standard
format. The conversion of the system for pre1lnklng will be
slmp11fied if separate static components can be bound with
combined static components, slnce lt ls unlikely that all
components of some bound segments wlll be replaced
simultaneously. Howe~er~ a bound segment wi1! not have a
separate static section unless each component has one; to have

MTB-187 page o

Internal static for some components In the linkage section and ~
for others in the static section would add unnecessary complexity
~nd the linkage section would not be shared anyway. When there
3re mixed components, the separate static sections w11J be put ln
the llnkage section and relocated with respect to the beginning
of the 11 nkage sect lo"l; no record w 11 J be kept in the bound
segment of which static sections were originally separate.
However lf a11 of the components that have static sectlons ~ave
separate ones, the bound segment ltsel f wiJ1 have a separate
static section.

The blnder•s ability to create separate static sections has
one maJor effect that mav cause some bound segments to keep their
static in the Jlnkage section. That ls that the binder cannot
ore!ink to segdefs in a separate static. Currently when one
component references segdefs ln another component•s static, the
binder takes advantage of the fact that the static ls combined
with the linkage section by changing only an offset and an
indirection to convert an lnstructlon referencing through a Jink
In one component to one referencing the static of another
component. When the static section ls no longer combined with
the linkage section, that trick wlJJ no longer work. There ls no
Plan to reserve a pointer register for the static pointer and to
ensure that it is valld before every link reference so that the
binder can substitute it fo~ the linkage sectlon,polnter. There
are thus two choices for bound segments to be prellnked with the
system that have seqdef s in static. These are: """\

1> Do not recompile with separate st~tic. Al~ references to
the bound segment•s statlc segdefs from within the bound
segment wlJI continue to be dlrect references (using pr~).
However, the links cannot be shared so each user of the
bound segment w111 have his/her own copy of the entire
Jlnkage section. Of course the links wl11 st111 be
presnaoped.

2) Recomoile all components with separate static so that the
bound segment has a separate statlc section. A11 reference~

to the bound segment•s static segdefs from within the bound
segment wl11 be indirect references through Jinks. However
the links w1J1 be oresnapped and shared.

The structure that obJect_info_ f111s In must be changed to
reflect the new obJect map Information. See the attached writeup
for a description of the new structure; the additional items are
starred. It ls important to be able to handle both structure
declarations since the callers of obJect_info_ cannot be changed
al1 at once. To distinguish the structures 9 obJect_lnfo_ will
rely on the version number which, un1lke the other structur~
items, must be filled ln by tne ~211.~C· The version described
here is number 2· Because many callers do not vet fll I In the
number. any other number ls considered version 1 for the time

MTB-187 page 7

belng and ln that case tha current structure w11J be filled in.
UnJess some of the new items are relevant, there ls no way to
teJ1 from the structure whether the object segment has a version
1 or a version 2 obJect map, out that knowledge should not be
nee essary.

n couple of t~e ltems could use further explanation. The
static pointer ls always meaningful. If the segment does not
have a separate section, the static oointer points to the actual
beginning of the static region within the linkage section. If
there is no static section, l.e., it ls zero length, the static
pointer ls nulJ. caJl_deJimlter has been renamed entry_bound to
correspond with the obJect map. It ls not filled ln unt~ss it ls
nonzero ln the obJect map slnce ob)ect_info_$brlef should not
search the deflnltlons of al~ aim segments tor tv_end, which only
hardcore gates have.

There ls no wav to make the deslred Include flle changes
compatibly for everyone. Currently there are two Include flies
with the same structu~e name, one automatic and one based. It ls
better to have one include file and for those who want a
different storage class to use the .. Jike .. attribute; incomplete
structures oml tt Ing I eve! 1 are to be avoided. So that no one
need change references to the structure, the best solution seems
to be to change the structure name in the inc1ude file and to
reQulre everyone to add a structure declaration for the old name
using the .. like" attrlbute. The attached MPM dec1aratlon ls the
same as the new include file. (Automatic variables don•t get
allocated if th~y are not referenced unless ·a table ls produced.>

There are about 25 svs t em procedures that ca I 1 obJ ect_ ln f o_.
These a11 have to be changed to use the new structure. Many wlll
need little more than recompll~tion with the new
oblect_lnfo_.lncJ.plt; ali except for the binder and the tinker
should need only mlnor changes.

Besides changes in calling obJect_lnfo_, decode_deflnltlon_
needs to recognize the new definition class 4 for static.

1.2!:.!!L.11D.11-1.n1~L

Besldes changes ln cal Jing obJect_lnfo_, form_llnk_lnfo_
torlnt_Jink_lnfo) needs to know about both the new definition
class and the new value C4 statlc> for sel f-referenclng Jinks.

The command processor will look only in the text for entry
parameter descriptors. If it finds "them, it will create
descriptors for the argument !1st it builds lf all the parameters
are character strings.

MTS-187 page 6

Thls must be changed to look at the entry seQuence for the
parameter descriptor Pointers. If they are not found ln the
text, the entry•s definition must be checked.

EFFECTS OF HAVING SEPARATE STATIC AT RUNTIME

The procedures Jlsted be~ow are not interested in the ob]ect
segment changes the~selves as much as in the effects of having
static separate from the 1 lnkage section at runtime and accessed
via the ISOT <Internal Static Offset Tablel rather than the LOT
<Linkage Offset Table>.

The linker wilJ have the added responsibility of managing
the ISOT. Of course lt aJso has to know about separate static,
class 4 definitions and se1 f-referencing Jinks to •static.

stu wlll sometimes need the static pointer to access a
segment•s internal static variables. It seems preferable for
stu_ to obtain the pointer Itself than to add a new entrypoint
for each of the five entryooints that might be interested in it.
This would aJso save changing the 10 or so callers. To isolate
th• cases where a separate Pointer is needed, a new code will be
used in the svmbo1 table to indicate that a variable ls in
separate static. When the statlc pointer ls needed, stu_ wl11
obtaln it from t~e !SOT. The installation of this must be
carefutlv arranged to occur after the ISOT management ls
lnstal1ed but before there are any oblect segments with separate
statlc.

debug needs a new segment IO, &L, for lnterna1 static. The
offset used should be the same as that ln the 1lstlng, so !l ls
eoulvalent ·to &I for static sections that are not separate.

The change to get_entry_arg_descs_ has a1ready been
described. interpret_ptr_ must call a different routine than
ls~cJs_ to determine whether the pointer points to someone•s
internal static.

Some of tnese, particularly find_1s_owner_ and is_cts_. need
to look at the ISOT as weJ I as the LOT. Perhaps tnere should be

MTB-187 page g

3 new procedure, is_static_, for use by lnterpret_ptr_. The
orograms that know about operators have to be updated.

Thls command must merge the ISOT with the LOT to be abSe to
dump the combined linkage sectlon continuously. The outout wllJ
change sl lghtly to accomodate separate static sections.

This suggested command would dumo only static sections for
users not Interested in Jinks. It may be more desirable when
~ost links have been prellnked.

Like dump_Js, this command must merqe the LOT and ISOT and
the output mav need to be modified sJlght1y.

MTB-187 page 10

The obJect map contalns Information which allows the various
sections of an ob)ect segment to be ~ocated. The map ltseJf can
be located immedlateJy before or lmmedlately after any one of the
five sectlons. Transiators normaJ~y p1ace lt Immediately after
the symboJ section. The last word of the segment must contain a
left-Justified 18-blt pointer (relative to the base of the obJect
segment> to the ob) ect map. The obJect map has the fol lowing
format:

declare 1 ob)ect_map aligned,
2 decD_vers fixed bin initt2>,
2 identifier char(8) a11gned,
2 text_reJp bitt18> unallgned,
2 text_Jength blt<18) unaHgned,
2 def_relp blt(t8> unaligned,
2 de f _I en gt h b 1 t H 8) u n a J i gn e 1 ,
2 ~lnk_relp bltt18) unaligned,
2 1ink_Jength blt<18> una!lgned,

"'2 statlc_reJ p bl H18> una~ lgned,
•2 statlc_length blt(18l unam igned,

2 symb_relp bitC18> unaligned,
2 symb_length b1Ht8) unaWlgned,
2 bmap_relp blt(18) unatlgned,
2 bmap_Jength bltl18> una1lgned,

"'2 en try _bound bl t(18 > una Hgned,
•2 text_1lnk_reJp blt(18) unaligned,

2 format aligned,
3 bound bit(1) unaligned,
3 relocatable blt{1) unaligned,
3 procedure b!t(1) unaligned,
3 standard blt<1> unaligned,

"'3 separate_statlc blt(1) unatlgned,
•3 llnks_ln_text blt<1> unaligned,

3 unused blt(3Q) unaJ!gned;

1· decl vers ls the version number of the structure.

2. identifier ls the constant "obJ_l't'lap ...

3. text_relp

4. text_I ength

5. def _r eJ p

is a oolnter (relative to
object segme~t> to the
section.

the base
base of

of the
the text

ls the length (in words) of the text section.

is a pointer (reiatlve to the base of the
obJect segment> to the base of the definition
section.

MTB-187

6. def _D ength

7. link_relp

8. link_~ength

9. statlc_relo

10. statlc_length

11 •. svmb_re Ip

12. symb_length

13· bmap_reJp

1 Lt. bmap_J ength

15. entrv _bound

page 11

ls the length (In words) of the definition
section.

is a pointer (relative to the base of the
obJ ect segment> to the base of the I lnkage
sect 1 on~

is the 1ength (ln wordsl of the linkage
sect 1 on.

ls a pointer <relative to
ob J ec t segment) to the
sect 1 on.

the base of the
base of the static

is the length (ln words) of the static
section.

ls a pointer {relative to
ob)ect segment) to the
section.

the base of the
base of the symbol

ls the length (in words) of the svmbol
section.

is a pointer (relative to the base of the
ob)ect segment) to the base of the break map
sect I on.

is the length (in words) of the break map
section.

l s t he o f f set
transfer vector
be a gate.

of the end of the entrv
lf the ob)ect segment ls to

16. text_Jink_relo ls the offset of the first text-embedded link
lf item llnks_ln_text = "l"b.

17. bound

16. relocatable

19. procedure

20. standard

ls "i"b if the obJect segment ls a bound
segment.

ls "i"b lf the ob)ect segment ls relocatable;
that ls, lf It contains relocation
information. This Information (if present)
must be stored in the segment•s first svmbol
block. See the MPM Subsvstem Writers• Gulde
section, The Structure of the Symbol Section.

ls "i"b lf this ls an executabJe obJect
segment.

ls "1"b lf the obJect segment ls ln standard
format.

MTB-187

21· separate_statlc is "1"b if the static section
from the llnkage sectlon.

ls

ZZ· 1 lnks_ln_text ls ••1"b lf the obJect segment
text-embedded links.

page 12

separate~

contains

23. unused is reserved for future use and must be "O"b.

MTA-187 page 13

The text section ls baslcatly unstructured, containing the
~achlne language representation of so~e symbolic language
algorithm and/or pure data items. Its 1ength must be an even
number of words.

Two items which can appear wlthln the text section have
standard formats; namely the entry sequence and the gate segment
entry point transfer vector.

There must be a standard
~ccessibJe procedure entry
the foJlowlng format (the two
normally contiguous>.

entry sequence for every externally
point ln an obJ ec t segment. It has
structures are Independent but are

decJare 1 parm_desc_ptrs aligned,
•z n_args blt(18) unaligned,
•2 descrlptor_relp(n_args) blt(16> unaligned,

dee I are 1 entry_sequence al lgned,
•2 descr_relp_offset bitl16) unatlgned,
•2 reserved bit(18) unaligned,

2 def_reJp bit(16> unaligned,
2 ft ags unal 1 gned,

3 baslc_lndlcator bit<1> unaligned,
•3 revlslon_1 blt(1) unaligned,
•3 has_descrlptors blt(1) unaligned,
•3 variable bltt1> unaJlgned,
•3 function blt<1> unaligned,

3 pad bit(13) unaligned,
2 code_sequence<n> blt(36) aligned;

1. n_args ls the number of arguments expected by this
external entrypoint. This item ls va11d only
lf the flag has_descrlptors = "i"b.

2. descrlptor_relp ls an array of pointers <relative to the base
of the text sectlont which point to the
descriptors of the corresponding entrypolnt
parameters. This Item ls vaJld only lf the
f Jag has_descrlptors = "i"b.

MTB-187 page 14

3. descr_reJp_offset ls the offset (relative to the base of the ~
teKt sectlon, of the n_args item. Thls item

Lt. reserved

5. def _rel p

ls valid only lf the flag has_descrlptors =
··1 -b.

ls reserved for future use and must be "O"b.

The preceding items are optional.

ls a pointer (relative to the base of the
def lnition section} to the definitlo~ (see
below>" of this entrypolnt. Thus, given a
pointer to an entrypolnt, lt ls possible to
reconstruct !ts symbolic name for purposes
such as diagnostics or debugging.

6. baslc_indlcator ls "i"b lf this ls the entrypolnt of a BASIC
program.

7. revlslon_1 ls .. t"b if all of the entry•s parameter
descriptor information ls with the entry
seQuence, I.e., lf none ls in the definition.

8. has descriptors ls "l"b if the entry has parameter

q. variable

10. function

11- pad

12. code_seQuence

descriptors; I.e., items n_args,
descrlptor_relp and descr_relp_offset contain ""\
valid information.

ls "l"b lf the entry expects arguments but
the number and types are var lab I e.

ls "i"b if this is a function entry, i.e., lf
the last parameter ls to be retu~ned by this
entry.

ls reserved for future use and must be "D"b.

ls any seQuence of machine instructions
satisfying Multics standard calling
conventions. See the MPM Subsystem Writers•
Gulde section, Subroutine Calling SeQuences.

Note that the value Cl.e., offset within the text section> of the
entry point corresponds to the address of the code_seQuence item.
(The value ls stored in the format definition of the entry point.
See the MPM Subsystem Writers• Gulde section, The Structure of
the Oeflnltlon Section.) Thus, lf entry_offset ls the value of
the entry point entt then the def_relp item polntlng to the
definition for ent1 ls located at word <entry_offset - 1).

MTB-187 page 15

For reasons of protectlon, controru Must not be passed to a
gate procedure at other than Its defined entry points. To
enforce thls restrlctlon, the first n words of a gate segment
wlth n entry points must be an entry point transfer vector. That
ls, the kth word. (O~ k ~n-1) must be a transfer Instruction to
the kth entry point (i.e. a transfer to the code_seouence ltem of
a standard entry seQuence as described above). In thls case, the
vaJue of the kth entry point is the offset of the kth transfer
Instruction <I.e. word k of the segment> rather than the offset
of the code_seouence item of the kth entry polnt.

To ensure that only these entries can be used, the hardware
enforced entrybound of the gate segment must be set so that the
segment can be entered only at the first n locations.

MTB-187 page 16

obJect_info_ obJect_lnf o_ ~

liam~I obJect_info_

This procedure returns structural and ldentlfylng
information extracted from an obJect segment. It has three entry
points returning progressively larger increments of information.
AJI three entry points have identical catting sequences, the on1y
distinction being the amount of information returned ln the info
structure described below.

En!cxi obtect_lnfo_$brlef

This entry only returns the structural ln·formatlon necessary
in order to be able to locate the ob]ect•s four sections.

declare ob)ect_info_$brief entry (ptr, fixed bln(24>, ptr,
fixed bln(35);

call ob]ect_info_$brief (segp, be, infop, code>;

1. segp is a pointer to the base of the ob]ect segment.
(Input>

2· be ls the bit count of the obJect segment. <Input>

3. lnfop ls a pointer to the Info structure ln which the obJect
Information ls returned. (Input>

'+• coae ls a standard Mu1 tics status code. (Output)

E.n.l.cx: obJect_lnfo_$disp~ay

This entry returns, in aaditlon to the $brief information,
dll the identifying data required by certain obJect display
commands, such as prlnt_link_lnfo.

MTB-167 page 17

ob}ect_info_ obJect_lnfo_

1-4)

declare obJect_lnfo_$dlsplay entry (ptr, flxed bln(24), ptr,
fixed bln(35);

call obJect_lnfo_$dlsolay (segp, be, lnfop, code>;

as above. <Input/Output)

En1~~· obJect_info_$long

Thls ~ntry returns, ln addltlon to the $brief and $display
information, the data reQuired by the Multics binder.

1-4)

declare obJect_lnfo_$1ong entry (ptr, flxed b1n(24), ptr,
fixed bln(35);

caJI obJect_lnfo_$1ong Csegp, be, infop, code>;

as above. <Input/Output>

A description of the Information structure follows. A
declaration of It ls available In obJect_info_.lncl.pll, ~hlch ls
a standard MuJtlcs lnclude file.

declare 1 obJ_lnfo aligned,
2 verslon_number fixed bin,
2 textp ptr,
2 defp ptr,
2 11 nkp ptr,

•2 st atP ptr,
2 svmbp ptr,

~TB-187 page 18

obJect_lnfo_ obJect_lnf o_ ~

2 bmapp ptr.
2 ting flxed bln.
2 ding fixed bln,
2 llng flxed bin.

•2 i Ing f l><ed bin,
2 s1ng flxed bin,
2 bing fixed bln~
2 format,

3 old_format blt(t) unaligned,
3 bound blt(1) una11~ned.
3 relocatable blt(1) unaligned,
3 procedure bit(t) unaligned,
3 standard bit(13 unaligned,
3 gate bit(!) una11gned,

•3 separate_statlc blt(1) unaligned.
•3 tlnks_ln_text bltC1> unaligned,

J pad bltC28) unaligned,
2 entry_bound fixed bln.

•2 textllnkp ptr,

/•This ls the limit of the $brief info structure.•/

2 comp ii er char(8) aligned,
2 complle_time fixed blnt71>,
2 userld chart32) aligned,
2 cv ers aligned,

3 offset bit(t8> unaligned,
3 length bit<16) unallgned,

2 comment.
3 off·set blt(18' unallged,
3 length blt(18) unaligned,

2 source_map fixed bin,

/•This ls the limit of the $display info structure.•/

2 reJ_text ptr.
2 rel_def ptr,
2 rel_link ptr,
2 reJ_symbol ptr.
2 text_boundary fixed bin,
2 static_boundary fixed bin,
2 defau1t_truncate fixed bin.
2 optlonal_truncate fixed bln;

-

MTB-187 page 1q

ob1ect_lnfo_ obJect_lnfo_

/ 4 Thls ls the Jlmlt of the $long info structure.•/

1• verslon_number

2. te>etp

3. defp

4. llnkp

5. statp

6. symbp

7. bmapp

8. ting

9. ding

10. 11 ng

11· ling

12. sing

13· bing

t 4. ot d_f ormat

15. bound

H>- relocatable

ls the version number of the structure
(currently = 2l. This value ls input.

ls a pointer to the base of the text
section.

ls a pointer to the base of the
deflnltlon section.

ls a polnter to the base of the 1lnkage
sect lon.

is a pointer to the base of the statlc
sect lon.

ls a pointer to the base of the symbol
sect Jon.

ls a pointer to the break map.

ls the length (in words) of the text
sect lon.

ls the I en gt h (1 n words) of the
deflnltlon section.

ls the Dength tin words) of the linkage
sect lon.

ls the length Un words> of the static
section.

ls the length (1 n words) of the symbol
sectlor.

ls the I ength < 1 n words> of the break
map.

ls Hi"b lf this segment ls ln the old
format; otherwise lt ls "O"b.

ls "l"b lf thls is a bound segment;
otherwise it is "O-b.

ls "1"b if the obJect ls relocatable;
otherwise lt is "O"b.

MTB-187

obJect_!nfo_

17. procedure

18. standard

1 q. gate

20. separate_statlc

21. links_ln_text

22· oad

23. entry_bound

24. textl inkp

page 20

obJect_info_ ~

ls "l"b if it ls a procedure; ls "O"b lf
lt ls nonexecutable data.

ls "t"b lf this ls a standard obJect
segment; otherwise lt ls "O"b.

ls "l"b if this ls a procedure generated
in the gate format; otherwlse lt ls
••o "b.

ls "1 .. b 1 f the stat le sect lon ls
separate from the linkage section;
otherwise it ls "O"b;

is 11 i 11 b 1 f this ob J ect segment contains
text-embedded links; otherwise lt ls
110''b.

ls currently unused.

ls the c~ll delimiter val~e if thls ls a
gate procedure. ~

ls a pointer to the first text-embedded
link if llnks_ln_text = "i"b.

This ls the Jlmlt of the $brief Info structure.

25. comoi•er

26. comp11e_tlme

27. userid

28. cvers.offset

29. cvers.Jength

3~. comment.offset

ls the name of the complier
generated this ob1ect segment.

which

ls the date and tlme this object was
generated.

is the access Id of the user ln whose
behalf this ob)ect was generated.

ls the offset Cln words), relative to
the b~s~ of th@ symbol section, of the
aligned variable length character string
which describes the comoi•er version
used.

ls the length Un characters> of the
comp!Jer version string.

is t~e offset <in words>, re1atlve to ~
the basP. of the symbol section, of the

t •

MTA-187

obJect_lnfo_

31· comment.length

32. source_mao

page 21

-~-----

obJect_lnf o_

al lgnea varlabDe ~ength character string
contalnlng some complier generated
comment.

ls the length <.in characters> of the
comfl'ent string.

ls the offset (relative to the base of
the symbol section> of the source map.

Thls ls the limit of the $dlsp1ay Info structure.

33. reJ_text

34. reJ_def

35. rel_llnk

36. re J _symboi

37. text_boundary

38. static_bounoary

3q. default truncate

4Q. ootlonal_truncate

ls a pointer to the ob]ect•s
section relocation lnformatlon.

text

ls a pointer to the obJect•s deflnltlon
section relocation Information.

ls a polnter to the ob)ect•s llnkage
section relocation information.

is a pointer to the obJect•s symbol
section relocation information.

partially defines the beglnnlng address
of the text section. The text must
begin on an integral multiple of some
number, e.g., O mod 2, o mod 64; this ls
that number.

ls analogous to
internal static.

text_boundary for

ls the offset <In words), relative to
the ~ase of the symbol section, starting
from which the symbol section can be
truncated t9
information
information).

remove
te.g.,

nonessent 1 a I
relocation

ls the offset (in words), relative to
the base of the symbol section, starting
from which the symbol section can be
truncated to remove unwanted information
(e.g., the complier symbol tree>.

This ls the Jimlt of the $long info structure.

