
Multics Technical Bulletin MTB-336

To: Distribution

From: Bill Silver

Date: April 13, 1977

Subject: Command Search Facility

INTRODUCTION

This memorandum describes a proposed new command search fa
cility. It is a revival of ideas previously proposed by Txom
McGary in MTB-112.

This new search facility will greatly enhance the already
powerful Multics capability to dynamically customize a user's en
vironment. It consists of a set of commands and subroutines that
will initialize, maintain, and search lists of pathnames. Any
Multics command that needs its own per-process list of pathnames
can use this fiew facility.

This memorandum contains sections discussing the following
subjects:

need for a command search facility
overview of the proposed new search facility
MPM command documentation
MPM subroutine documentation

Please send all comments and suggestions on this memorandum
to the author.

Send mail to: Bill Silver
Honeywell Information Systems
575 Tech. Sq.
Cambridge, Mass. 02139

or send Multics mail at M.I.T or System M to:

or call:

Silver.Multics

(617) 492-9300
HVN 261-9306

Multics Project internal working documentation. 1Not to be
reproduced or distributed outside of the Multics project.

MTB-336 Page 1

NEED FOR A COMMAND SEARCH FACILITY

The Concept of Searching

The concept of searching for an object in an ordered,
per-process list of places is one that is fundamental to Multics.
The Multics linker provides an example of its complete
implementation. The objects that the linker searches for are
"object segments". The places that it searches are "directo
ries". In addition to the search capabilities itself, a complete
set of commands is provided to manipulate the per-process list of
directories to be s~arched. (1)

Dynamic linking provides Multics users with a flexibility
and an "interactive feel" simply not available with any other
operating system. Furthermore, the capability to dynamically
control her own list of directories being searched, gives the
Multics user an unparalleled ability to dynamically customize her
executable address space.

Current Command Searching Problems

Several Multics commands currently use, to varying and lim
ited degrees, the concept of searching. (2) Each of these com
mands implements its own special case search facility. Currently
there is no generalized search facility that can be conveniently
used by all commands. The absence of a generalized search facil
ity has resulted in many problems. A list of these problems and
examples of commands that suffer from these problems is given be
low:

1. Searching Not Performed: A number of Multics commands
that should use a dynamic search facility, currently do
not. The reason they do not is that no general search
facility is available for them to use, and no command
implementer wants to go through the trouble to imple
ment a complete search facility for just one command.
An example of a Multics command that should, but does
not, use a search facility is "exec_com". Because
"exec_com" does not search for the 11 .ec" file that it
executes, it is virtually impossible for a project,
subsystem, or user to establish an "exec_com" library
that can be used conveniently.

(1) A complete description of the linker's search facility is
given in MTB-112.

(2) Descriptions of the search facilities provided by several
Multics commands are given in MTB-112.

Page 2 MTB-336

2. Incomplete Implementations: None of the search facili
ties currently used by Multics commands have been im
plemented as completely as that of the Multics linker.
For example, the "translator" search facility, as im
plemented by the commands that set and print translator
search rules, does not provide the dynamic updating ca
pabilities provided by the commands that add and delete
linker search rules.

3. Inefficient Searching: Some Multics commands use
search facilities that were specifically designed for
other commands. For example, the runoff command uses a
search facility that was designed for the Multics lan
guage translators. This often results in runoff
searching for ".runoff" insert files in directories
containing large numbers of language processor include
files, but no ".runoff" insert files.

4. Not Easy To Learn: Because several Multics commands
each use different search facilities, it is more diffi
cult for a Multics user to learn to use any of them. A
user that has learned how to use the "translator''
search facility will have learned nothing about the
search facility provided by the "teco" text editor.

5. Not Easy To Use: The lack of a generalized search fa
cility makes it more difficult to initialize all of the
search facilities that will be used by a process. A
user must separately initialize each search facility
that she will use. In addition, in order to avoid the
inefficiencies involved when several commands use the
same specialized search facility, users must often set
and reset the search facility when switching from one
command to another.

Conclusions:

The concept of searching, as applied to the Multics dynamic
linking facility, has proven to be a very powerful and useful
concept. However, as applied to the Multics commands, the con
cept of searching has either been applied poorly, or not at all.

What is needed is a generalized and complete search facility
that can be used by any Multics command. Multics commands that
need a search facility will have one readily available, with no
extra implementation effort, and one that Multics users already
know how to use. By applying the concept of searching to the
many Multics commands that need it, the Multics user will be giv
en an even more powerful capability to dynamically customize his
process environment.

MTB-336 Page 3

OVERVIEW OF THE PROPOSED SEARCH FACILITY

This memorandum proposes the implementation of a generalized
search facility that can be used be any Multics command. It will
maintain, for any command, the command's own per-process list of
places where the command should search to find the objects that
it deals with.

Important Features of the New Search Facility

1. The new search facility is not intended to replace the
existing linker search facility. It provides and addi
tional search capability for commands.

2. The new search facility will provide users with a com
plete set of commands that initialize, update, and
print their current search information for any and all
commands. These search facility commands have deliber
ately been designed to resemble the existing commands
that add, delete, print, and set linker search rules.

3. The new search facility will provide a complete set of
subroutine interfaces that allow commands to access
their search information. Special consideration was
given to providing commands with an efficient mechanism
for determining when their search information has been
modified.

4. The new search facility places no restrictions on the
places to be searched. They may be directories, but
they may also be segments or files or archives, etc.

5. Since it is very common for directories to be the
places to search, and for segments to be the objects
searched for, the new search facility will provide a
command and subroutine interface to find a segment in a
specified list of directories.

6. The new search facility does not provide for the initi
ation of segments. This is left up to the commands
that use the search facility. They are better able to
decide whether initiation is necessary, and if so,
whether a reference name should be initiated, a bit
count returned, a copy made, etc.

Page 4 MTB-336

7. The new search facility uses its own capabilities to
initialize the search information for a process. The
full power and flexibility of the search facility is
used to find the data needed to initialize this search
information. The same commands that are used to manage
the search information are used to manage this
initialization data. No special search facility ASCII
"source" language is needed.

Definition of Terms

In order to more easily understand the MPM documentation
presented later in this memorandum, the following terms will be
defined:

1. Search Path: A "search path" identifies a "place" to
be searched. The "place" may be a directory, file, or
segment. A search path may be represented as either an
absolute pathname or one of the following keywords:

"unexpanded pathname"
is an absolute pathname that contains the active
function [user xxxx]. Such a pathname will be ex
panded once per process. For example, the search
path ">udd>[user project]" could be used to define
the project directory of all users. When this
search path is expanded in a user's process it
will yield the process directory of that user.

-continue
is a keyword that does not represent a pathname.
It is used during the initialization of search
paths. It is ignored at all other times. The
function of this keyword during search path
initialization is described in the next section.

-initiated_segments
is a keyword that does not represent a pathname.
Segments will be found via this search path if
they are currently initiated.

-referencing_dir
is computed each time it is used.

-working_dir
is computed each time it is used.

-process_dir
is computed once per process.

-home_dir
is computed once per process.

MTB-336 Page 5

2. Search List: is a set of search paths. Search lists
are identified by name. Any valid Multics entryname is
accepted. It has been suggested that search list names
correspond to the "suffix" name associated with the
command that will use the search list. However, the
search facility will not enforce this rule. It is up
to the implementor of a command to select and promul
gate the name of the search list that will be used by
that command.

3. Search Segment: A search segment contains one or more
search lists. Search segments are identified by
entrynames with a last component that is the suffix
''search". All search lists residing in the same search
segment must have different names. Search lists with
the same name may reside in different search segments.
All of the commands provided to manage the search lists
of a process can, by using a special control argument,
be used to manage a search list in any search segment.

4. Process Search Segment: contains the current, tempo
rary representations of all search lists that have been
referenced by the process. The use of process search
segments will be transparent to the user. These search
segments will reside in the process directory. All of
the commands provided to manage a search list will, by
default, operate on the search lists contained in the
process search segment.

Process Search List Initialization

The new search facility will use its own searching capabili
ties to initialize a search list the first time it is referenced
in a process. Initializing a search list for a process involves
adding that search list to the process search segment. A search
list will be added to the process search segment by copying it
from other search segments.

The new search facility will use its own search list, named
''search". The "search" search list contains a list of search
paths that are pathnames of search segments. The search segments
specified in the "search" search list will be tested to determine
if they contain a version of the search list being initiated.
The search segments will be tested in the order that they appear
in the "search" search list. The search list being initiated
will be copied from the first search segment found to have a ver
sion of that search list.

If the search lists being copied contains the search path
keyword "-continue'', then the "search" for versions of this
search list will continue. If another search segment is found

Page 6 MTB-336

that contains a version of the search list being initialized,
then any search paths contained in tnis new version, that have
not already been copied into the search list being initialized,
will be copied. This procedure will be repeated until no more
versions of this search list can be found, or until a search list
is found that does not contain the "-continue" keyword.

The "search" search list must itself be initialized in a
process. In fact, it will always be the first search list
initialized and copied into the process search segment. This is
done by using the following simple "meta" search list:

Meta Search List: The "search" search list will be
initialized in every process by copying it from the
system search segment: >sc1>system.search

The system search segment ">sc1>system.search" will also
contain search lists that define the site defaults for all stan
dard search lists. Project administrators may install a project
search segment that contains search lists that are different, or
in addition to, the search lists contained in the system search
segment. Individual users may do the same. A user may have his
search lists initialized from any hierarchy of search segments
simply by adding the desired search segments to his "search"
search list.

The following example shows how search segments can be used
to initialize search lists in a process. Assume that there exist
user, process, and system search segments, and that they contain
the search lists as shown below:

USER PROJECT SYSTEM

exec_ com exec_ com exec_ com

special help help

runoff

MTB-336 Page 7

Now assume that the user's "search" search list specifies these
search segments, i.e., contains the following search paths:

>udd>Project_id>User_id>user.search
>udd>Project_id>project.search
>sc1>system.search

The user will thus have her search lists initiated from the fol
lowing search segments:

SEARCH LIST

exec_ com
help
runoff
special

SEARCH SEGMENT

user.search
project.search
system.search
user.search

Benefits of the New Search Facility

1. Expanded~ of Searching: It is expected that many
Multics commands that currently do not use searching
will be upgraded to use the new search facility. Once
the new search facility is available, this can be done
with a minimum of implementation effort. This will re
sult in an improved user interface and in enhanced
functional capability for these commands. The next
section presents a list of commands that may use the
new search facility.

2. Complete Implementation: The new search facility will
provide a complete set of command and subroutine
interfaces for the management of search lists.

3. Efficient Searching: Each command that performs
searching will be able to have its own search list.
This will eliminate wasteful searching in places that
do not contain the type of object that the command is
searching for. In addition, a mechanism is provided
that will allow a command or subroutine to efficiently
determine when its search list has been changed.

4. Efficient Storage: Although many standard search lists
will be provided, each process will have to initialize
and copy into its process search segment only those
search lists that it actually uses. Projects and users
that maintain their own private search segments, will
need to keep in their search segments only their pri
vate search lists and those standard search lists for
which they want a different set of search paths.

Page 8 MTB-336

5. Automatic Tracking of System Defaults: A project or
user that maintains their own search segments may, if
they use the "-continue" search path keyword, automati
cally pick up any changes made to the site defaults of
a search list. Thus when a system administrator adds a
new search path to a standard search list, that search
path may also be added to private versions of that
search list.

6. Easy to Learn to Use: The new search facility is easy
to learn to use because it works the same way for all
search lists and thus for all commands that use search
lists. It is easy to learn to maintain search segments
because this is done by using the same commands that
are used to maintain a process' current search lists.

7. Easy to Use: No longer will a user have to issue sev
eral commands to initialize the command searching to be
performed in her process. One command to set the
"search" search list will effectively initialize all
search lists that will be used by the process.

8. Eliminate the Home Directory Syndrome: There are
Multics commands that do not know where to find a seg
ment that is their job to use. These commands
currently solve this problem by looking in the user's
home directory. The new search facility provides a
mechanism for these commands, and the users of these
commands, to conveniently override this restrictive de
fault convention.

9. Provide~ Push and EQQ Facility: There are Multics
subsystems that can be told to use a particular segment
over a number of invocations. They will use that seg
ment until told to use a different one. However, a new
segment can not be used on a temporary basis without
remembering what previous segment was in use, and then
telling the subsystem to use the previous segment again
when the temporary segment is no longer wanted. This
is usually inconvenient and often virtually impossible.
The new search facility provides a mechanism that al
lows a subsystem to push and pop the segment currently
in use.

Users Of The New Search Facility

Presented below is a list of current Multics commands and
subsystems that would benefit from using the new search facility:

MTB-336 Page 9

Language Processors: Many of the Multics language
processors (PL/I, FORTRAN, COBOL, ALM) use searching.
With the new search facility each could have its own
search list. They could, however, continue to share
the "translator" search list. In this case, the cur
rent commands that set and print the "translator"
search list would be converted to use the new search
facility.

exec com: The new search facility will make it possi
ble to conveniently use libraries of exec_coms. Pri
vate versions of exec_com that implement their own
searching would be unnecessary.

Text Editors: The Multics
macro capabilities (qedx,
search facility to make it
macro libraries.

text editors that provide
ted, teco) could use the new
convenient to use editor

Help: The "help" command could use the new search fa
cility to find "info" segments. The need for this en
hancement to the "help" command can easily be
demonstrated by pointing out the fact that several
Multics projects have implemented their own help com
mand just to perform searching.

Runoff: The "runoff" command will be able to have its
own search list. It would no longer have to use a
search facility designed for the Multics language
processors.

Multics System Tapes: The generate_mst command could
use the new search facility to specify the directory to
be searched when loading segments onto a Multics system
tape.

Home Directory Dependants: The "debug" and "mail" com
mands could use the new search facility to specify the
default location for "break segments" and "mailboxes".

Abbrev: The "abbrev" subsystem could use the search
facility to push and pop the current profile segment
being used. This would allow exec_com written
subsystem to conveniently replace a user's "profile" on
a temporary basis. Currently the absence of this capa
bility often causes exec_com written subsystems to mal
function due to some user defined abbreviation.

MPM Documentation

The remainder of this memorandum presents draft MPM documen
tation of the commands and subroutines that implement the
proposed new search facility.

Page 10 MTB-336

,... add_search_paths add_search_paths

Name: add_search_paths, asp

The add_search_paths command will add one or more search
paths to the specified search list.

Usage

add_search_paths search_list search_paths {-control_args}

where:

1. search list
-is the name of the search list to which the new

search paths will be added. If this search list is
not already initialized for this process, then it
will be initialized and the command will proceed nor
mally. If this search list cannot be initialized,
then the command will be terminated with an error.

2. search_pathi

MTB-336

specifies a new search path and its position within
the search list. A search path is specified as fol~
lows:

new_search_path {-control_arg}

where new_search_path is a relative or absolute
pathname or a keyword. For a list of acceptable
keywords see the notes below. The control argument
can be chosen from the following:

-after cur_search_path, -af cur_search_path
specifies that the new search path will be positioned
after the current search path. The current search
path is an absolute or relative pathname or a
keyword. In representing the current search path it
is not necessary to use the same name that appears
when the print_search_paths command is invoked. Any
equivalent representation of a current search path is
acceptable.

-before cur~search_path, -be cur_search_path
specifies that the new search path will be positioned
before the current search path.

Page 11

add_search_paths add_search_paths

-first, -ft
specifies that the new search path will be positioned
as the first search path in the search list.

-last, -lt
specifies that the new search path will be positioned
as the last search path in the search list. If no
search path position control argument is specified,
then -last is assumed.

3. control_arg

Notes

can be the following:

-segment path, -sm path
specifies that the search list to be updated is con
tained in the search segment specified by path. If
the last component of path is not ".search", then
that suffix will be assumed. If the specified search
segment does not exist, or if the specified search
list is not contained in this search segment, then
the command will be terminated with an error.

Listed below ~re the keywords accepted as search paths in
place of absolute or relative pathnames. There is no restriction
as to the position of any of these keywords within the search
list.

-continue
-home_dir
-initiated_segments
-process_dir
-referencing_dir
-working_dir

In addition, an absolute pathname may be specified with the
Multics active function [user xxxx]. Such a pathname will not be
expanded when it placed in the search list. It will be expanded
when first referenced in a user's process. This feature allows
search paths to be defined that identify the process directory or
home directory of any user.

The "-continue" keyword is used during the initialization of
a search list. At all other times it is ignored. It causes the
search facility to continue searching for search segments that
contain versions of the search list being initialized.

Page 12 MTB-336

add_search_paths add_search_paths

The "-initiated_segments" keyword causes the search facility
to find a segment if it is currently initiated.

Examples

asp info [hd]>info

The absolute pathname ">udd>Project_dir>User_dir>info" will
be added as a search path to the search list named "info".
This new search path will be positioned as the last search
path in the "info" search list.

asp runoff <insert_files -first

The absolute pathname represented by the relative pathname
"<insert files" will be added as a search path to the search
list named "runoff". This new search path will be posi
tioned as the first search path in the "runoff" search list.

asp exec_com library -after -working_dir

The absolute pathname represented by the relative pathname
"library" will be added as a search path to the search list
named "exec_com". This new search path will be positioned
in the "exec_com" search list after the current search path
specified by the keyword "-working_dir".

asp pl1 ">udd>[user project]>incl" -be >ldd>incl -sm >sc1>sys.search

The unexpanded pathname ">udd>[user project]>incl" will be
added to the search list named "pl1" in the search segment
">sc1>sys.search". This new search path will be positioned
before the current search path ">ldd>include". When the
"pl1" search list is initialized in a user's process, this
search path will be expanded to reference the user's project
"incl" directory.

MTB-336 Page 13

delete_search_paths delete_search_paths

~: delete_search_paths, dsp

The delete_search_paths command allows a user to delete one
or more search paths from the specified search list.

Usage

delete_search_paths search_list search_paths {control_args}

where:

1 •

2.

3.

search list
-is the name of the search list from which the speci

fied search paths will be deleted. If this search
list is not already initialized for this process,
then it will be initialized and the command will pro
ceed normally. If this search list cannot be
initialized, then the command will be terminated with
an error.

search_path1
specifies a search path to be deleted. The search
path may be an absolute or relative pathname or a
keyword. In representing the search path it is not
necessary to use the same name that appears when the
print_search_paths command is invoked. Any equiva
lent representation is acceptable.

control_arg '
can be chosen from the following:

-all, -a
specifies that the search list itself is to be
deleted. Any search paths specified will be ignored.

-segment path, -sm path
specifies that the search list to be updated is con
tained in the search segment specified by path. If
the last component of path is not ".search'', then
that suffix will be assumed. If the specified search
segment does not exists, or if the specified search
list is not contained in this search segment, then
the command will be terminated with an error.

Page 14 MTB-336

print_search_paths print_search_paths

Name: print_search_paths, psp

The print_search_paths command prints the search paths in
the specified search lists.

Usage

print_search_paths {search_lists} {-control_args}

where:

1. search_list
is the name of a search list to be printed. If no
search list is specified, then all search lists
referenced and initialized in this process will be
printed. If a search list is specified that is not
already initialized for this process, then it will be
initialized and the command will proceed normally.
If this search list cannot be initialized, then the
user will be informed that this search list cannot be
found.

2. control_arg

MTB-336

can be chosen from the following:

-expanded, -exp
specifies that all keyword search paths are to be ex
panded into their current absolute pathnames.

-segment path, -sm path
specifies that the search lists to be printed are
contained in the search segment specified by path.
If no search lists were specified, then all search
lists contained in this search segment will be
printed. If the last component of path is not
".search", then that suffix will be assumed. If the
specified search segment does not exist, then the
command will be terminated with an error. If a spec
ified search list is not contained in this search
segment, then the user will be informed that this
search list cannot be found.

Page 15

set_search_paths set_search_paths

Nam~: set_search_paths, ssp

The set_search_paths command allows a user to completely de
fine the search paths contained in the specified search list.

Usage

set_search_paths search_list {search_paths} {-control_arg}

where:

1 . search_list
is the name of the search list being set. If this
search list does not exist, then it will be created.

2. search_pathi
is a search path that will be added to the specified
search list. The search paths will be added in the
order in which they are specified in the command
line. The search path may be an absolute or relative
pathname or a keyword. (For a list of acceptable
keywords see the add_search_paths command.) If no
search path is entered, then the specified search
list will be set as if it were being initialized for
the first time in the user's process.

3. control_arg

Page 16

can be the following:

-segment path, -sm path
specifies that the search list to be set
in the search segment specified by path.
component of path is not ".search", then
will be assumed. If this search segment
ist, then the user will be asked if
created.

is contained
If the last

that suffix
does not ex
it should be

MTB-336

where_search_paths where_search_paths

Nam~: where_search_paths, wsp

The where_search_paths command and active function, given a
search list name and a reference name, will return the absolute
pathname(s) of where this reference name can be found. The
search for the reference name will be made using the current
search paths contained in the specified search list.

Usage

where_search_paths search_list ref_name {control_arg}

[wsp search_list ref name]

where:

1. search_list
is the name of the search list to be searched.

2. ref_name
is the reference name to be found.

3. control_arg
can be the following:

-all, -a
specifies that all occurrences of this reference name
found by searching this search list should be re
turned.

MTB-336 Page 17

search_paths_$find search_paths_$find

name: search_paths_$find

The search_paths_$find entry point, given a search list name
and a reference name, will return an absolute pathname of where
this reference name can be found. The search for the reference
name will be made using the current search paths contained in the
specified search list.

Usage

dcl search_paths_$find entry (char(*), char(*), char(*),
char(*), char(*), fixed bin(35));

call search_paths_$find (sl_name, ref_name, ref_path, dir_name,
entryname, code);

where:

1 . sl_name (Input)
is the name of the search list to be searched.

2. ref_name (Input)
is the name of the reference name to be found.

3. ref_path (Input)
This pathname is used when processing the search path
keyword "-referencing_dir". If this is the pathname
of a link, then the target pathname will be used.
The directory portion of this pathname (or target
pathname) will be used as the referencing directory.
If ref_path is null or blank, then the
"-referencing_dir" search path is skipped.

4. dir_name (Output)
is the directory portion of the pathname found for
the specified reference name.

5. entryname (Output)

Page 18

is the entryname portion of the pathname found for
the specified reference name.

MTB-336

search_paths_$find search_paths_$find

6. code (Output)
is a standard status code. The following subset of
possible values are of particular interest:

error_table_$bad_ref_name
illegal reference name, may contain ">" or "<".

error_table_$ref_name_not_found
reference name not found.

MTB-336 Page 19

search_paths_$get search_paths_$get

Name: search_paths_$get

The search_paths_$get entry point will return the current
search paths in the specified search list.

Usage

dcl search_paths_$get entry (char(*), ptr, ptr, fixed bin(19),
ptr, fixed bin(71), fixed bin(35));

call search_paths_$get (sl_name, sl_seg_ptr, sl_info_ptr,
sl_info_size, sl_index_ptr, sl_index, code);

where:

1. sl name (Input)
is the name of the search list to be returned.

2. sl_seg_ptr (Input)
is a pointer to the search segment in which the spec
ified search list is to be found. If this pointer is
null, then the process search segment will be used.

3. sl_info_ptr (Input)
is a pointer to a caller supplied buffer in which a
search list info structure will be returned. The
format of this structure is defined in the notes be
low.

4. sl_info_size (Input)
is the size (in words) of the caller's search list
info buffer. If the size of this buffer is not suf
ficient to accomodate all of the information that may
be returned, then an error will occur.

5. sl_index_ptr (Output)
is a pointer to a status index associated with this
search list. This status index is incremented when
ever the search list is modified.

6. sl_index (Output)

Page 20

is the value of the search list status index at the
time the information about this search list is re
turned. Using the pointer to this index, the caller
may, at any later time, easily compare the returned
index value with the current index value and thus de
termine if the search list has been modified.

MTB-336

search_paths_$get search_paths_$get

7. code (Output)

Notes

Below is a description of the search list info structure re
turned by this entry point:

dcl sl_info based(sl_info_ptr) aligned,
2 version fixed bin, /* 1. */
2 num_spaths fixed bin, /* 2. *I
2 pad(6) bit(36),
2 spaths (cur_num_spaths refer(sl_info.num_spaths))

like sp_info;

dcl 1 sp_info based(sp_info_ptr) aligned,
I* 3. *I
I* 4. */

where:

1. version

2 sp_type fixed bin,
2 sp_len fixed bin,
2 pad(2) bit(36),
2 spath char(168); I* 5. */

is the current version number of this structure. The
caller must set this field to 1.

2. num_spaths

3. sp_type

MTB-336

is the number of search paths contained in this
search list.

is an index that specifies the type of the search
path. The following values may be returned:

0 =>
1 =>
2 =>
3 =>
4 =>
5 =>
6 =>
7 =>

absolute pathname
unexpanded pathname (=> [user xxxx])
the keyword -continue
the keyword -initiated_segments
the keyword -referencing_dir
the keyword -working_dir
the keyword -process_dir
the keyword -home_dir

Page 21

search_paths_$get_expanded search_paths_$get_expanded

Name: search_paths_$get_expanded

The search_paths_$get_expanded entry point will return the
current search paths in the specified search list. Any search
paths that are unexpanded pathnames or keywords will be expanded
into absolute pathnames.

Usage

dcl search_paths_$get_expanded entry (char(*), ptr, ptr,
fixed bin(19), fixed bin (35));

call search_paths_$get_expanded (sl_name, sl_seg_ptr,
sl_info_ptr, sl_info_size, code);

where:

1. sl name (Input)
is the name of the search list to be returned.

2. sl_seg_~tr (Input)
1s a pointer to the search segment in which the spec
ified search list is to be found. If this pointer is
null, then the process search segment will be used. ·

3. sl_info_ptr (Input)
is a pointer to a caller supplied buffer in which a
search list info structure will be returned. (See
the search_paths_$get entry point for a description
of this structure.)

4. sl info_size (Input)
is the size (in words) of the caller's search list
info buffer. If the size of this buffer is not suf
ficient to accomodate all of the information that may
be returned, then a error will occur.

5. code (Output)

Notes

The special keywords "-continue", "-initiated_segments", and
"-referencing-dir" will not be expanded. They will be returned
in their keyword format.

Page 22 MTB-336

search_paths_$list search_paths_$list

Nam~: search_paths_$list

The entry point search_paths_$list will return a list of the
names of all search lists current defined in the specified search
segment.

Usage

dcl · search_paths_$list entry (ptr, ptr, fixed bin(19),
fixed bin(35));

call search_paths_$list (sl_seg_ptr, sl_list_ptr, sl_list_size,
code) ;

where:

1. sl_seg_ptr (Input)
is a pointer to the search segment to be listed. If
this pointer is null, then the process search segment
will be listed.

2. sl_list_ptr (Input)
is a pointer to a caller supplied buffer in which a
structure containing a list of search lists will be
returned. The format of this structure is defined in
the notes below.

3. sl_list_size (Input)
is the size (in words) of the caller's search list
list buffer. If the size of this buffer is not suf
ficient to accomodate all of the information that may
be returned, then an error will occur.

4. code (Output)

MTB-336 Page 23

search_paths_$list search_paths_$list

Notes

Below is a description of the structure that is used to list
the search lists contained in a search segment:

dcl 1

where:

1. version

sl_list based(sl_list_ptr)
2 version fixed bin,
2 num_slists fixed bin,
2 pad(6) bit(36),
2 slists (cur num slists

char (32) ;

aligned,
I* 1. *I
I* 2. *I

refer(sl_list.num_slists))
I* 3. *I

is the current version number of this structure. The
caller must set this field to 1.

2. num slists
- is the number of search list names contained in this

search segment.

3. slists
is an array of search list names.

Page 24 MTB-336

search_paths_$set search_paths_$set

Name: search_paths_$set

The search_paths_$set entry point will set the specified
search list so that it contains the specified search paths.

Usage

dcl search_paths_$set entry (char(*), ptr, ptr, fixed bin(35));

call search_paths_$set (sl_name, sl_seg_ptr, sl_info_ptr, code);

where:

1. sl name (Input)
is the name of the search list to be set.

2. sl_seg_ptr (Input)
is a pointer to the search segment in which the spec
ified search list is to be found. If this pointer is
null, then the process search segment will be used.

3. sl_info_ptr (Input)
is a pointer to a caller supplied structure that con
tains the search paths being set into the specified
search list. (See the search_paths_$get entry point
for a description of this structure.)

4. code (Output)

MTB-336 Page 25

