
Multics Technical Bulletin MTB-325

To: Oistrloutlon

From& Richard Bratt

SubJect: A New Access Authorlzatlor Hechanlsm

Oates January 27, 1977

Perhaps the most dl'f f icu I t dee 1s1 on to be made when
designing a protection and authorization mechanism ls deciding
how changes ln access authorization are to be authorized. In
maklng this crucial decision two approaches are possible. First,
one may design a very general, and possibly comolex,
authorization control mechanlsm capable of supporting a diverse
set of authorization control policies. Second, one may chose an
appropriate and sufficient authorization control policy and then
deslgn mlnlmal efflclent mechanlsms to support the chosen
pollcv. The problem with the latter approach, which was taken ln
the design of Multics, ls that as the needs of the user community
change, new authorizatlon control policies become both desirable
and aporoprlate. Unfortunately, lt ls often a formidable task to
retrofit mechanlsws supoorting new or different authorl2atlon
control policies lnto a system. Thls document discusses an
authorlzatlon control pollcy whlch has been identified as being a
desirable adJunct to Multics and descrlbes a simple mec~anlsm
which allows graceful and natural Integration of this new policy
with the existing Multlcs authorization control oollcles and
mechanisms.

Multics. lf analyzed by Freud, would orobably be
accused of suffering from acute hierarchy fixation. Our storage
system ls hierarchically structured. Our secondary storage
resource control system ls hierarchically organized. Our global
user name space ls hierarchically structured. Our authorization
control oollcles are hierarchical. As a further compl lcatlon 9

these loglcally indeperdent hierarchies have been mapoed, In the
Multics design. into a single physical hierarchy. This unratural
coercion ~as many deleterious effects upon the structure and
function of the system. This document will concern Itself
orlmar!ly with the effects of the unlficatlon of the storage
system hierarchy and the authorlzatlon control h!erarchy on
Muttics authorizatlor controt. Before Investigating the
mlslnteractlons between the existent Multics access authorization
mechanism and storage mechanism I wll I briefly review the salient
features of the Multics access authorlzatlon mechanism.

Access authorization ln Multics ls specif led by

Multics ProJect Internal l'fOrklng documentation. Not to be
reproduced or distributed outslde the Multics ProJect.

Page 2 MTB-325

assoclatlng an access control llst with each obJect ln the
storage system. An access control llst speclfles the access
rights of any given prlnclpal to the associated obJect. The
current Multics design authorizes authorlzatlon changes by
treatlng the access control llst assoclated wlth an ob)ect as an
attrlbute of the obJect, stored ln the directory cataloglrg the
oblect and thus subfect to modlflcatlon by those prlnclpals who
have modlfy oermlsslon to the contalnlng directory. Multics
authorization control ls thus based upon a hlerarchlcat model.

Hlerarchlcal authorlzatlon control has many advantages.
It seems to support Quite naturally many desired authorl2atlon
schemes. (1> It ls easy to Implement. It ls easy to understand.
As a result, the Multics access control mechanism has been Quite
successful. Unfortunately our lmotementatlon of the hierarchical
access control model ls flawed. We have mapped the access
control hierarchy or.to the storage system hierarchy and thus onto
the secondary storage control hierarchy with a conseQuent strong
coupling of access and storage control.

Couollng authorization and resource control ls
disadvantageous because a common class of desirable real Morld
policies which may be modelled assuming dlsloint hierarchical
access control and storage system resource control cannot be
coerced into a unified hierarchical model that assu~es authority
to control resources implies authority to control access a~d vice
versa. As a classic example. consider the case of administration
of a computing utll!ty. Clearly. the system administrator must
have the power to authorize a customer to consume secondary
storage resources. Slmllarly, he must have the authority to
reclalm the secondary storage resources used by a customer In
default of his contract with the computing utility. On the other
hand, it ls entirely unreasonable to assume that the system
admlnlstrator should have the authority to read and/or modify the
Information stored and processea ln the computing utility by its
customers. This potlcv ls unrealizable ln the current Multics
system. To control secondary storage resources the syste•
admlnlstrator must be given modify permission on the directories
of hls customers whlch allows him to Inspect and damage hls
customer"s lnformatlon.

There exlst many schemes for adding the caoablllty of
dealing wlth the "system administrator" problem to Multics. This
paper presents an extremely simple modlficatlon to the ~ultlcs
access control mechanism which I believe provides the deslred
caoabllltv ln a natural, easy to understand way. The scheme I

(1• As the reader ls doubtless aware, many useful, real llfe
authorization oollcies are unrealizable withln the framework of
simple hierarchical access control. For example, no analogue of
the policy, "it takes two keys to open the vault," can be
specified wlth the mechanism described.

MTS-325 Page 3

wl I I present has a very minimal impact upon the system.

I propose that a facllltv exist for subdlvldlng the
access control hierarchy lnto mul tlole, dislolnt access control
hierarchies. To wlt, I suggest that an attribute be addEd to
eac~ node of the Multics storage system hierarchy which soeclfles
whether the given node belongs to the same access control
hierarchy as its father or ls the root node of a new access
control hierarchy. In this way the structure of the system ls
oreserved. The access control list of an obJect still ls an
attribute of the obtect and contained in !ts parent dlrectorv.
However, the ability to modify the access control list of an
obJect ls only granted lf t~e process reQuestlng the modlflcatlon
has modify permission to the parent directory ~.D..2 the oblect ls
not the root of a new access control hierarchy. The ablllty to
destroy and to move Quota lnto and out of the storaqe system
subhierarchy defined by an access control hierarchy ls stll I
controlled by modify permlsslon on the parent of the access
control hierarchy.

As described so far, this scheme lacks two Important
mechanisms. First, t~is scheme does not provide a mechanism for
~uthorlzatlon modification on the root node of an access control
hlerarchy. Second, t~is sc~eme does not provide ar.y control over
the abillty to deflne a new access control hierarchy. (1)

One solution to the problem of authorizing changes to
the root node of an access control hierarchy ls to appeal to the
mechanism used ln contemporary Multlcs to authorize changes to
lts single access control hierarchy root node. Thls scheme would
authorize only the system Itself to modlfv the attrlbutes of the
root node of an access control hierarchy, an1 hence lts access
control list. Unfortunately, though simple, such a mec~anlsm
dlrectly contradicts the Hultlcs pollcy of dlstrlbuted control.
A more appropriate solution, which fits nicely lnto the current
access control mechanism, ls to introduce the conceot of self
control, 1.e. al low the access control list of the root node of
an access control hlerarchy to somehow speclfy who ~ay modify the
~ccess control hierarchy root node. A mechanlsm to orovide Just
thls type of control has already been oroposed by Van Vleck.
This mechanism defines a new access control list mode "o",
standlng for "owner•. This permlsslon confers upon a prlncloal
the right to operate upon the ailt~O obtect as if the principal
had modify permission to the parent of the obJect. (2)

(1) The ooeration of def lnlng a new access control hierarc~v may
be thought of as "rerooting" an access control hierarchy slrce lt
removes a subhierarchy from an existing access control hierarchy
and plants the root node.

(2) Note that the "oMner" permission mechanism
orthogonal to the mechanism being proposed.

ls co nip I ete I y
This 11 owner••

Page ~ MT0•325

Before introducing a mechanism to authorize the
creat!on of new access control hlerarchles, lt ls lnstructlve to
lnvestlgate what lt means to create a new access control
hierarchy and what controls mlght be desirable. As envlsoned,
creating a new access control hierarchv ls done by giving an
object <of either gender) the ROOT attribute. There seems to be
no reason to constral~ this differentlatlon to occur at the time
the node ls created nor does there seem to be any reason to
disallow the removal of the ROOT attribute at some polnt ln the
future, Independent of the destruction of the obJect. Therefore,
the storage system hierarchy ls covered by a famlfy of access
control hierarchies which may vary from Instant to instant. (1)
It should be obvious that some autrorlty ls necessary to root an
access control hierarchy since the act of rooting a new access
control hierarchy potentially denies access to the subtree to
prlnclpals having modify permission on the parent directory.

A natural solution to the oroblem of authorlzlng the
rooting <and uorootlngt of an access control hlerarchy ls to
require modify permisslon (2) to the oblect. This solution, wlth
a single exception. appears to exhlblt the desired behavior. The
exceotlon deals with the desire on the part of a contractor to
audit the actlvitles of hls hlred agents. If a bulldlng
contractor was not allowed to oversee hls emoolyees actlvltles,
then he would have no way of assurlng hlmself that he •as not
being robbed blind. Ar. analogous situation arises In a computing
utility. A programming pro1ect manager might reQulre the ablllty
to Inspect the storage used by hls empolyees to discourage
unauthorized used of tne computer resources he ls paylng for. If
his employees could root a new access control hierarchy, then
they could hlde information from his vlew.

For thls reason authorlzatlon to root a new access
control hierarchy should be delegated much as authorization to
consume secondarv storage resources ls delegated. A new obJect
~ttrlbute, ROOTABLE, can be invented to control this detegatlon.
The ROOTABLE attribute speclf ies that the obtect may serve as the
root node of a new access control hierarchy. Delegation of the

permission mechanls"' ls only being used as a solutlon to the
Problem of authorlzl~g modlf lcatlons to the root node of an
access control hlerarc~y. Note also that the "owner" permlsslon
mechanism could be used to take the access control policy on the
storage system hierarchy root node "out of the closet".

(1) The reader shculd convince rlmself that the dynamics of the
situation do not Introduce access revocation problems.

(2) Modify permission may be vested ln a process by virtue of
havlng modify permission on the contalnlng the obJect or being
an "owner" of the obtect.

• MTB-325 Page S

authority to make a node ROOTABLE follows three simple rules.
One, the root node of t~e storage syste~ hierarchy ls de facto
ROOTABLE. Two, a process may mark an obJect as ROOTA8LE lf lts
parent ls ROOTABLE and the process has modify oermisslon to the
obJect. Three, once delegated the ROOTA8LE attribute may not be
removed. < 1)

In summary, I propose the addltlon of three primltlves
to the systems hcs_ldelegate_ach_rootablllty, hcs_$root_ach, and
hcs_Suproot_ach. (2) The hcs_$delegate_ach_rootab111ty marks a
designated node as rootable lf the process has modify permlsslon
to the node and the Immediate superior of the given node ls
rootable. The hcs_troot_ach primitive marks a noce as t~e root
of a new, Independent access control hlerarchy lf the node ls
marked as rootablE and the process has modify oermlsslon to the
node. The hcs_$uproot_ach prlmltlve causes a deslgnatea node to
be marked as a normal, non access control hierarchy root node lf
the process has modify permission to the node.

Access to modlfy the attributes of a normal hierarchy
node ls control led by both the access control llst on the
contalnlng directory and the access control llst on the given
node ("owner" mode). Access to modify the attributes of an
access control hierarchy root node ls controlled primarily by
.. owner.. access to the node. (3) The posesslon of modify
permission on the parent of an access control hlerarc~y only
oermlts a process to perform resource control operatlons, e.g.
delete the whole subtree or move Quota In and out of the subtree.

(1) Except, of course, by deleting the whole subtree. Thls
restriction ls stronger than necessary and may be weakened lf
experience suggests t~at doing so would be advantageous.

(2) I hope better names wlll suggest themselves lf this scheme
comes to fruition.

(3) To prevent "lost" Items the access control list orl•ltlves
should probably refuse to create an access control hlerarc~y wlth
no "owner.. permlsslon on lts root node. This, of course, ls
lnsufflclent and the system wll I have to supply a highly
orlvlleged locksmlthlng prlmltlve to deal with unaccessible
nodes. To discourage misuse, thls facl llty must record an
lndellble audit trail of lts actlvltles.

