
Multics Technical Bulletin MTB-219

To: Distribution

From: Steve Webber

Subject: A New Area Management Mechanism

Date: 8/8/75

Introduction

There have been many complaints about the current area management
mechanism over the past years. This MTB proposes replacing the
current mechanism with another and gives reasons why I think it
would be wise to do so.

Problems with the Current Area Mechanism

The current mechanism has the following flaws:

1. It uses the ''buddy system". This has many disadvantages,
particularly in a virtual memory systems such as Multics
has. The most important problems with the buddy system with
respect to the way we use areas are:

A. The area, once initialized, is difficult, if not
impossible, to extend. Hence, an area large enough to
handle all reasonable cases must be created. With the
buddy system, where the entire area is initialized into
regions of increasing powers of two in size, several
pages in a large area are touched (modified) during
area initialization. This causes unnecessary paging
(although it occurs only once per area invocation).

B. Since areas must be initialized to have a sufficiently
large size, and since each Multics process needs a
(potentially) large, general purpose area to work with
(system_free_N_), each ring in each Multics process is
given an area of size 64K. This means that each such
area requires a 64K AST entry while the segment
containing it is active and being used. In a typical
Multics ring, an area of less than 4K is usually
sufficient, and hence, we could have gotten away with a
4K AST entry. The buddy system with its required
initialization, forces us to use too many large AST
entries, a valuable system resource.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2

c.

D.

E.

MTB-219

The buddy system works by allocating the smallest power
of two region of storage that will contain the
requested amount of storage. This means that if a
block of 129 words were needed, a region of 256 words
would be returned. This causes a great deal of waste
and makes very poor use of the area by utilizing only a
relatively small fraction of the available storage.

The allocated blocks of storage in a
buddy-system-formatted area are not necessarily
contiguous. This means that if a particular use of the
area is to perform many "allocates" without intervening
"frees" that many more pages will be required, first
because of large breakage losses in wasted, unused
allocated space, and also because the blocks that are
allocated are not necessarily contiguous. This also
leads to increased paging.

One particular use of areas in the system, the backup
system, depends on contiguous (except for overhead
data) allocation of allocated blocks if no intervening
frees be performed. This requires that two area
management mechanism be supported by the system.

2. The current mechanism, again because of buddy-system
characteristics, is unacceptible for use in directory
control and segment control. If a more reasonable area
mechanism were available, we could replace the current
fs_alloc area mechanism with the system standard, thereby
making the system that much more consistent.

3. The current area format, for the reasons mentioned above,
would be unacceptible for a new proposal which would change
all combined linkage regions and combined linkage segments
into areas. This has advantages in that storage in combined
linkage regions could then be reclaimed.

The Proposed Scheme

There have been many studies of a theoretical nature (see Knuth
Vol. I) trying to determine what is the "best" general purpose
allocation/freeing strategy to use. There are, of course,
examples that can be fabricated to show that any one strategy is
better than another, but the. studies show that a "first fit"
strategy (one where the first free block found that is large
enough is used) with its simplicity in code and minimal overhead
data, is quite acceptible for a large class of uses. A common
refinement that costs little in execution time and paging, is to
partition all free blocks into classes according to size -
merely to minimize the search time for a free block of sufficient
size. This is the basic mechanism being proposed.

MTB-219 Page 3

The new area mechanism would work as follows:

AREA FORMAT

The new area format is defined by the following PL/I declaration:

dcl 1 area aligned,
2 version fixed bin,
2 last_usable bit (18) aligned,
2 last_used bit (18) aligned,
2 flags,

3 extend bit (1) unal,
3 system bit (1) unal,
3 mbz bit (34) unal,

2 next_area ptr unal,
2 prev_area ptr unal,
2 class (17),

3 fp bit (18) unal,
3 bp bit (18) unal,

2 first_trailer bit (36),
2 storage (M) fixed bin (35);

where:

version

last_usable

last_used

flags.extend

flags.system

is the version number of this area
is 0 for current areas being used
will be 1 for the newly proposed
it will be > 22 for the old style
today.

format. It
today, it
areas, and
areas of

is a relative pointer to the last usable word
in the area. To extend the area, all that
need be done is to change this value (if
nothing exists beyond the area in the segment
in which the area resides).

is a relative pointer to the last word of the
area actually allocated. If there is no
storage available on the various free lists
(area.class (i)) the storage starting at
last_used+1 is taken.

is ON if this area can be extended. This flag
would be ON for the combined linkage regions
managed by the system. The only purpose of
the flag is to determine if another area
should be defined (by creating another area
segment) when an allocation request fails for
lack of room in the current area.

controls which procedure to call when a new
area segment is to be created (because the
"extend" bit was ON and not enough room

Page 4

next_area

prev_area

class.fp(i)

class.bp(i)

f irst_trailer

storage

MTB-219

existed in the current area). If this bit is ~
ON, the procedure hcs_$create_area_segment is
called. If this bit is OFF the procedure
create_area_segment_ is called. A user, by
initiating his own vwersion, can control the
name, location, etc. of his area segments.

is a pointer to the next area in a list of
areas. This item is only meaningful if
flags.extend is ON.

is a pointer to the previous area in a list
of areas. This item is only meaningful if
flags.extend is ON.

is a relative pointer to the first free block
whose size is within the range
2**i to 2**(i+1)-1. It therefore defines a
list of free blocks which should be searched
first when a block of the specified size is
wanted. If a block can not be found in this
list, the next larger list is searched until
all lists are exhausted. When no list
contains a free block large enough, virgin
storage at the end of all allocated blocks is
used and last_used is updated.

is used with class.fp(i) to form a circular
list to make it easy to thread free blocks
into and out of the lists.

is a dummy trailer used to allow the
allocation mechanism to assume everything is
correctly initialized. (No special casing is
needed during normal operation.)

is the actual storage which is usable.

The area consists of 3 types of storage: 1. blocks in use (busy
blocks), 2. free blocks, and 3. virgin storage (after blocks of
types 1 and 2). Free blocks have a forward/backward thread in
the first word of the block. All blocks have a trailer, which is
part of the block, that contains the size of the block as well as
the size of the following block. The trailers also point back to
the area header. The trailers are one or two words long.

ALLOCATION

The allocation strategy is quite simple. Each of the free classes
(which contain blocks large enough) are searched, in order, until
a large enough block is found. This block is then split into two
parts. The first part is returned to the caller; the second is
added to the appropriate free list. If no free blocks are

MTB-219 Page 5

available in any of the free lists, virgin storage is used. If no
virgin storage is available in the current area and the "extend"
bit is ON for the area, a new area is created and threaded to the
current area. The allocation request is then serviced from the
new area. Allocation requests can still be performed in the
previous area, if there is enough storage.

Note that PL/I offset data does not work with this form of
multicomponent area.

FREEING

The freeing of a block is even simpler. A check is made to see if
the adjacent blocks are free, and if either or both are, the free
blocks are merged into a single block. This block is then
threaded into the appropriate free list unless it is the last
block before the virgin storage area in which case it is added to
the virgin storage area and the header item "last_used" is
updated.

System Areas

One extention possible with the new area mechanism and the
conversion of combined linkage regions into areas is the ability
to automatically create a new area implicitly, when needed. This
means that any allocation request in an extensible area can be
satisfied as long as the requested block will fit in (a 'little
less than) a 256K segment and there is sufficient quota remaining
in the appropriate directory. If this were done for combined
linkage regions, the allocation routine, when recognizing that
the current area does not have the necessary free storage to
satisfy a request, calls upon the system to create a new combined
linkage segment, initializes it as an area, threads it to
existing areas, and finally uses it to satisfy the current
request.

An external variable, system_data_$system_free_ptr_, will be
provided to return a pointer into the current system free area.
By allocating into the area based on this pointer, a program has
access to all of the areas managed by the system. The program
get_system_free_area_ will continue to work as today and create
system_free_N_. However, system code (and user code as well)
should be modified not to use this mechanism (see the alternative
proposal below). Note that get_system_free_area_itself is not
being changed because this would be an incompatible change with
respect to offset variables. Offset variables can not be used in
the system-managed areas because the "area" may span several
segments and offset data does not include a segment number field.
(We would probably want to do some renaming such as adding the
name get_user_free_area_to get_system_free_area_ and creating

~ user_free_N_ instead of system_free_N_ ..)

Page 6 MTB-219

Even though we propose to retain system_free_N_ for those
programs that use it today, it will be more efficient both
because it will not require a large AST entry until it is
actually needed and also because the area management algorithms
are better.

The linker would be changed to allocate (via the PL/I allocate
statement) linkage sections and storage assigned via
hcs_$assign_linkage; This storage can later be reclaimed if a
procedure is made unknown or a program knows that it no longer
needs storage it received via hcs_$assign_linkage. With the
coming use of seperate static, the $tatic sections will likewise
be freed when the associated procedure is made unknown.

Compatibility Issues

There should be no compatibility problems with converting over to
the new area mechanism. We have had practice at doing this
before. The one unfortunate issue is the problem of existent
permanent areas which users surely have. These will continue to
be supported indefinitely (via retention of the current area
management modules). Hopefully, the day will arrive when this
support can be dropped.

PL/I Areas

PL/I would continue to use (nonextensible) areas when a program
declares an area. However, it would be more efficient to change
the action that PL/I takes when an allocate statement is executed
which has no "in" clause. The language spec states that the
allocation is done somewhere decided by the operating system, but
not necessarily constrained in the same way that allocation must
be done in a PL/I area. That is, the allocated data need not be
in a PL/I area. This means that we are not bound to allocate
such storage in a contiguous region that obeys certain rules; we
must merely allocate the storage in some way that it can later be
freed. The proposal is to make such allocations in the system
managed areas the combined linkage regions. The system
managed allocation area, consisting of several PL/I areas, can
not be used when a PL/I area is called for. However, they work
fine for other allocations.

So, it is proposed that Pl/I be changed to allocate such storage
in the system-managed areas. This means special case operators,
but also means that such allocations are quite efficient. The
user is not required to get an area pointer and use a based area.
Rather, the operator will make use of the external variable,
system_area_ptr_$system_area_ptr_, mentioned earlier.

The system should be converted, as time permits, to use the new
scheme. Eventually all references to get_system_free_area_ will

MTB-219 Page 7

r- be removed from the system.

Tyoe 6 Links Revisited

One of the mistakes we have made in recent years with the Multics
operating system is the concept of type 6 (create-if-not-found)
links. The main reason for introducing these into the system was
for efficiency reasons in the implementation of PL/I external
static variables and FORTRAN common. Today we see how this can be
done even more efficiently and without many of the (quite
unexpected to the casual user) side effects of type 6 links. The
proposal here is to manage such variables without any use of
reference names (e.g. stat_ or whatever it may have been renamed
to). Instead, a special per-ring data base, managed by the linker
(which will also eventually be per-ring), will keep track of
external, named variables. This data base will map the names with
pointers to the storage for the variable, but not be required to
be structured as the definition sections of standard object
segments. This means that the resolution of links to such
variables can be potentially much faster, particularly if there
are many such variables known in a process .(ring). It also means
that the concept of ".link" segments can be removed from the
system as this is the last remaining place where they are used.

The actual storage used by these external variables will be
allocated in the system-managed areas instead of a temporary
segment initiated with the reference name stat_. This, too, saves
another segment (ASTE) in the process directory (per-ring). This
also removes the restriction that there can be only 256K worth of
storage for external variables. (The restriction that any one
variable be only 256K (about) in size or smaller still holds.)

The proposed manner of implementing this change is to define a
new link type which is basically of the form:

<*system>l[ext]+exp,m

The compilers will no longer use type 6 links.

