
MULTICS TECHNICAL BULLETIN MTB_288 page 1 

To: Distribution 

From: J. Falksen I Dave Ward 

Date: July 9, 1976 

Subject: LRK, a Translator Construction System 

This MTB describes the LRK system. LRK translates a BNF-like language 
description into a parser for the language. The output from LRK is a set of 
tables that control the operation of a parser procedure. Because these tables 
are lists of signed integers they can be easily transported to computers other 
than Multics. The parser proceaure is a simple routine and versions of it have 
been coded in PL/I, COBOL and Assembly language. LRK has options which allow 
the control tables to be generated as a Multics object segment, an ALM source 
segment or a GMAP source segment. 

The parser created by LRK (the tables along with the parser procedure) is a 
"bottom-up" SLR(k) algorithm that examines the input symbols in a left to right 
manner, looks no more than k symbols ahead does no backtracking and halts 
immediately if an input symbol is not acceptable. The size of the control table 
and the code for the parser procedure is competetive with hand-coded methods. 
LRK is an expedient means to provide parsers for computer languages. 

The attribute of immediate error detection is accompanied by facilities for 
error recovery. Because error recovery is language related, no particular 
scheme is imposed. The tabular form of parser provides for a variety of error 
analyses. 

LRK requires that the user provide a description (a grammar) of the language 
which a parser is desired. This also serves as a document to describe 
syntax (allowable symbol arrangements) to people who will use the language. 
assures the correspondence between what a language is published to be and 
parser that "says" what the language "is". 

for 
the 
LRK 
the 

Because of LRK's speed of operation, frequent adjustment can be made to the 
language description until the user is satisified. Immediate test parses can be 
performed to observe the operation of the parser. LRK assures that a compiler 
or translator will be constructed in a modular fashion (unless the user goes out 
of his way to do otherwise). First the parser can be developed and checked, 
next the scanner and finally the semantic routines. Each can be tested before 
being incorporated in the translator. 

For comparison purposes, a version of calc was developed using LRK. 
compilation and generation listings are included at the end of this MTB. 
version was run against the installed one for a few cases. The execution 
of the LRK version was from 98J to 144% of that of the installed calc. 
bound object size of the LRK version was 64% of that of the installed one. 
took 7 1/2 hours to complete. 

The 
This 
time 
The 
It 

The following non-trivial example of the use of LRK is available for inspection 
on System M: 

>udd>m>odf>schema>mids_tis_parse_.list 
.>udd>m>odf>schema>mids_tis_parse_g.list 

This parses the subset of I-D-S/II Schema Definition Language supported by 
Multics Integrated Data Store. 

Multics Project internal working documentation. 
distributed outside the Multics Project. 

Not to be reproduced or 



MULTICS TECHNICAL BULLETIN MTB_288 

Glossary 

rule - a description of a valid combination of symbols in a language. 
may be alternatives. 

page 2 

There 

production - a single valid combination of symbols. Equivalent to a rule if 
there are no alternatives. If a rule has n alternatives, it then 
represents n productions. 

terminal - a symbol of a language. 

variable - a non-terminal of a language. 

complicated terminal - a pseudo-symbol of a language. It is treated like a 
terminal in a grammar, but it lexically is one of a set a set of symbols; 
e.g., <integer>. 

DPDA - Deterministic Push-Down Automata 

EOI - end of information. This is the final terminal of an input. 



MULTICS TECHNICAL BULLETIN MTB_288 page 3 

Overview 

This document contains information describing Multics commands comprising the 
LRK system. You do not have to master all of this information to attempt a use 
of LRK. Various parts are of interest only after you have tried LRK and are 
selecting among different approaches in using LRK to aid in the implementation 
of a translator. 

The following are typical steps taken to examine the use of lrk: 

1. Prepare a sample grammar, the input to lrk. (See Source format, page 4, and 
Grammar format, page 5, and, e.g., ted text editor). 

2. Execute lrk. (See lrk, page 8). 

3. Repair the grammar if it is not acceptable (scratch head). (e.g., ted text 
editor). 

4. Test the parser by executing lrkp, after the grammar is accepted by lrk. 
lrk_parse, page 9J. 

5. If the facilities of lrk_parse are sufficient, you then supply your semantics 
for that environment. If desired, write a scanner following the lrk_parse 
interface requirements. 

6. Otherwise, you suppl¥ your semantics and scanner to match whatever interface 
requirements you decide on. You then generate your parser procedure with the 
macro (See Parser macro, page 3). 

Consideration will be needed to accommodate error reporting and recovery. (See 
Error Recovery, page 6) Recovery can not be guaranteed to work under all 
circumstances or for all languages. You can anticipate a need for trade-offs 
and compromises. 

If you require unreserved keywords, realization of the limitations of the 
g)ovision from them by LRK must be understood. (See Unreserved Keywords, page 

Both error recovery and unreserved keywords are an extension to the context free 
parsing that.lrk is limited to. Use of these facilities "breaks the rules". 



MULTICS TECHNICAL BULLETIN MTB_288 page 4 

Processor functi9ns 

An LRK language processor is made up of three parts: 

scanner parser semantics 

The SCANNER recognizes symbols in the input. It must know what the encoding of 
each symbol is to be, but it does not need to know the format of the parse 
tables. 

The PARSER recognizes rules, i.e., valid combinations of symbols as defined by 
the grammar. It needs to know the format of the parse tables and the encoding 
of s~bols, but it does not need to know anything about the form of these 
symbols. 

The SEMANTICS represent the action to be taken when a rule has been recognized. 
It needs to know nothing about the format of the parse tables. It probably 
needs to know nothing aoout what makes up symbols. 

Division of labor 

The job to be done, processing a source input of a language, can be broken up in 
several different ways. The user makes his own decision as to which he likes. 

Certain types of recognition processes can be described in the grammar (parsed) 
or done by the scanner. A user could write a grammar like this: 

<letter> ··-a 1 b 1 1 z 1 A 1 1 z 
(digit) ;:~ Q ! 1 ! :·: ! 9 l I ••• I 

<symbol> ::= <letter> I <symbol> <letter> I <symbol> <digit> I 

Then his scanner would be very simple, and would encode values for the letters 
and digits. This would, however, be very slow because of many rules being 
processed for each symbol. 

Or the user could drop the first two rules and have the scanner smart enough to 
recognize <letter> and <digit>. This would parse more quickly. 

Or the user could drop all three rules and have the scanner 
directly and return an encoding for <symbol>. This is usually 
do it. It shortens the grammar, making it more readable. It 
parse by having many less rules to works its way thru. 

implement this 
the best way to 
speeds up the 

If a scanner recognizes a symbol <integer>, for example, there is still the 
choice of whether the scanner or semantics actually converts the integer string 
to binary. 

Source Format 

The source segment can be in one of two forms: 
1) grammar only 
2) control lines followed by grammar 

If the first character of the segment is a "-" then it contains control lines. 
If not, then the grammar begins with the first character. 

When control lines are present, they are selected from this set: 
-hash N 1 space separates the keyword from the N. 
-alm 
=~rap 
-th! 
-count 
-mark X 1 space separates the keyword from the X. 
-sem X 1 space separates the keyword from the X. 



MULTICS TECHNICAL BULLETIN MTB_288 page 5 

-table X 
-order t t 

1 space separates the keyword from the X. 
This specifies the order which should be used when assigning 
encodings to terminals. The first terminal will receive 1, 
the second 2, etc. A minumum of 1 space separates the 
keyword from the first terminal. Thereafter, each terminal 
is separated by white s~ace. This control lasts up until 
the next line which begins with a "-". 

-recover t t ... This specifies terminals for skip-recovery. See Error 

-parse 
Recovery. The format is like -order. 
This specifies that everything following the keyword in the 
segment is the grammar. This must occur last in the control 
portion of the segment. 

The source segment is really a PL/I procedure. LRK will create a compileable 
segrµent from it by these steps. 

1)~ Put /*and *l around the control portion, if present. 
2 Put /* and */ around each LRK rule. 
3 Replace each %%%% in the semantics with a 4-digit number of the rule which 

this represents. 

Grammar Format 

A grammar consists of rules written in a BNF-like notation. Each rule can have 
associated semantics. The semantics represent coding which is to be executed 
when the rule described has been recognized. The rules have this basic form: 

<var> 

.. -.. -
<prod> 

<semantics> 

<var> .. -.. - <prod> <semantics> 

represents a "variable" (non-terminal). It must be the 
first non-white-space on a line. It begins with a "<" and 
ends with a ">". 

represents "is defined as". It must be on the same line as 
the <var>. 

represents a production list. A production is a sequence of 
terminals and variables. If there is a list of them, they 
are separated by "l". The production list may be empty. 

represents "end of production". Everything following it is 
semantics. This must always be present. 

represents the coding which is to be executed if the rule is 
p,7~~~d; it may be null. This cannot contain the string 

Observe some LRK detail: 

1. 

2. 
3. 
4. 

5. 

6. 

Rule ordering is unimportant, except that the rule that defines the 
"start symbol" must be physically first. 
Ordering of productions (rule parts) is unimportant. 
Each rule must be terminated by an exclaimation mark, "!". It is after 
this mark that semantic code is placed. 
LRK reserves the use of the symbols, "<", "::=", "l" 11 ' 11 and "!". 
Spaces are n?t required except between adjacent terminal symbols, 
i.e., 11 <0>::=+1-!" is acceptable. 
To specify symbols involving these reserved characters and "space" 
characters the following escape character convention is implemented. 
The right apostrophe, " "i si~als an escaped character. It may be 
followed by three octa digits, whose 9-bit value specifies the 
Multics ASCII character desired, or if not followed (immediately) by 
three octal digits, wh9tever char9cter does follow is the character 
being escaped, i.e., " " and "040" both indicate one blank 
character. This escape convention causes th~ restriction of th~ use of 
the right apostrophe character, i.e., · is required (or 047) to 
specify the " " character itself. 
Variables are "normalized" in the following manner: Any spaces 
immediately after the "<" bracket and immediately preceding the ">" 



MULTICS TECHNICAL BULLETIN MTB_288 page 6 

bracket are deleted. Any internal strings of s~aces are each replaced 
by a sin~le space. This removes space sensitivity from variable 
names. space" in this context refers to SP, HT, NL, FF, or VT. 

The parsing of the LRK input treats all occurances of< ... > as a variable as far 
as normalization is concerned. However, this is not what determines its being a 
variable; this is done only by appearing at the beginning of a rule. Any 
others may be considered as "complicated terminals". This means that you intend 
to have your scanner smart enough to know what <integer> is, for example. 

Unreserved keywords 

LRK parsing can handle unreserved keywords in a context-free setting. In 
general, if each statement has an initial keyword to insure proper recognition 
of statements, then <identifiers> can include symbols which are identical to 
keywords. 

A read state contains a list of terminal encodings in increasing order which are 
valid in the input at this point. When keywords are to be unreserved, ¥OU must 
specify one terminal as an alternative to the keywords. This is done with the 
-mark option. Then all keywords which are to have this as their alternative 
must be given encodings which are higher than the alternative. 

Suppose you said: 
-order + - <integer> = <symbol> let if 
-mark <symbol> 

Then you could recognize the statement: 
let let = let + 1 

The lookup procedure in a read table when there are unreserved keywords is this: 
While doing a linear search of the read table, note whether a negative 
terminal exists. If there is one, compare its absolute value against 
the current terminal. Also remember what this one is. If the search 
fails, but a negative (marked) terminal was found, use it. 

Error recovery 

Error recovery is, in general, a very specific thing which is highly dependant 
on your language. It is not usually an· easy thing to take care of. 

One simple case is in an interactive interpretor. It can just discard the rest 
of the line and start in fresh on the next line. It is usually not that easy. 

Two a~proaches have been developed along with the LRK compiler; local recovery 
and skip recovery. 

Local recovery 

Local recovery uses the current (unacceptable) input symbol and the next input 
symbol to simulate parses from this point up until the next state which reads a 
symbol. It then decides which action to take, if any. 
Given: 

B is the current (bad) symbol 
N is the next symbol 
C is the current state 
R is the "next" read state 

These are the conditions which can exist: 
C( N ) R( B N) kind of error 

0 1 0 symbol leading to R is missing 
0 0 1 B is a wrong symbol (alternate is chosen) 
1 1 0 B and N are reversed in input 
1 0 x B is an extra symbol in input 
0 0 0 recovery fails 



MULTICS TECHNICAL BULLETIN MTB_288 page 7 

The recovery trys to find a useable combination. If one exists, it is 
remembered but the search does not sto~. If a second one is found then the 
search will stop and the error message can include the fact that the recovery 
done was not unique. The first one found is the one used. It then adjusts the 
look-ahead stack by either dropping a symbol, interchanging two symbols or 
generating a symbol. 

Skip recovery 

Skip recovery requires 
symbols by means of the 

that the user define one or more recovery terminal 

-recover <nil> st1 st2 

control included in the lrk source. st1 st2 etc. are skip terminals. They are 
terminals which can end statements. They cause a table to be built for skip 
recovery. This table is a list of all states which can read a skip terminal. 

Skip recovery is done when an error has occurred and local recovery (if used) 
was not successful. Basically what it does is to skip forward in the source by 
calling the scanner until it encounters one of the skip terminals. It then 
looks backward in the parse stack to try to find a state which could read the 
found terminal. If one is found, it adjusts the lexical stack top and then 
precedes. 

Before preceding it puts the encoding for <nil> in the look-ahead stack. If the 
state does not contain a use of the <nil> symbol, then it is discarded and the 
next symbol is used. 

The <nil> symbol is one which 
because some languages do 
This means that when you back 
not be allowed to have the 

the scanner must NEVER return. It is needed 
not allow all statements to occur at every point. 
up to the last statement beginning point, you may 
statement you find next. As an example, take this 

grammar: 
<s> ::= <i> I <g> <i> ' 
(i) ::: (a) I (b) ! 
<a> ··-a, <rd> ! 
<rd> : : = r ; I <rd> r ; 
<b> · · - b ; <sd> ! 
<sd> : := s ; I <sd> s ; 

Then suppose that you intended to 
yougot(2): 

! 
have an input like line (1) below, but instead 

(1) a ; r ; r ; b ; s ; s ; s ; a ; r ; r ; r ; 
(2) a ; r ; r ; b ; s ; s ; s a ; r ; r ; r ; 

When the 11 s" 11 a" ";" is encountered, local recovery will decide that "a" is 
extraneous and drop it. But this then means that it will miss the fact that it 
should be enterins the <a> rule. It will then get to the "r" and local recovery 
will fail, necessitating another skip. In this example, skipping will occur, 
one statement at a time, until EOI is reached. 

If the grammar had specified 
-recover <nil> ; 

then skip recovery would skip to the next 11 ; 11 and pick up where it was. But the 
only thing it finds in the stack is a state which can read either an "a", "b", 
or "s''· So it will have to skip again. This means that no syntax checking is 
done in all of the "r" s which are skipped. This is not highly desireable. 

However, if you add a rule like this: 

<b> ::=<nil> <rd> ! 

then the generated <nil> from skip recovery will allow the <rd> to be correctly 
parsed, reducing the number of useless error messages by quite a bit, usually. 

These <nil> rules can help parse thru misplaced statements during error 
recovery, but will never accept these statements under normal circumstances. 



MULTICS TECHNICAL BULLETIN MTB_288 page 8 

The semantics on these <nil> rules must then report an error. 

Name: lrk 

The lrk command invokes the LRK compiler to translate a segment containing the 
text of the LRK source into a set of tables. A listing segment is optionally 
produced.· Packag~d forms of the tables may be requested. These results are 
placed in the user s working directory. 

Usage: lrk segment_name -list_arg- -ctl_arg-

1) segment_name 

2) list_arg 

-source -so 

-symbols -sb 

-list -ls 

-count -ct 

-term 

-ss 

-ssl 

3) ctl_arg 

-sem X 

-mark x 
-hash N 

-table X 

-tl 

-thl 

-alm 

-gmap 

is the pathname of the LRK source segment containing the 
grammar to be processed. The entry portion of this pathname 
can contain an optional .lrk suffix. 

may be one or more of the following optional arguments. If 
the source segment is named X.lrk, then the list segment 
will be named Xg.list. This is done so that if the user 
choses to have his semantics file named X.pl1, the 
generation listing and compilation listing will not be in 
conflict. 

produces 
grammar. 

a line-numbered listing of the rules of the 
No semantics are listed, only the rules. 

produces a listing of the terminals and 
the grammar. 

variables used 

produces a "machine" listing of the DPDA resulting from 
LRK execution. . 

in 

the 

produces a list of statistics about the tables. This will 
go to user output if no other option is present which 
provides a lTst segment. 

produces a listing of 
showing the encoding. 

the 

produces source and symbols. 

terminals 

produces source, symbols, and list. 

in encoding order, 

may be one or more of the following optional arguments. 

produces a semantics file named X. 
suffix. 

X must have a .pl1 

mark terminal X (see Unreserved keywords) 

set the hash value of the variable and terminal tables to N. 

produces a table named X (with all suffixes removed) and an 
include file named X (with the supplied suffix). At present 
the only suffix supported is .incl.pl1. Unless this 
argument is supplied, the arguments below (-tl, etc.) are 
meaningless. The default is to produce the table as a 
Multics object segment. 

include the terminals list in the table. 

include the terminals list and terminals hash list in the 
table. 

produce the table as an alm segment X.alm. X is the name 
supplied in the -table parameter less all suffixes. 

produce the table as a gmap segment X.gmap. 



MULTICS TECHNICAL BULLETIN MTB_288 page 9 

Options -alm and -gmap may occur together. 

Names: lrk_parse, lrkp 

The lrk_parse command provides a means for testing an lrk produced parser table. 
This program is an adequate parser in many applications. 

Usage: lrk_parse grammar_name -source- -ctl_args-

1) grammar_name 

2) source 

3) ctl_arg 

-sem E 

-scan E 

-trace 

-print 

Scanner/Semantics 

is the pathname of the grammar. It must be without the .lrk 
suffix. The directory referenced must be the one containing 
the tables generated from lrk. 

is the pathname of a source segment to be parsed. If not 
supplied, lines will be read from user input. This is true 
of the default scanner (see below). Ir-a user scanner is 
supplied, then it must provide for reading user_input if no 
source is specified, or it must report an error. 

may be one or more of the following optional arguments. (E 
represents an entryname; it is found according to the search 
rules.) ' ' 

is the entryname of a semantics procedure which corresponds 
to the grammar. The default semantics do nothing. 

is the entryname of a scanner procedure which corresponds to 
the grammar. The default scanner is explained below. 

causes a trace of the parsing and error recovery action to 
be printed. 

causes each line from source to be ~rinted (with 
before starting to scan it. This is true of 
scanner. If a user scanner is supplied, then it 
whether or not printing is available. 

linenumber) 
the default 
determines 

lrk_parse supplies a scanner procedure and a semantics procedure. The user can 
supply his own. This is how these procedures are used. User routines must have 
these interfaces. 

1) The semantics routine is called each time action is required. The 
supplied semantics routine does nothing. 

Usage: 

dcl E entry(fixed bin(24),fixed bin(24),ptr,fixed bin(24)); 
call E (rulen,altn,addr(lex_stack),ls_topJ; 

rulen 
altn 
ls_ top 

is the number of the rule completed 
is which rule alternative was used 
is the location in the lexical stack corresponding to the rightmost 
alternative symbol. 

The values in lex_stack should not be modified. 

rule 

2) The scanner contains an initialization entry point. It is called once; to 
begin the parse. It allows the scanner to get the input information and to do 
any initialization necessary. 



MULTICS TECHNICAL BULLETIN MTB_288 page 10 

Usage: 

dcl E$init entry(ptr,fixed bin(24),bit(1)); 
call E$init(input,leng,prsw); 

input is a pointer to the source segment if leng is non-zero. Otherwise, it 
points to an empty temporary segment. If the user choses to read from 

prsw 
leng 

user_input when source is not supplied, he should append each line read 
to this segment (values in the lex_stack may reference more than the 
current line). 
is "1"b if the -print option was specified, otherwise it is "O"b. 
is the length in byte~ of the source segment OR is zero if source was not 
specified. 

3) The scanner also contains a get-next-symbol entry. It is called each time 
another symbol is needed. It must return an encoding of zero when 
end-of-information (EOI) is reached. 

Usage: 

dcl E$E ~ntry(ptrifixed bin(24)); 
call E$E lstkp,put ); 

stkp 

putl 

is a pointer to the lexical stack. The stack declaration is in 
lrk_stk.incl.pl1. It specifies that the stack is based on a variable 
named "stkp". 
is the location in the stack to put the symbol information. 

The scanner must set these fields: 
stk.symptr!putll points to the beginning of the found 
stk.symlen putl -length in bytes of found symbol (may 

symbol. 
be zero). 

stk.line putl linenumber where symbol begins. 
stk.symbol putl encoding for the found symbol. 

These fields may be set: 
stk.ptr1(putl) pointer to user data 
stk.ptr2(putl) pointer to user data 

The default scanner algorithm is this: 

1. During initialization, the terminals are separated 
One list contains all ~he terminals that consist only 
characters. The other contains all the rest, sorted 
length. 

into 2 lists. 
of alphanumeric 

by decreasing 

However, the special terminals "<string>" "<integer>" and "<symbol>" 
are looked for. These are built in "complibated terminais". 

2. At get-next-symbol time, if an alphanumeric string exists, then it 
is taken as a single token. This token is compared against the list of 
alphanumeric terminals in the grammar. If one is found, that encoding 
value is returned. The fact that the whole alphanumeric string is 
compared against the terminal list means, for example, that a label 
"dclnam" will not be mistakenly taken as the terminal "dcl". 

If no terminal in the list matches then if the token is all numeric 
characters and the terminal "<integer>"' exists in the grammar, this 
encoding is returned. 

Otherwise, if the terminal "<symbol>" exists in the grammar, this 
encoding is returned. 

If an alphanumeric string is not present in the input, then if the first 
character is a " and the terminal "<string>" is present in the grammar, 
a PL/I style string is scanned off and the proper encoding is returned. 
Otherwise, the second list of terminals is searched, taking the length 
of each terminal to determine the amount of input to look at. If a 
match is found, then the encoding for it is returned. Remember that 
this list is ordered by decreasin~ length. This method of comparison 
means, for example, that if both ">= and ">" are terminals, the first 
will always be found if it exists in the input. 

\ 



,... 

MULTICS TECHNICAL BULLETIN MTB_288 page 11 

If neither if. the lists contained a match at this point in the input, 
then the scanner moves ahead one character and tries again. If the 
character skipped is <= \040, it is dropped without comment. 

stk.symptr(putl) is always set to point to the first character of the 
symbol which satisfied the scan. If "<symbol>", "<integer>" or 
"<string>" is processed then stk.symlen(putl) is set to the length of 
the input string which was used; otherwise stk.symlen(putl) is set to 
zero. 

EOI is returned when the end of an input segment is reached, or when a 
line is read from user_input consisting of "EOI" only. 

Parser macro 

The lrk system has available a macro which can generate a skeleton parser. Once 
this parser is obtained, then it may be tailored to the individual application. 
The tailoring actually begins during the ~eneration, at which time many options 
are available to dictate what will be obtained. This "macro" is processed by 
runoff. 

Figure 1. shows what a parse procedure generally looks like. However, it 
fleshes out quite a bit when you add things like look-ahead processin~, error 
recovery of one or two kinds, and error reporting. The macro helps in this 
process. To generate a parser, you must create a segment X.runoff. It has this 
form: 

.if lrk skel 
[ . sr xxx-yyy J 

.if lrk_skel 

The first call to lrk_skel sets the default values in some variables. Then you 

initialize 
do while (AEOI); 

if READ state then do; 

end; 
else 

enter state number into parse stack 
if look-ahead stack empty 
then call scanner; /* puts to look-ahead stack 
look in read-table for 1st look-ahead symbol 
if not found then ERROR 
set next state from read-table 
if look-ahead transition 
then delete 1 state from parse stack 
else move symbol from look-ahead stack 

to lex stack 

I 
I 
I 
I 
I 

*I I I 
I 
I 
I 
I 
I 
I 
I 
I 
I if LOOK state then do; I* look ahead n */ 

do untiT n symbols in look-ahead stack; 
call scanner; I* put to look-ahead stack */ I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

end; 
else 

end; 
end; 

end; , 
look in look-table for n th look-ahead symbol 
if not found then ERROR 
set next state from look-table 

if APPLY_state then do; 
call semantics 
delete necessary symbols from lex stack 
delete necessary states from parse stack 
look in apply-table for top stacked state 
set next state from apply-table 

~~~~~~~~~~~..,,,._~~~~~~~~~~~~~~~~~~-' 
Figure 1. Generalized parse procedure. 



MULTICS TECHNICAL BULLETIN MTB_288 page 12 

adjust any of these values you wish. The second call to lrk skel generates the ~ 
parser, directed by values in the variables. The result is a segment named 
X. incl. pl 1 . 

If the segment is named X.runoff then the output segment will be named 
X.incl.pll and the parse procedure therein will be named X. Following are the 
variables which control the generation; they show the variable name and the 
default value. 

.sr parameters 
The value of this variable 
Example: "sptr,slen" 

"" is any parameters wanted on the parse procedure. 

.sr db_sw "db sw" 
This controls the inclusion of the trace coding and names the switch to control 
it. The declaration precedes the proc statement. If the value is '"' then no 
trace coding is included . 

. sr lex stack incl "" 

.sr ls attr - "based" 
These specify things about the lexical stack include file. 

lex stack_1ncl is the name 'Of the include file to be generated, without the 
".incT.pl1". It also is the level 1 name of the structure generated. If the 
value is "" then no include file is generated. 

ls_attr is the attributes wanted on the structure in the include file . 

. sr lex stack "lex stack" 

.sr ls dim 50 -

.sr ls-top ls_top 

.sr ls-dcl1 "" 

.sr ls-dcl2 "" 

.sr ls=dcl3 "" 

.sr ls dclQ "" 

.sr ls-dcl5 "" 

.sr ls-dcl6 "" 

.sr ls=dcl7 1111 

.sr ls dcl8 "" 

.sr ls-dcl9 "" 
These specif¥ things about the lexical stack. 

lex stack is the name of the lexical stack. 
ls aim is the size of the lexical stack. 
ls-top is the name of the variable which tells where the top element currently 

is. -The four fields required to be set by the scanner used by lrk_parse are 
always in the stack declaration .. 

ls dcl1 thru ls dcl9 are a way of specifying additional entries needed in the 
stacK. Do not incTude the level number or comma in the specification. Examples: 

"value fixed bin(24) 11 

"(ptr1,ptr2) ptr" 

Remember that in quoted strings runoff requires: 
" be entered as *" 
* be entered as ** 

.sr la dim 4 
This is the size-(dimension) of the look-ahead stack (FIFO). The lexical stack 
is declared as 

lex stack(-la dim:ls dim) 
The look-ahead stack is the negative elements of the lexical stack; therefore 
they have identical structure . 

. sr ps_dim 100 
This is the size of the parse stack . 

. sr reserved kw %false% 
This controls the symbol lookup as to whether you have reserved or unreserved 
keywords. Can be set to %true%. Generally, the coding for unreserved keywords 
is more time-consuming than that for reserved keywords. Reserved keyword coding 
will not work when a symbol has been marked {-mark option) for unreserved 
purposes. 



,.... 

MULTICS TECHNICAL BULLETIN MTB_288 

.sr scanner 

.sr sc_args 
"scanner" 
"" .sr sc incl "" 

page .13 

These specify thTngs about the scanner procedure. 
scanner is the name of the scanner to be called. 
sc args is the arguments to be passed to it. 
sc-incl is the name of an include file which contains the scanner. If this is 

specTfied, then an %include statement will be generated inside the parser. Then 
the lexical stack will be available without any include file or parameter 
passing necessary. 

.sr semantics 

.sr sem args 

.sr sem-incl 
These specify things about 

semantics is the name of 

"semantics" 
"rulen, al tn" 
"" the semantics procedure. 

the semantics procedure to be called when an apply is 
done. 

sem_args 
number and 

sem incl 
l'rocedure. 
inside the 

is the arguments to be passed to it. The default is to pass the rule 
alternative number of the apply being done. 
is the name of an include file which contains the semantics 

If this is specified, then an %include statement will be generated 
parser . 

. sr skip recover %true% 
This determines whether or not the skip recovery mechanism is included in the 
parser. 

skip_recover may be set %false% if not needed . 

. sr max recover 0 
This 
row. 

is the upper limit on the number of local recoveries which can occur in a 
If zero, then no local recovery coding will be generated. 

After this macro source is prepared it is processed by executing 
runoff X -sm; dl X.runout 

This will cause X.incl.pl1 and optionally xx.incl.pl1 '(stack declaration) io be 
created. 

Sample usage of LRK 

This example demonstrates the implementation of an online interpreter of logical 
expressions. 

With the text editor (e.g., ted) create a segment log.Irk as in Figure 2. Then 
execute 

lrk log -source -symbols -terms 
to check it out. This is a useable grammar. 
wanted in the language and so must be 
however, the "I" is the LRK "or" operator. 

Note on the ~?d line that a "I" is 
entered as " 1". On the 6th line, 

At this point you could try out the language to see if it indeed describes what 
you think it should. If you execute 

lrk_parse log -trace 
it will tipe LRKP(2.0) and then wait for you to type a statement. If you reply 
something ike: 

<Iog> = <or> I 
<or:> = <or> ~' <and> I• I . ' <or> = <and> ! 
<and> = <and> & <not> I • . ' <and> = <not> ! 
<not> = ~ <bit> I <bit> ! I 
<bit> = x I • . ' <bit> = ( <or> ) ! 

Figure 2. Basic log. lrk (grammar only) 



MULTICS TECHNICAL BULLETIN MTB_288 page 14 

A(XlXl(X&X&X))&X 
you will see a trace of the parsing action. It will stop when it reaches the 
end of the line. You then reply 

EOI 
to signal end-of-input and the trace will complete. 

The trace will be made up of things like 
56 APLY ~-3 1) pd=1 ld=O( 19) 

* 37 READ I 
The first number on the line is the state number; if preceded by a "*" it means 
it was stacked (parse stack). The number pair following APLY is the 
rule/alternative being applied. If the rule is negative, then no semantics 
exist for it. "pd= 1" means 1 element is deleted from the parse stack. "ld=O" 
mens 0 element~ are deleted from the lexical stack. The list of numbers inside 
tha second "()" s tell the states which are deleted from the parse stack. 

The " l 11 following the READ is the symbol read. If it is followed by a quoted 
string, this is the string in the source which is scanned as the named symbol. 

You decide you need your own parser; the skeleton of one can be generated with 
the macro. You decide that you need an entr¥ in the lex stack to hold the bit 
value of the result. You then create a macro input segment as in Figure 3, and 
then execute 

rf log_parse_ -sm; dl log_parse_.runout 
to get log_parse_.incl.pl1, your parse procedure. 

You then build the rest of your semantics procedure around the grammar that you 

. if' Irk skel 

.sr lsacl1 "val bit(1) 11 

.if lrk_skel 

Figure 3. Macro input, log_parse_.runoff 



' MULTICS TECHNICAL BULLETIN MTB_288 page 15 

know is acceptable to LRK. 
you run LRK again with 

This gives a source which looks like Figure 4. Now 

lrk log -source 
This gives a listing file because of the -source option in the command call, and 
a semantics include file because of the -sem option in the source. 

In the semantics include file, you will notice that the %%%%'shave been 
replaced with 4-digit numbers, and since this is an incl.pl1 file all rules have 
been converted to PL/I comments. This is done in such a way that the semantics 

I -sem log.incl.pl1 I 
1 -parse I 
1 semantics: proc ( rulen, alt) ; I 

I dcl rule fixed bin, /* rule being a~plied */ I 
I alt fixed bin; /* alternate being applied */ I 

I goto rule(rulen); I 
I <log> : : = <or> I j 
I rule(%%%%): I 
I call ioa_("result is A1b",lex_stack.val(ls_top)); 1 
1 return; • I 
1 <or> : : = <or> I <and> ! ; I 
I rule(%%%%): 
I lex_stack.val(ls_top-2) = lex stack.val(ls top-2) I 
I I lex_stack.val(ls_top); 1 
1 return; I 

I <or> : : = <and> ! 1 
1 <and> •• - <and> & <not> ! ; 1 
I rule(%%%%): I 
I lex_stack.val(ls_top-2) = lex stack.val(ls top-2) I 
I & lex_stack.val(ls_top); 1 I return; I 
I <and> ::= <not> ! I 
I <not> ::= ~ <bit> I <bit> r 
1 rule(%%%%): I 
I if (alt = 1) then 
I lex_stack.val(ls_top-1) = A lex_stack.val(ls_top); I 
1 return; I 

I <bit> ::= x !; I I <bit> ::= ( <or> ) ! ) 
I rule(%%%%): I 
I lex_stack.val(ls_top-2) = lex_stack.val(ls_top-1); I 
1 return; I 

I end; I 
'~~~~~~~-=.....-~---.,..---=-~---.....--~~-,,..-,-~~~~~~~' 

Figure 4. Completed log.lrk 



MULTICS TECHNICAL BULLETIN MTB_288 page 16 

file line numbers and source file line numbers are identical. Figure 5, is this ,....., 
generated include file. 

The listing file, Figure 6, does not show all of the source; only the rules. 
The line numbers are, however, correct. You will notice that some of the rules 

1 /I -sem log.incl.pl1 1 I -parse *I ( ) I 
I semantics: proc rulen,alt ; I 

1
1 

dcl rule fixed bin, /* rule being a~plied */ 
1
1 

1 alt fixed bin; /* alternate being applied */ 1 

I goto rule(rulen); I 
I I* <log> ::= <or> I */ I 

rule(0001): I call ioa_("result is A1b",lex_stack.val(ls_top)); I 
1 return; , I 
1 I* <or> : := <or> I <and> ! */; 1 rule(0002): I lex stack.val(ls top-2) = lex stack.val(ls top-2) I 
1 - - I lex_stack.val(ls_top); 1 
1 return; I 

I /*<or> ::= <and> ! */ I 
1 I* <and> •. - <and> & <not> ! */; 1 rule(0004): I lex_stack.val(ls_top-2) = lex stack.val(ls top-2) I 
1 & lex_stack.val(ls_top); 1 I return; I 
1 /* <and> ::= <not> ! */ I 
I /* <not> ··- A <bit> I <bit> */ 1 rule(0006): 
1 if (alt = 1) then · I I lex_stack.val(ls_top-1) = A lex_stack.val(ls_top); j 
1 return; I 

I I* <bit> ::= x ! */; I 
I !* <bit> .• - ( <or> ) ! *I I 
I rule(0008): 
1 lex_stack.val(ls_top-2) = lex_stack.val(ls_top-1); ) 
1 return; I 

I end; I 
'~~~~~~~~---...-.-~~--""""T"~-:---..,..--....-r~~~~~~~~' Figure 5~ 1og.inc1.p11 

GENERATION LISTING OF SEGMENT log 
Processed by: LRK 2.1 of 18 June 1976 
Processed on: 06/18/76 1720.8 mst Fri 

Options: -source 

10 <log> .. - <or> ! .. -
14 <or> . . - <or> 'I <and> I . .. - I ' 20 <or> .. - <and> ! .. -
21 <and> .. - <and> & <not> I • .. - . ' 27 <and> .. - <not> ! .. -
28 <not> .. - (bit> (bit> .. -
34 <bit> .. - x I • .. - . ' 35 <bit> .. - ( <or> ) 

Figure 6. logg.list 



r 

MULTICS TECHNICAL BULLETIN MTB_288 page 17 

are double spaced and some are single spaced. There is a convention which 
allows you to control this. The character following the semantic separator, 
"!", is included in the listing. If this character is a NL, as in line 10 or 
27, then an empty line will follow it. If this character is a";", as in line 
14 or 34, then there is no empty line following. 

Notice that the alternative on line 28 uses the "I" form. This means that the 
alternative number must be used to determine what portion of the semantics to 
do; 

The alternative on lines 21 and 27 use the multiple definition form. Since each 
of the definitions is a separate rule, then the alternative number need not be 
checked (it is always 1). 

Bibliography 

This is a listing of many items having to to with language processing. 
based on much of this material. Of particular significance is that of 
(33], followed by DeRemer (13][14]. 

LRK is 
Knuth 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 
15. 

16. 

17. 

18. 

19. 

Aho, A. V. Denning, P. J. and Ullman,. J. D. "Weak and mixed strategy 
precedence parsing." J. ACM 19, 2 (1~72) 1 225-243 
--- Johnson.z. S. C. and Ullman,1, J. D. "De~erministic Parsing of Ambiguous 
Grammars." 1.,;omm. ACM 18 8(19t5), 441-452 
--- Johnson S. C. and Ullman, J. D. "Deterministic parsing 
grammars." Conference Record of ACM Symposium of Principles 
Languages (Oct. 1973), 1-21. 
--- and Johnson, S. C. "LR Parsing." Computing Surveys 6, 
99-124. 

of ambiguous 
of Programming 

2(June 1974), 

--- and Peterson, T. G. "A minimum distance error-correcting parser for 
context-free languages." SIAM J. Computing 1 4 (1972) 305-312 
--- and Ullman, J. D. "A technique for speedlng up LR(k). parsers." SIAM J. 
Computing 2, 2 (1973), 106-127 
--- and Ullman, J. D. "OQtimization of LR(k) parsers." J. Computer and 
System Sciences 6, 6 (1972), 573-602. 
--- and Ullman, J. D. The theory of Parsing~ Translation and Compiling. 
Prentice-Hall, Englewood Cliffs, N. J., 197~ 
Altmani V. E. A Language Implementation System. MS Thesis, Mass. Inst. 
Techno ogy 1973. 
Anderson, f. Syntactic analysis of LR(k) laQguag~s. PhD Thesis, Univ. 
Newcastle-upon-Tyne, Northumberland 1 England {1972J. 
--- Eve~ J. and Horning, J. J. "Efficient LR(1) parsers." Acta InformatiOa 
2 (1973J, 12-39 
Conway, M. E. "Design of a separable transition-diagram compiler." Comm. 
ACM 6, 7(July 1963), 396-408 
DeRemer, F. L. "Practical translators for LR(k) languages." PhD Thesis, 
Oct. 19o9i Proje~t MAC Report MAC TR-65 1 MIT, Cambridge~ Mass, 1969. . 
--- "Simp e LRlkJ grammars." Comm. ACM 14, 7 (1971J, lJ5.,-460, 
Demers, A. "Elimination of single productions and merging nonterminal 
symbols of LR(1) grammars." Technical Report TR-127 Computer Science 
Lab., Dept. of Electrical Engineering, Princeton Univ., Princ.eton, N. J., 
July 1973. 
Demersl A. J. "Skeletal LR parsing." IEEE Conf. Record of 15th Annual 
Sympos um of Switching and Automata Theory, 1974. 
--- "An efficient context-free parsing algorithm." Comm. ACM 13, 2 (1970), 
94-102. 
Earley, J. Ambiguity and precedence in syntax description. Tech Rep. 13, 
Dept. Computer Science, Univ. of California, Berkeley. 
El Djabri, N. Extendin~ the LR parsing technique to some non-LR grammars. 
TR 121, Computer Science Lab., Dept. Electr. Eng., Princeton Univ., 
Princeton, N. J., 1973 



MULTICS TECHNICAL BULLETIN MTB_288 page 18 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 
35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

Feldmpn, J. A. and Gries, D. "Translator writing systems." Comm. ACM 11, 2 
(1968), 77-113. 
Fischer, M. J. "Some properties of precedence languages." Proo. ACM 
Symposium on Theory of Computing, May 1969, pp. 181-190. 
Floyd, R. w. "Syntactic analysis and operator precedence." J. ACM 10, 3 
(19o3J, 316-333. . 
Friedman, E. P. "The inclusion problem for simple machines." Proc. Eighth 
Annual Princeton Conference on Information Sciences and Systems, 1974, pp. 
173-177. 
Ginsburgf S. ancj Spaniert E. H. "Control sets on grammars." Mathematical 
Systems heory 2, 2(1968J, 159-178. 
Graham, S. L. and Rhodes, S. P. "Practical syntactic error recovery in 
compilers." Conference Record of ACM Symposium on Principles of 
Programming Languages (Oct. 1973), 52-58. 
Gries, D. Compiler Construction for Digital Computers. Wiley, New York, 
1971. 
Hofcroft, J. E. and UllmanR J. D. Formal Lan~uages and their Relation to 
i~hgT~~~-J~dg:s~~dw~~~;~; s~a~~n~A ~~~~niq~~ for generating almost optimal 
Floyd-Evans productions for precedence grammars." Comm. ACM 13, 8 (1970), 
501-508. 
James 1 L. R. "A syntax directed error recoverr method." Technical Report 
CSRG-13, Computer Systems Research Group, Univ. Toronto, Toronto, Canada, 
1972. 
Jolliat~ M. L. "On the reduced matrix representation of LR(k) parser 
tables.' PhD Thesis, Univ. Toronto, Toronto, Canada (1973). 
--- "Practical minimization of LR(k) parser tables." Proc. IFIP Congress 
1974, pp. 376-380. 
Kernighan, B. W. and Chery, L. L. "A system for typesetting mathematics." 
Comm. ACM 18, 3(March 1975J, 151-156. 
Knuth, D. E. "On the translation of languages from left to right." 
Information and Control 8, 6 (1965), 607-639. (Note: this paper contains 
the original definition of LR ~rammars and languages). 
--- "Top down syntax analysis. Acta Informatica 1 1 2(1971) 97-110. 
Korenjak, A. J. "A practical method of constructing LR(k' processors." 
Comm. ACM 12, 11 (1969), 613-623. 
--- and Hopcroft, J. E. "Simple deterministic languages." IEEE Conf. 
Record of 7th Annual Symposium on Switching and Automata Theory, 1966 pp. 
36-46. 
Lalonde, W. R. Leef E. S. and HorningA J. J. "An LALR(k) parser 
generator. 11 Proc. FIP Congress 71. TA-j North-Hollad Publishing Co., 
Amsterdam the Netherlands (1971), pp. 153-1S7. 
Leinius, P. "Error detection and recovery for syntax directed compiler 
systems." PhD Thesis, Univ. Wisconsin, Madisoni Wisc. ( 1970). 
Lewis, P. M. and Rosenkrantz, D. J. "An Alga compiler designed using 
automata theory." Proc. Symposium on Computers and Automata, Polytechnic 
Institute of Brooklyn, N. Y. 1971, pp. 75-88. 
--- Rosenkrantz, D. J. and sfearns, R. E. "Attributed translations." Proc. 
Fifth Annual ACM Symposium on theory of Computing (1973) Pages 160-171. 
--- and Stearns, R. E. "Syntax directed transduction." J. ACM 15, 3 
( 1968) ' 464-488. 
Manna, Z., Ness, S. and Vuillemin, J. "Inductive methods for proving 
properties of programs." Proc. ACM Conf. on Proving Assertions About 
Programs, 1972 pp. 27-50. 
McGruther, T. nAn approach to automating S¥ntax error detection, recovery, 
and correction for LR(k) grammars." Master s Thesis, Naval Postgraduate 
School, Montery, Calif., 1972. 
McKeeman, W. M. Horning, J. J. and Wortman~ D. B. A Compiler Generator. 
Prentice-Halli Englewood Cliffs, N. J., 19r0. 
Mickunas, M. u. and Schneider, V. B. "A parser generating system for 
QQnstructing compressed compilers." Comm. ACM 16, 11(November 1973), 
007-675. 
Pager D. "A fast left-to-right parser for context-free grammars. 11 

Technical Report PE-24 , Information Sciences Program, Univ. Hawaii, 
Honolulu, Hawaii, 1972. 
Pager, D. "A solvtion to an open problem by Knuth." Information and 
Control 17 (1970J 1 462-473. 
--- "On eliminating unit productions from LR(k) parsers." Technical 
Report. (See 26). 1974. 
--- "On the incremental ai;>proach to left-to-right parsing." Technical 
Report PE 238, Information Sciences Program, Univ. Hawaii, Honolulu, 



MULTICS TECHNICAL BULLETIN MTB_288 page 19 

50. 

51. 

52. 

53. 

54. 

Hawaii, 1972a. 
Peterson, T. G. "Syntax error detection, correction and recovery in 
parsers." PhD Thesis, Stevens Institute of Technology, Hoboken, N. J., 
1972. 
Rosenkrantz, D. J. and Stearns 1 R. E. "Properties of deterministic 
top-down grammars." Inf. Control 14, 5(1969), 226-256. 
Stearns, R. E. "Deterministic top-down parsing." Proc. Fifth Annual 
Princeton Conf. on Information Science and Systems, 1971, pp. 182-188 
Walters, D. A. "Deterministic context-sensitive languages." Inf. Contr. 
8(1970), 14-61. 
Wood,, D. "The theory of left factored languages." Computer J. 12, 4 ( 1969) 
349-j56 and 13, 1(1970), 55-62. 



GENERATION LISTING OF SEGMENT calc 
Processed by: LRK 2.0e of 11 June T976 
Processed on: 06/24/76 1125.3 mst Thu 

32 

36 
37 

Options: -ssl -term -ct 

<calc> 

<line ... > 
<line ... > 

.. -.. -

.. -.. -.. -.. -
··.. -

<line ... > q <nl> 

<line> ! ; 
<line ... > <line> 

q <nl> 

4~ 
50 

<line> 
<line> 
<line> 

.. -.. -.. -.. -
list <nl> ! ; 
<symbol>= <exp> <nl> !; 
<exp> <nl> ! 

56 

57 
62 
67 

68 

H 
~4 

~~ 
91 
96 

101 
102 
107 
112 
117 
122 
127 
132 
137 

<nl> 

<exp> 
<exp> 
<exp> 

<term> 
<term> 
<term> 

<pwr> 
<pwr> 

<factor> 
<factor> 
<factor> 
<factor> 

<ref> 
<ref> 
<ref> 
<ref> 
<ref> 
<ref> 
<ref> 
<ref> 
<ref> 

.. -.. -

.. -.. -.. -.. -.. -

.. -.. -
: : = .. -.. -
: : = .. -.. -
.. -.. -.. -.. -.. -.. -.. -··-

'012 ! 

<exp> +<term> !; 
<exp> - <term> !; 
<term> ! 

<term>* <pwr> !; 
<term> I <pwr> !; 
<pwr> ! 

<pwr> ** <factor> ! ; 
<factor> ! 

<ref> ! ; 
+ <ref> ! ; 
- <ref> ! ; 
( <exp> ) ! 

= <real> ! ; 
= <symbol> ! ; 
=sin~ <exp> ~ !; =cos <exp> !; 
= tan <exp> ! · 
= atan ( <exp> ) I; 
=abs ( <exp> ) !; 
= ln ( <exp> ) !• 
= log ( <exp> ) ! 

*********************** 
* 28 Rules • * 30 Productions * * 13 Variables • 
* 30 Terminals * 
* ~7 States * * 2 6 DPDA words * 
***** ***************** 

) J ) 

3: c:: 
t"" 
i-;J 
H 
("') 

i-;J 
1:%] 
("') 

gj 
H 
("') 

> 
t"" 

tD 
c::: 
L' 
L' 
1:%] 
i-;J 
H 
z 

~ 
ltn 
I\) 
CD 
CD 

"Cl 
Ill 
()q 
CD 

I\) 
0 



' 
., 1 

TERMINALS USED 3: c:: 
------------SYMBOL------------ CODE ----------REFERENCES---------- L' 

>-i 
H 

'012 5 ref 56 ("') 

~ 7 ref 96 107 112 117 122 127 132 137 >-i 
13 ref 96 107 112 117 122 127 132 137 ~ 

• 11 ref 68 
("') 
::c •• 12 ref 79 z 

+ 8 ref 57 86 H 
("') 

9 ref 62 91 > 
I 10 ref 73 

L' 

<real> 2 ref 101 ta 

<symbol> 1 ref 45 102 c:: 
L' 

= 6 ref 45 L' 

abs 14 ref 127 ~ 
>-i 

atan 15 ref 122 H 

cos 16 ref 112 z 
list 3 ref 38 3: 

ln ~~ ref 132 >-i 

log ref 137 ltrJ 

Q. 4 ref 32 32 
I\) 
co 

sin 19 ref 107 co 
tan 20 ref 117 

VARIABLES USED 

<calc> -1 def 32 ~~ ref 
<exp> -5 def 57 67 ref 45 50 57 62 96 107 112 

117 122 127 132 1~l <factor> -8 def 85 86 91 ref 79 84 
<line ... > -2 def 36 ~~ ref 32 3l <line> =~ def 38 50 ref ~8 ~~ <nl> def 56 ref 32 ~~ 50 
<pwr> -7 def 79 84 ref 73 78 79 
<ref> -9 def 101 102 107 112 117 122 127 132 137 ref 85 

86 i~ <term> -6 def 73 78 ref 57 62 67 68 73 

TERMINAL ENCODING 

1 <symbol> 
2 <real> 

~ list 
<;1012 5 

6 = 

~ 
( 
+ 

9 - 'O 

10 I 
II> 

(JQ 

11 • Cl) 

12 ** I\) 

13 ) 



MULTIC TECHNICAL BULLETIN MTB_288 

s:: 
rnrorn bOS::S:: 

.C.j.)QS::O•r-llll 
Ill Ill C.h--1 r-1 rJl .j.) 

page 22 



,, 
' ' 

DPDA LISTING I 000019-> 000068 READ "sin" a I 
I 000020-> 000070 READ "tan" r 

[ 1] 000000 000014 >-3 

I H 

000001-> 000016 READ "<symool>" I [ 47] 000000 000009 (") 

000002-> 000025 READ "<real>" I 000001-> 00013 9 READ "<symbol>" >-3 
000004-> 000031 READ "list" I 000002-> 00002~ READ "<real>" trJ 

00000 -> 000034 READ "?" 000014-> 00005 READ "abs" (") 

I ::c 
oooooe-> 00004 READ II II 000015-> 000060 READ "atan" z 
00000 -> 0000 7 READ "+" I 000016-> 000062 READ "cos" H 

I (") 

000004-> 00005$ READ "-" 00001$-> 000064 READ "ln" > 
00001 -> 00005 READ "abs" I 00001 -> 000066 READ "log" r 
000015-> 000060 READ "atan" I 000019-> 000068 READ "sin" tl:I 

000016-> 000062 READ "cos" I 000020-> 000070 READ "tan" c 
I r 

00001~-> 000064 READ "ln" r 
00001 -> 000066 READ "log" I [ 57] 000002 000047 SHARE trJ 

I >-3 
000019-> 000068 READ "sin" I 

H 

000020-> 000070 READ "tan" [ 58] 000000 000001 z 
I 
I 000007-> 000152 READ "(" ~ [ 16] 000000 000008 

000005->-000263 LOOK II 
I [ 60] 000000 000001 ltl:I 

II I 000007-> 000153 READ "(" I\) 

I CX> 
000006-> 000122 READ "=" CX> 

000008->-000263 LOOK "+" I [ 62] 000000 000001 I 000009->-000263 LOOK "-" I 000007-> 000154 READ "(" 
000010->-000263 LOOK "/" I 000011->-000263 LOOK "*" [ 64] 000000 000001 
000012->-00026j LOOK "**" I 000007-> 000155 READ "(" 
000013-->-00026 LOOK ") 11 I 

I [ 66] 000000 000001 
000004 I READ "(" 25 000005 APPLY I 000007-> Q00156 
000000 000000 pd ld I -000020 000001 rule/alt I [ 68] 000000 000001 
000000-> 000117 I 000007-> 000157 READ "(" 
000047-> 000146 
000057-> 000149 I [ 70] 000000 00000~ I READ "(" 

[ 31] 000000 I 000007-> 00015 
000001 I 000005-> 000123 READ II I [ 72] 000000 000001 

II 000000-> 000000 READ "EOI" 
[ 33] 000002 000031 SHARE I [ 74} 000000 000014 I 

I 000001-> 000016 READ "<symbol>" 
[ 34] 000000 000012 000002-> 000025 READ "<real>" 

000001-> 000139 READ "<symbol>" I 00000~-> 0000~1 READ "list" 
000002-> 00002~ READ "<real> 11 I 00000 -> 0001 4 READ "?" 
00000~-> 00004 READ "(" I oooboe-> 00004 READ II II 

00000 -> 0000 7 READ "+" I 00000 -> 0000 7 READ "+" 
000004-> 00005$ READ "-" I 000004-> 00005$ READ "-" 
00001 -> 0000~ READ "abs" I 00001 -> 0000~ READ "abs" 
000015-> 0000 0 READ "ata-n" I 000015-> 0000 0 READ "atan" 'C 

000016-> 000062 READ "cos" I 000016-> 000062 READ "cos" ll> 

I OQ 

00001A-> 000064 READ "ln" I 00001A-> 000064 READ "ln" CD 

00001 -> 000066 READ "log" I 00001 -> 000066 READ "log" I\) 
w 



000019-> 000068 READ "sin" I 000159-> 000203 
3: 

I c: 
000020-> 000070 READ "tan" 000171-> 000239 r' 

I ~ 
89 000005 000074 APPLY 1 I 131 000004 000004 APPLY H 

000000 000000 pd ld 000001 000001 pd ld ("') 

I -000002 000001 rule/alt I 000004 000001 rule/alt ~ 

000000-> 000089 [1) 

I ("') 
[ 92] 000000 000003 000074-> 000160 ::c: 

000005-> 000123 READ II I z 
I H 

" 136 000005 000072 APPLY 1 ("') 

000008-> 00016~ READ "+" I 000001 000001 pd ld > 
I r' 

000009-> 00016 READ "-" I 000001 000002 rule/alt 
tt:1 [ 96] 000000 000006 I 139 000006 000025 APPLY SHR c: 

000005->-000266 LOOK " I 000000 000000 pd ld r' 
. II 000021 000001 rule/alt r' 

I [1) 

000008->-000266 LOOK "+" ~ 

000009->-000266 LOOK "-" I [ 142] 000000 000003 H 
I z 

000010-> 000168 READ "/" I 000008-> 00016a READ "+" 3: 000011-> 000169 READ "*" I 000009-> 00016 READ "-" ~ 

[ 
000013->-000266 LOOK ")" I 00001~-> 000172 READ ")" ltD 

103] 000000 000007 I 146 00000 000117 APPLY SHR I\) 

000005-> -000279 LOOK II I 000001 000001 pd ld CXl 
II 000017 000001 rule/alt CXl 

000008->-000279 LOOK "+" I 
I 000009->-000279 LOOK "-" I 149 000006 000117 APPLY SHR 

000010->-000279 LOOK "/" I 000001 000001 pd ld 
000011-> -000279 LOOK "*" I 000018 000001 rule/alt 
000012-> 000170 READ "**" I 00001a->-000279 LOOK ")" I t 152~ 000002 000034 SHARE 

111 00000 000005 APPLY I 153 000002 000034 SHARE 
000000 000000 pd ld I -000015 000001 rule/alt I [ 154] 000002 000034 SHARE 
000000-> 000103 I 155] 000002 000168-> 000220 [ 000034 SHARE 
000169-> 000228 I 

I [ 156] 000002 000034 SHARE I 117 000004 000004 APPLY I 000000 000000 pd ld I [ 157] 000002 000034 SHARE 
-000016 000001 rule/alt I 000000-> 000111 [ 158] 000002 000034 SHARE 

000170-> 000236 I 
I [ 159] 000002 I 000031 SHARE 

[ 122] 000002 000034 SHARE I 
I 160 000005 000074 APPLY 1 

123 000004 000007 APPLY I 000001 000001 pd ld 
000000 000000 pd ld I -000003 000001 rule/alt 

-000007 000001 rule/alt 
000000-> 000131 I [ 163] 000002 000034 SHARE 
0000~3-> 0001~6 I 
0000 2-> 0001 5 I [ 164] 000002 000034 SHARE 'O 

I II> 
oq 
(1) 

I\) 
J::' 

) ) J 



' ' ' 
I 000002 000002 pd ld 3: 
I c::: 

165 000006 000131 APPLY SHR 000001 000001 rule/alt t'"' 

000001 000001 pd ld I o-a 
I H 

000006 000001 rule/alt I [ 206] 000000 000006 (') 

I 000005->-000285 LOOK II o-a 
[ 168] 000002 000034 SHARE I 

II t%j 

000008->-000285 LOOK "+" 
(') 

( I ::c 
169] 000002 000034 SHARE I 000009->-00028~ LOOK "-" z 

000010-> 00016 READ "/" H 

I (') 

[ 170] 000002 000034 SHARE 000011-> 000169 READ "*" > I 000013->-000285 LOOK ")" t'"' 

I [ 171] 000002 000092 SHARE I til 
[ 213] 000000 000006 c::: 

I t'"' 
172 000006 000117 APPLY SHR I 000005->-000288 LOOK II t'"' 

000002 000002 pd ld II t%j 

I o-a 
000019 000001 rule/alt I 000008->-000288 LOOK "+" H 

000009->-000288 LOOK "-" z 
[ 175] 000000 000003 I 000010-> 000168 READ "/" 3: 

000008-> 000164 READ 11 + 11 I 000011-> 00016a READ 11 *11 o-a 

000009-> 00016 READ 11 - 11 I 000013-> -0002 8 LOOK 11 ) 11 lt:Il 
000013-> 000242 READ 11 ) 11 I N 

I [ 220] 000000 000007 
00 

I 00 

[ 179] 000000 000003 I 000005->-000291 LOOK II 

000008-> 000164 READ 11+ 11 I 
II 

000009-> 00016 READ 11 - 11 I 000008->-000291 LOOK 11 + 11 

000013-> 000245 READ 11 ) 11 I 000009->-000291 LOOK 11 - 11 

I 000010->-000291 LOOK 11 / 11 

[ 183] 000000 000003 I 000011->-000291 LOOK 11 *11 

000008-> 00016~ READ 11+ 11 I 000012-> 000170 READ 11 ** 11 

000009-> 00016 READ 11 - 11 I 000013->-000291 LOOK ")" 
000013-> 00024 8 READ 11 ) 11 I [ 228] 000000 000007 

[ 187] 000000 000003 I 
I 000005->-000294 LOOK II 

000008-> 00016~ READ 11 +" I 
II 

000009-> 00016 READ 11 - 11 I 000008->-000294 LOOK "+" 
000013-> 000251 READ 11 )" I 000009->-000294 LOOK 11 - 11 

I 000010->-000294 LOOK 11 / 11 

[ 191] 000000 000003 I 000011->-000294 LOOK 11 *11 

000008-> 000164 READ 11 + 11 000012-> 0001~0 READ "**" 
000009-> 00016 READ 11 - 11 I 000013->-0002 4 LOOK ")" I 000013-> 000254 READ 11 ) 11 

I 236 000006 000111 APPLY SHR 
[ 195] ooooog oooog~ I 00000~ 000002 pd ld I 00000 -> 0001 READ 11+ 11 

I 00001 000001 rule/alt 
000009-> 00016 READ 11 - 11 

000013-> 000257 READ ")" I 239 000006 000131 APPLY SHR I 
I 000003 000003 pd ld 

[ 199] 000000 oooooi I 000005 000001 rule/alt 
000008-> 00016 READ 11 + 11 'O 

000009-> 00016 READ 11 - 11 
I 242 000006 000025 APPLY SHR Al 

I oq 

000013-> 000260 READ 11 ) 11 I 00000~ 000003 pd ld (I) 

I 00002 000001 rule/alt N 

203 000005 000072 APPLY 1 I 
U1 



245 000006 000025 APPLY SHR -
000003 000003 pd ld 
000025 000001 rule/alt 

248 000006 000025 APPLY SHR 
000003 000003 pd ld 
000023 000001 rule/alt 

251 000006 000025 APPLY SHR 
000003 000003 pd ld 
000027 000001 rule/alt 

254 000006 000025 APPLY SHR 
00000~ 000003 
00002 000001 

pd ld 
rule/alt 

257 000006 000025 APPLY SHR 
000003 000003 pd ld 
000022 000001 rule/alt 

260 000006 000025 APPLY SHR 
00000~ 000003 pd ld 
00002 000001 rule/alt 

263 000006 000025 APPLY SHR 
000001 000000 pd ld 
000021 000001 rule/alt 

266 000004 000012 APPLY 
000001 000000 pd ld 

-000010 000001 rule/alt 
000000-> 000042 
000034-> 0001 2 
000122-> 000171 
000152-> 000175 
00015~-> 0001~9 
00015 -> 0001 3 
000155-> 000187 
000156-> 000191 
00015~-> 000195 
00015 -> 000199 

279 000004 000005 APPLY 
000001 000000 pd ld 

-000013 000001 rule/alt 
000000-> 000096 
ooo 16n-> 000206 
00016 -> 00021~ 

285 000006 00026 APPLY SHR 
000003 000002 pd ld 
000008 000001 rule/alt 

) 

I 288 000006 000266 I 000003 000002 I 
00000~ 000001 I 

I 291 00000 000279 
I 000003 000002 
I 000012 000001 

294 000006 000279 I 000003 000002 I 000011 000001 I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

. I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

) 

APPLY SHR 
pd ld 
rule/alt 
APPLY SHR 
pd ld 
rule/alt 
APPLY SHR 
pd ld 
rule/alt 

J 

3: 
c:: 
L' 
--3 
H 
("') 

--3 
C'l 
("') 
::i:: z 
H 

. ("') 

> 
L' 

tII 
c:: 
L' 
L' 
C'l 
--3 
H z 
3: 
--3 
lt:II 
I\) 
OJ 
OJ 

'O 
II> 

()q 
Cl> 

I\) 

°' 



1 
1 
1 
1 
1 

) 

1 
2 

' COMPILATION LISTING OF SEGMENT lcalc 
Compiled by: Multics PL/I Compilerf Release 20e, of May 22, 1976 
Compiled on: 06/24/76 1242.8 mst hu 

Options: map table 

lcalc: proc; 

4 I* version of calc using LRK */ 

1 sym (200), ~ 
~ 
9 

10 
11 
12 

H 
15 
16 

~~ 
19 
20 
21 
22 

~~ 
25 
26 

~i 
29 

~~ 
32 
33 

~~ 
36 
37 

jg 
41 
42 
4l 

2 

~ 
5 

dcl 

dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 

dcl 
dcl 
dcl 
dcl 

retry: 

error: 

dcl 
dcl 

dcl 

2 name char(8), 
2 val float bin(27); 
1 sym based like sym · 
~arenct fixed bin(~4); 
ifile char(200)· 
ifc(200) char(1)unai defined (ifile); 
ifln fixed binl24!; ifi fixed bin 24 ; 
ifl fixed bin 24 ; 
ife fixed bin 24 ; 
sym_num fixed bin 24 ; 

TLanl 
TLan(9) 
TLstl 
TLst(9) 

fixed bin!24l int static init!9)· fixed bin 24 int static init 3(4,14,15,16,17,18,19,20); 
fixed bin 24 int static init 91; 
fixed bin 24 int static init 13,12,11,10,9,8,7,5,6); 

sym, num = 2· 
sym-.name(1} = "pi"· 
sym=.val(1) = 3.14159265; 
sym, . nam~ ( 2) = 11 e11 • 
sym:.val(2} = 2.71B2818; 

ifln = O; 

~arenct = O; 
ifi = 1• 
ife = 200; 
ifl = o· 
call caic_p; 

return; 

call ioa_( 11 "a 11 ,msg); 
goto retry; 

msg char(100)var; 
ioa_ entry options(variable); 

calc t $TL ext static, 
2 TLsize fixed bin, 
2 TL(20), 

3 (pt,ln) fixed bin(17)unal; 

' ~ 
t""' 
~ 
H 
(") 

~ 
1:%:1 
(") 
::i:: z 
H 
(") 

> 
t""' 

tJj 
c 
t""' 
t""' 
1:%:1 
~ 
H 
z 
3: 
~ 
lt:Jj 
I\) 

CX> 
CX> 

'O 
Ill 

()Q 
CD 

I\) 

.....J 



1 6 
1 7 
1 8 
1 9 
1 10 
1 11 
1 12 
1 14 1 
1 15 

44 
45 

2 1 
2 2 
2 4 2 
2 5 
2 6 
2 ~ 2 
2 9 
2 10 
2 11 
2 12 
2 rn 2 
2 15 
2 16 
2 ~~ 2 
2 19 
2 20 
2 21 
2 22 
2 ~~ 2 
2 25 
2 26 
2 ~~ 2 
2 29 
2 30 
2 ~1 2 
2 §~ 2 
2 3~ 2 

~~ 2 
2 
2 46 2 
2 41 

J 

dcl 1 calc_t_$TC ext static, 
2 TCsize 

char(50); 
fixed bin, 

2 TC 

dcl 1 calc_t_$DPDA ext static, 
2 DPDAsize fixed bin, 
2 DPDA(296~, 

3 (v1 ,v2 fixed bin(17)unal; 
dcl DPDAp ptr; 

I* BEGIN INCLUDE FILE ...•. calc_p.incl.pl1 ..... 06/24/76 J Falksen */ 

calc_p: proc (); 

I* Parser for tables created by LRK. */ 

current_state = 1i 
ls_top, ps_top = u; 
la_put, la_get = 1; 
la_ct = O; 

I* The parsing loop. */ 
NEXT: 

if (current state = 0) 
then do; -

done_parse: 
return; 

end; 
current table = current state; 
goto CASE (DPDA.v1 (current_table)); 

CASE (3): I* Shared look*/ 
current table = DPDA.v2 (current table); 

CASE (1): /*Look~ *I -
la_use =mod (la_get+la_need-1~ -lbound (lstk, 
if (la need= -lbound (lstk, 1J) 
then sTgnal condition (lastk_ovflo); 

dcl lastk_ovflo condition; 
la need= la need+ 1; 
goto read_look; 

CASE (10): /* Shared read *I 
current_table = DPDA.v2 (current_table); 

CASE (9): I* Read. *I 
la_need = 1; 
la_use = la_get; 
goto read_look; 

J 

I* . 
I* . 

1))+1; 

I* 

I* 

*I 
*I 

*I 

*I 

J 

3: c .. 
1-i 
H 
(") 

1-i 
t>:I 
(") 

S2 
H 
(") 

> .. 
ttl 
c .. .. 
t>:I 
1-i 
H z 

~ 
lttl 
I\) 
00 
00 

'O 
tu 
oq 
Cl> 

I\) 
00 



2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

) 

42 CASE 

~~ 
' (2): /*Stack and Shared read *I 

current_table = DPDA.v2 (current_table); 

45 CASE (0): 
46 

!* Stack and Read. */ 
la_need = 1; 

~~ 
49 
50 dcl 
51 
52 

la_use = la_get; 
if (ps top= hbound (parse_stack, 1)) 
then sTgnal condition (pstk_ovflo); 

pstk_ovflo condition; 
ps_top = ps_top+1; 
parse_stack (ps_top) = current_state; 
cur_lex_top (ps_top) = ls_top; 

;• *I 

!* *I 

I* Top of parsing stack. */ 
I* Stack the current state. */ 
I* save current lex top (for recovery) */ ~~ 

55 
56 

read look: . 
- do while (la_ct < la_need); /* make sure enough symbols are available */ 

call scanner(); . 

§~ 
59 
60 
61 
62 
g~ 
65 
66 
67 
68 
69 
70 
71 
72 

H 
75 
76 

t~ 
79 

~~ 
82 

~~ 
85 
86 

~~ 
89 
90 
91 
92 

la_put =mod (la put, -lbound (lstk, 1))+1; 
la_ct = la_ct + 1; 

end· 
test_symbol = lstk.symbol (-la_use); 
lb= .current table+1· 
ub = current-table+DPDA.v2 (current table); 
do while (lb-<= ub); -

end; 

m = divide (ub+lb, 2, 24, O)· 
if (DPDA.v1 (m) = test_symboi) 
then do; 

next_state = DPDA.v2 (m); 
goto got_symbol; 

end· 
if {DPDA.v1 (m) < test_symbol) 
then lb= m+1; 
else ub = m-1; 

if (test_symbol A= 5) 
then parenct = O; 
msg = errmsg(sign(parenct)); 
goto error; 

dcl errmsg{-1:1) char(16)int static init( 
"too many )" 
"missing ooerator", 
"too few ) '' ) ; 

got symbol: 
- current_state = next_state; 

if (current_state < 0) then do; 
current_state = -current_state; 

end; 
else do; 

.if (ls top= hbound (lstk 1)) 

I* Transition is a look-ahead state. *I 

§~ dcl 
then sT~nal condition (lstk_ovflo); 

lstk_ovflo condition; 
ls_top = ls_top + 1; 

') 

~ .. 
>-'3 
H 
('") 

>-'3 
t:tl 
('") 

!i§ 
H 
('") 

> .. 
to 
c:: .. .. 
t:tl 
>-'3 
H z 
::s:: 
>-'3 
Ito 
I\) 
CX> 
CX> 

'O 
Ill 

()q 
<D 

I\) 

"" 



2 95 
2 96 
2 §~ 2 
2 99 
2 100 
2 101 CASE 
2 102 CASE 
2 10a CASE 
2 10 
2 105 
2 106 
2 107 
2 108 
2 109 
2 110 
2 111 
2 112 
2 114 2 11 
2 115 
2 116 
2 11 ~ 2 11 
2 119 
2 120 
2 121 
2 122 
2 12a 2 12 
2 125 
2 126 
2 12~ 2 12 
2 129 
2 130 
2 131 dcl 
2 132 
2 134 2 13 
2 135 
2 136 
2 He 2 
2 1a9 2 1 0 
2 141 
2 142 dcl 
2 14a dc1 
2 14 dcl 
2 145 dcl 
2 146 dcl 
2 147 dcl 

J 

lstk (ls top) = lstk (-la_get)· 
la_get =-mod (la_get, -lbound t1stk, 1)) + 1; 
la_ct = la_ct - 1; 

end; 
goto NEXT; 

~~~ 
I* Apply state. *I 
I* Apply single */ 
I* Apply Shared */ 
la_need = 1; 

I* 
I* 
I* 

*I 
*I 

. *I 

. 

rulen = DPDA.v1 (current table+2); 
altn = DPDA.v2 (current_table+2); 
if (rulen > 0) then do; 

call semantics (rulen, altn); 
end· 
ps_top = ps_top - DPDA.v1 (current_table+1); 
ls_top = ls_top - DPDA.v2 (current_table+1); 
if (DPDA.v1 (current state) = 5) 
then do; -

current state = DPDA.v2 (current table); 
goto NEXT; -

end· 
if tnPDA.v1 (current state) = 6) 
then do; -

end; 
do i 

current_table = DPDA.v2 (current_table); 

= current table+4 to current table+DPDA.v2 
if (DPDA.v1 (i) = parse_stac'K (ps_top)) 
then do; . 

current_state = DPDA.v2 (i); 
goto NEXT; 

end; 
end; 

= DPDA.v2 (current_table+3); current state 
goto NEXT; 

lstk (-4:50) 

I* Delete parse stack states. *I 
I* delete lex stack states *I 

(current_table); 

I* -4:-1 is the look-ahead stack (FIFO) */ 
I* 1:50 is the lexical stack (LIFO) */ 
I* pointer to symbol (must be valid) */ 2 symptr ptr 

2 symlen fixed bin (24) 
2 line fixed bin (24) 
2 symbol fixed bin (24) 
2 value float bin (27) 
2 def ptr 

/* length of symbol (may be 0) *I 
I* line where symbol begins */ 
I* encoding of symbol *I 

is top fixed bin (24); 
cur_lex top (100) fixed bin (24); 
parse_stack (100) fixed bin (24); 
altn fixed bin (24); 
current_state fixed bin (24); 
test_symbol fixed bin (24); 

I* location of top of lexical stack */ 
I* current lex top stack {with parse stack) */ 
I* parse stack */ -
I* APPLY alternative number */ 
I* number of current state */ 
I* encoding of current symbol */ 

1) J 

~ 
t'"' 
>-3 
H 
(") 

>-3 
t:r:I 
(") 
::x: z 
H 
(") 

> 
t'"' 

o:I 
c: 
t'"' 
t'"' 
t:r:I 
>-3 
H z 

~ ,o:i 
I\) 
co 
co 

"O 
ll> 
()q 
<D 

w 
0 



2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 

~ 
3 
3 
3 

~ 
3 

~ 
3 
3 

5 
3 
3 

~ 
3 
3 

~ 
3 
3 

~ 
3 
3 
3 
3 
3 
3 
3 
3 

' 
148 
149 
150 
151 
152 
153 
1511 
155 
156 
157 
158 
159 
160 
161 
162 
163 

1 
2 

~ 
g 
~ 
9 

10 
11 
12 

H 
~~ 
~~ 
19 
20 
21 
22 

~~ 
25 
26 

.. ~~ 

29 
30 
31 
32 

~~ 
35 
36 
37 

dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 

current_table fixed bin (24); 
i fixed bin (24)· 
la_ct fixed bin i24)· 
la_get fixed bin (24\· 
la_need fixed bin (24}; 
la_put fixed bin (24); 
la use fixed bin (22)· 
next_state fixed bin i24); 
nil sym fixed bin (24); 
ps_top fixed bin (24); 
recov_msg char (150)var; 
rulen fixed bin (24); 
t fixed bin (24); 
ioa_ entry options (variable); 

' I* number of current table */ 
I* temp */ 
I* number of terminals in look-ahead stack *I 
I* location in look ahead stack to get next symbol 
I* number of look-ahead symbols needed *I 
I* location in look ahead stack to put next s~bol 
I* location in look=ahead stack to test with I 
I* number of next state *I 
I* location of top of parse stack *I 
I* APPLY rule number */ 

I* BEGIN INCLUDE FILE ..... calc_s.incl.pl1 ..... 06/24/76 J Falksen */ 

scanner: proc; 

MORE: 

dcl 

dcl 

lstk.symptr (-la_put) 
lstk.s~mlen (-la put) 
lstk.line (-la put) = 
if ( ifi > ifl)-
then do· 

if' (ifi > ife) 
then do; 

lstk.symbol 
return; 

end· 
call get_line; 
goto MORE; 

= addr (ifc (ifi)); 
= O; 
ifln; 

(-la_put) = o; 

end; 
i =verify (substr (ifile, ifi, ifl-ifi+1), alpha); 

alpha char (53)int static 
init ("ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz"); 
if ( i > 1) 
then 90; . 

i = i - 1; 
char8 char (8)· 

char8 = substr (ifile, ifi, i); 
ifi = ifi + i • 
do jj = 1 to fLanl; 

J = TLan (jj)· 

end; 

if (substr CTt, TL.pt (j), TL.ln (j)) = char8) 
then do· 

lstk. symbol (-la_put) = j; 
return; 

end; 

' 
*I 
*I 

3: 
c:: 
L' 
t-;l 
H 
(') 

t-;l 
[.'Xl 
(') 
::i:: z 
H 
(') 

::i> 
L' 

tD 
c:: 
L' 
L' 
[.'Xl 
t-;l 
H z 

~ 
lt:D 
I\) 
CX> 
CX> 

"O 
Ill 

()Q 
Cl> 

w· 



3 
3 

~ 
3 
3 

~ 
3 

~ 
3 
3 
3 
3 
3 
3 

~ 
3 
3 
3 
3 
3 
3 

~ 
3 
3 
3 
3 
3 

~ 
~ 
3 
3 
3 

~ 
3 

i 
3 
3 
3 

) 

38 

~6 
41 
42 

t~ 
45 found sym: 
46 -

t~ 
49 
50 
51 
52 
§~ 
55 
56 
§~ 
59 
60 
61 
62 

end; 
else 

do i = 1 to sym_numj 
if (sym .name(1) = char8) 
then goto found_sym; 

end· . , 1 i, sym_num = sym_num + ; 
sym_.name (sym_num) = char8; 
sym_.val (sym_num) = 0.0; 

lstk.def (-la_put) = addr (sym_ 
lstk.symbol (-la_put) = 1; 
return; 

(i)); 

do; 
J =verify (substr (ifile, ifi, ifl-ifi+1), "0123456789."); 
if ( j > 1) 
then do; 

if (substr (ifile, ifi+j-1, 1) = "e") 
then do; 

end· 

J = j + 1; 
if (substr (ifile, ifi+j-1, 1) = "+") 
I (substr (ifile, ifi+j-1, 1) = "-") 
then j = j + 1; 
j = j - 1 

+ verify (substr (ifile, ifi+j-1, ifl), "0123456789"); 

~~ dcl flb float bin (27); 

65 
66 

~~ 
69 
70 
71 
72 

ta 
75 
76 

H 
79 

~~ 
82 
83 
84 

~~ 
~~ 
89 
90 

end; 
else 

j = j - 1; 
on conversion besin; 

msg = "missing operator"; 
goto error; 

end; 
flb = convert (flb1 substr (ifile, 
lstk.value (-la pu~) = flb; 
lstk.symbol (-la_put) = 2; 
lstk.symlen (-la_put) = j; 
ifi = ifi + j; . 
return; 

do; 

ifi, j)) j 

do jj = 1 to TLstl; 
j = TLst (jj); 
if (substr {TC, TL.pt (j), TL.ln (j)) 

= substr ~ifile, ifi, TL.ln (j))) 

end; 

then do· 
lstk.symbol (-la_put) = j; 
ifi = ifi + TL.ln (j)• 
if (j = 7) 1• left paren */ 
then parenct = parenct + 1• 
else lf(j = 13) /* right paren */ 
then parenct = parenct - 1; 
return; 

end; 

) ) 

~ 
r 
~ 
H 
(") 

~ 
tz:I 
(") 
::c: z 
H 
(") 

> r 
tEl 
c: r 
r 
tz:I 
~ 
H 
z 
3: 
~ 

ltD 
I\) 
OJ 
co 

'O 
Ill 

()q 
CD 

LU 
I\) 



3 
3 
3 
3 
3 
3 

~ 
3 
3 

~ 

j 
3 

~ 
~ 
3 

~ 
~ 
3 
2 
2 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

' 91 
92 
§~ 
95 
96 
§~ 
99 

100 
101 
102 /* 
103 

end; 
end· 
if (substr (ifile, ifi, 1) = 11 11 ) 

then do· 
irl = ifi + 1 j 
goto MORE; 

end; 
msg = 11 ille~al char 11 ; 

msg = msg 11 substr(ifile,ifi,1); 
goto error; 

I* . . . GET_LINE . . . *I 

' 

get line: proc; 
- ifln 

1 Oli 
105 
106 
107 
108 
109 
110 
111 
112 
113 II) 

= ifln + 1 • . f. 1 ' 1 1 = j 

dcl iox_$user_input 

ifl = 1 j 
do while(ifl < 2)· 

d call iox_$get_line (iox_$user_input, addr (ifile), 200, ifl, O); 
en • 
i.>tr'ext statici 
if (substr (ifile, ifi, ifl) = 11 EOI 

end; 
then ifl, ife = O; 

end; 

11 Ii 
115 
116 
117 
118 
119 
120 

rn~ 
I* END INCLUDE FILE ..... calc_s.incl.pl1 ..... *I 

1 
2 

a 
~ 
e 
9 

10 
11 
12 

rn 
15 
16 

H 
19 
20 
21 

I* -order 

-tl 

<real> 
list 
q012 
-
( 
+ 

I •• 
** 
) 
abs 
atan 
cos 
ln 
log 
sin 
tan 

<symbol> 

' e 
t"" 
1-i 
H 
C"l 

1-i 
t%j 

C"l 
5§ 
H 
C"l 
> 
t"" 

tD c:: 
t"" 
t"" 

~ 
H z 

~ 
ltD 

"' CX> 
CX> 

"O 
Ill 
OQ 
CD 

w 
w 



4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

J 

-table calc_t_.incl.pl1 
-sem calc_.incl.pl1 

22 
23 
24 
25 
26 

-parse */ 
semantics: 

27 dcl 
28 

rulen 
altn 

proc(rulen,altn); 

fixed bin(24), 
fixed bin(24); 

29 
30 
31 

goto rule(rulen); 

32 I* <calc> ::= <line ... > q <nl> 
33 rule(0001): 
34 goto done_parse; 

q <nl> 

35 
36 I* <line ... > 
37 /*<line ... > 

: : = <l~ne> ! *I. 
1 . ··= <line > <i· 1st <nl> ! * 1 . · · · ine> 38 I* <line> ::= 

39 rule(0004): ' 

*I 

*I 

40 do i = sym num to 1 by -1; 
41 call Toa_( 11 A8a = Af",sym_.name(i) ,sym_.val(i)); 
42 end; 
ft~ return; 
45 /*<line> ::= <symbol>= <exp> <nl> ! */; 
46 rule(0005): 
47 lstk.def(ls_top-3)->sym.val = lstk.value(ls_top-1); 
48 return; 
49 
50 /*<line> ::= <exp> <nl> ! */ 
51 rule(0006): 
52 call ioa_("= Af",lstk.value(ls_top-1)); 
53 return; 
54 dcl char15 char(17); 
55 , 
56 /* <nl> ::= 012 ! */ 
57 /*<exp> ::= <exp> +<term> ! */; 
58 rule(0008): 
59 lstk.value(ls_top-2) = lstk.value(ls_top-2) + lstk.value(ls_top); 
60 return; 
61 
62 

~~ 
~g 
~$ 
69 
70 
71 
72 

I* <exp> ::=<exp> - <term> ! */; 
rule(0009): 

lstk.value(ls_top-2) = lstk.value(ls_top-2) - lstk.value(ls_top); 
return; 

I* <exp> ::= <term> ! */ 
I* <term> ::= <term> * <pwr> 
rule(0011): 

lstk.value(ls_top-2) 
return; 

*I; 
= lstk.value(ls_top-2) * lstk.value(ls_top); 

73 /*<term> ::= <term> I <pwr> ! */; 
74 rule(0012): 

) ) 

~ 
L' 
1-i 
H 
('") 

1-i 
tzl 
('") 

5§ 
H 
('") 

> 
L' 

t.tl c:: 
L' 
L' 
tzl 
1-i 
H z 

~ 
It.ti 
I\) 
CXl 
CXl 

'O 
II> 
Qq 
CD 

w 
.t=" 



4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

ft 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

" ' 
75 
76 

t~ 
A6 

lstk.value(ls_top-2) = lstk.value(ls_top-2) I lstk.value(ls_top); 
return; 

81 
82 
g~ 
R~ 
gA 

I* <term> ::= <pwr> I */ 
I* <pwr> : := <pwr> ** <factor> I */; 
rule(0014): 

lstk.value{ls_top-2) = lstk.value(ls_top-2) 
return; 

I* <pwr> ::= <factor> I */ 
I* <factor> ::= <ref> ! */• 
I* <factor> ::= +<ref> ! *t; 
rule{0017): 

lstk.value(ls_top-1) = lstk.value(ls_top); 
return; 89 

90 
91 /* <factor> ::= - <ref> ! */; 
92 rule(0018): 
93 lstk.value(ls_top-1) = - lstk.value(ls_top); 
9ij return; 
95 
96 I* <factor> ::= ( <exp> ) ! */ 
97 rule(0019): 
98 lstk.value(ls_top-2) = lstk.value(ls_top-1); 
99 return; 

** lstk.value(ls_top); 

100 
101 
102 
103 
10fl 
105 
106 

I* <ref> ::= <real> ! */· 
I* <ref> ::= <symbol> ! i;; 
rule{0021): 

lstk.value(ls_top) 
return; 

= lstk.def(ls_top)->sym.val; 

107 /* <ref> ::= sin ( <exp> ) ! */; 
108 rule ( 0022): 
109 lstk.value(ls_top-3) = sin(lstk.value(ls_top-1)); 
110 return; 
·111 
112 /* <ref> ::= cos ( <exp> ) ! */; 
113 rule(0023): 
11ij lstk.value(ls_top-3) = cos(lstk.value(ls_top-1)); 
115 return; 
116 
117 /* <ref> ::= tan ( <exp> ) ! */; 
118 rule(0024): 
119 lstk.value(ls_top-3) = tan(lstk.value(ls_top-1)); 
120 return; 
121 
122 /*<ref> ::= atan ( <exp> ) I */; 
123 rule(0025): 
12ij lstk.value(ls_top-3) = atan{lstk.value(ls_top-1)); 
125 return;. 
126 
127 /* <ref> ::= abs { <exp> ) I */; 

) 

~ .. 
1-3 
H 
n 
1-3 
tz:I 
n 
~ 
H 
n 
> .. 
tI! 
c .. .. 
tz:I 
1-3 
H z 

~ 
ltx! 
I\) 
CX> 
CX> 

'O 
II> 

()q 
CD 

w 
1.11 



4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4· 
4 
4 
2 
2 
2 
2 

128 rule(0026): 
129 lstk.value(ls_top-3) = abs(lstk.value(ls_top-1)); 
130 return; 

/* <ref> : : = ln ( <exp> ) ( *I; 
rule(0027): 

lstk.value(ls_top-3) = log(lstk.value(ls_top~1)); 
return; 

131 
132 
133 
134 
135 
136 
137 /* <ref> ::= log ( <exp> ) ! */ 
138 rule(0028): 
139 lstk.value(ls_top-3) = log10(1stk.value(ls_top-1)); 
1qo return; 
141 
142 end; 
164 
165 
166 

end; 

1~l I* END INCLUDE FILE ..... calc_p.incl.p11 ..... *I 

47 end; 

) ) ) 

3: c:: 
["" 
~ 
H 
("') 

~ 
tzl 
("') 
:x: z 
H 
("') 

> 
["" 

tII 
c:: 
["" 
["" 
tzl 
~ 
H z 
3: 
~ 

lttl 

"' CX> 
CX> 

'O 
I» 

(Jq 
CD 

w 
°' 



,., 

LINE 
44 
46 

2-163 
2-164 

INCLUDE FILES USED IN THIS COMPILATION. 

NUMBER 
1 
2 

~ 

NAME 
calc_t_.incl.pl1 
calc_p.incl.pl1 
calc_s.incl.pl1 
calc_. in'cl. pl 1 

, 
PATHNAME 
>udd>m>jaf>cur>calc t .incl.pl1 
>udd>m>~af>cur>calc-p-:-incl.pl1 
>udd>m>~af>cur>calc:s.incl.pl1 
>udd>m>Jaf>cur>calc_.incl.pl1 

' 
~ 
i:-
1-3 
H 
C"l 

1-3 
Pl 
C"l 

5§ 
H 
C"l 

f: 
tJ:I 
c: 
I:""' 
I:""' 
Pl 
1-3 
H z 

~ 
ltl:I 
I\) 
CX> 
CX> 

"O 
I)) 

()Q 
ro 
w 
-J 


