
MULTICS TECHNICAL BULLETIN MTB_345

To: Distribution

From: J. Falksen

Date: August 15, 1977

Subject: GENERALIZED MACRO PROCESSOR

I·' ... , r .,J _:rP c._
page 1

The Generalized Macro Processor expands a macro source. A macro
source is a mixture of literal data and macro constructs. An
expanded macro source contains the literal data as-is, and the
macro contructs replaced by their corresponding strings, if any.

A macro definition begins with a definition header, ends with a
definition trailer, and has a body which is a mixture of literal
data and macro constructs. A macro definition may be part of a
macro source, or may be in a segment by itself.

The Generalized Macro Processor includes these features:
• Variables
• Arrays
• Three storage classes of arrays/variables.
• Assignment
• Iteration
• Conditional execution
• Macro calling
• Active function calling

The language has been made very context-sensitive in order to
allow, as much as possible, literal data to be entered as it is
to be generated. All macro constructs begin with "&".

This language is used internally by RGL for generating PL/I
source. Since it will be installed as part of RGL anyway, it
might as well be documented and made available to anyone who can
utilize it.

Comments may be mailed to:

James Falksen
Honeywell Information Systems Inc.

5115 North 27th Avenue, MS K-28
Phoenix, AZ 85016

Messages or mail may be sent on System M to:

Falksenj.Multics

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN MTB 345 page 2

1. Macro Definition

¯o xxx<NL> ••• &mend<NL>

A macro definition for macro "xxx" looks like this. The macro
name, "xxx", may be up to 26 characters long. The first
character must be alphabetic, the rest may be alphanumeric (to
include" "). <NL> is a required new-line.

Macro Definition Location

Macros can be found in three locations.
1) Imbedded within a macro source.
2) In a loose segment, named xxx.macro.
3) In an archive, with a component name xxx.macro.

Imbedded macros are from the ¯o thru the &mend<NL>.
Otherwise, "¯o ••• "must be the first characters of the
segment or component. "&mend<NL>" must be the last
characters.

The
the
and

¯o ck

&mend

if (code A= 0)
then do;

call com err (code,"&name",&1);
return;

end;

result of calling this
header <NL> up to the
"&1" replaced by their

macro will be all characters after
&mend, with the constructs "&name"
values.

MULTICS TECHNICAL BULLETIN MTB_345 page 3

DATA DECLARATION

Macro data may be in three classes. LOCAL- which last only as
long as the current macro call. INTERNAL- which are available
in the macro anytime it is called within the same expansion.
EXTERNAL- which are available to any macro called within the
same expansion. Search order when looking for a data name is:
local, internal, external.

All of the data
three classes.
any of them,
"&loc".

types described below can be in any of these
The examples will show only "&loc" forms. In

"&int" or "&ext" may be substituted for the

Data names may be up to 16 characters long. The first
character must be alphabetic, the rest may be alphanumeric (to
include 11 ").

There is no conflict between data names and macro names
because of the form of reference. "&xxx()" means call macro
"xxx". "&xxx{}" means reference array "xxx". "&xxx " means
reference scalar "xxx". (Scalar names and array names do
conflict, however.)

2. Macro Scalar Declaration

&lac xxx&;
&loc xxx=yyy&;

Macro scalars may be declared with initial values. When the
declaration is encountered and the variable does not already
exist, it is created and assigned the value "yyy". If it does

. exist, then the declaration is ignored. If "yyy" has the form
"&(expr)" then expr is evaluated and used. Otherwise "YYY" is
a string. In either case, macro constructs may be used to
make up "yyy".

&ext name:rgl dump &;
&int cur rep=&1.list&;
&loc i&;-

3. Macro Array Declaration

&loc xxx{expr1:expr2}&;
&loc xxx{expr1:expr2}=yyy&;

Macro arrays are just like macro scalars except that
dimensionality is added. "expr1 11 specifies the lower bound.
"expr2" specifies the upper bound. If the array already
exists but has different dimensionality, it is an error. If
an initial value is specified, it is assigned to each element

MULTICS TECHNICAL BULLETIN MTB_345

of the array being created.
&ext char{0:127}=0&;

4. Macro Array Varying Declaration

&loc xxx{expr1:expr2}var&;

page 4

Arrays of varying extent are available. ''expr1" specifies the
m1n1mum extent available. "expr2" specifies the maximum
extent available; The actual extent available is dependant on
the highest and lowest elements which were assigned to it.

&int graphic{-&1:&1}var&;

5. Macro List Declaration

&loc xxx{expr}list&;

A list is a set of unique elements. "expr" specifies the
maximum number of elements the list is to hold. A list is
assigned like a scalar, but referenced like an array. When an
assignment is made to a list, the list is searched to see if
the new element is there. It is added only if it is not. See
EXAMPLES for ways to utilize this data type.

&ext et_{50}list&;

6. Macro Stack Declaration

&loc xxx{expr}fifo&;
&loc xxx{expr}lifo&;

"expr" specifies the maximum number of elements the stack is
to hold. A stack is assigned like a scalar, but it can be
referenced as either a scalar or an array. An assignment to a
stack causes a new element to be added to it. A scalar
reference to a fifo stack causes the oldest element to be used
and then deleted. A scalar reference to a life stack causes
the newest element to be used and then deleted. An array
reference to a stack causes the data to be used but not
deleted. The subscript "0" refers to the top-of-stack
element. Subscript ''-1" refers to the next-to-top one, etc.

MULTICS TECHNICAL BULLETIN MTB_345 page 5

EXECUTABLE CONSTRUCTS

7. Assignment

&let xxx=yyy&;
&let xxx{expr}=yyy&;
&let xxx{expr1:expr2}=yyy&;

A value may be assigned to a variable, array element, or range
of array elements. If a range is specified, the "yyy" is
assigned to each element in the range. If "yyy" has the form
"&(expr)" then "expr" is evaluated and used. Otherwise "yyy"
is a string.

&let var1=5280&;
&let var2=&(&var1+1)&;
&let var3=&var2+1&;

Note that the last one is not an arithmetic assignment. After
doing these, var1 will contain "5280", var2 will contain
"5281", and var3 will contain "5281+1".

8. Macro Call

&xxx(string1 ,string2, •••)

Macros can be called from within macros. "xxx" is the name of
the macro. There can be NO white-space between the macro name
and the "(". "string1" is parameter 1 of the called macro,
etc. Leading white-space in each string is discarded. If a
macro has no arguments, then the form will be "&xxx()". ","
separates one parameter from the next. However "(" and ")"
may be used to pass a list of things as one argument.
"stringn" may contain macro constructs, but all ",", "(" or
")" resulting from a construct will be literal.

Up to 100 arguments may be passed to a macro. Each argument
is limited to 500 characters.

&xxx(abc,def)
calls macro "xxx" with parameters: "abc", "def".

&xxx(&"abc,def&")
calls macro "xxx" with parameter "abc,def".

&xxx((abc,def))
calls macro "xxx" with parameter "(abc,def)".

&xxx(&2,&yyy())
calls with parameters: "parameter2'', macro-yyy-expansion.

MULTICS TECHNICAL BULLETIN MTB_345 page 6

&let x=&strip(&name,.pl1)&;
This assigns the result of the macro "strip" to variable "x";

9. Iteration

&do stuff1 &while yyy &; stuff2 &od

Macros may use iteration. Either "stuff1" or "stuff2" may be
null; so either leading, trailing, or imbedded decision may be
utilized. "stuff1" is executed. Then the logical value of
"YYY" is determined. If it is false then "stuff2" is skipped
and processing continues following the "&od". If it is true,
then "stuff2" is executed, followed by "stuff1", and then
another test.

If "YYY" is of the form "&(expr)" then "expr" is evaluated.
If the result is O, it is false; otherwise it is true. Or
"yyy" can be of the form "stringRELstring". REL can be "=",
""'=", "<","<=", ">", ">="; Or "yyy" can be of the form
"string". Then "0", "F", "FALSE", or "NO" (ignoring case) is
false; anything else is true.

(&* gives number of parameters passed, &{ ... } is a
non-constant reference to a parameter.)

&let vv=&*&;
&do

(&{&vv})&+
&let vv=&(&vv-1)&;
&while &(&vv>O)&;
,&od;

If 3 parameters were passed this will give
(parameter3),(parameter2),(parameter1);

10. Conditional Processing

&if yyy &then stuff 1 &fi
&if yyy &then stuff 1 &else stuff2 &fi

Processing can be altered by testing for existance of
conditions. The logical value of "yyy" is determined. If it
is true, then ''stuff1" is executed and "stuff2" is skipped.
Otherwise, "stuff1" is skipped and "stuff2" is executed.

If "yyy" is of the form "&(expr)" then "expr" is evaluated.
If the result is O, it is false; otherwise it is true. Or
"yyy" can be of the form "stringRELstring". REL can be "=",
""'=", "<","<=", ">", ">="· Or "yyy" can be of the form
"string". Then "0", "F", "FALSE", or "NO" (ignoring case) is
false; anything else is true.

MULTICS TECHNICAL BULLETIN MTB 345 page 7

11. Comment

&comment ..• &;

This allows you to place a comment in a macro. Nothing
between the &comment and the &; is looked at.

12. Return

&return

This construct causes an immediate halt of processing of the
current macro.

&if &(&*=0)
&then &error 2,No arguments, call ignored.&; &return
&fi

13. Arithmetic Expressions

Arithmetic expressions can occur in various contexts. A usual
one is in the form "&(expr)". In evaluating an expression, it
is first expanded (look for all &contructs) and then it is
scanned and arithmetically executed. The only valid operands
are fixed point numbers. The calculations are carried
internally as decimal(59,9) and should suffice for most
applications. The normal arithmetic operators are supported:
"+", "-", "!" and "*" Parentheses, "(" and ")"may be used
for grouping. Relational operators are also available. These
have lower precidence than "+". The operators available are
"=", ""'=", ">", "<", "<=" and ">="· AND and OR are
accomplished via "*" and "+".

&if &((&2=0)+(&2=2)) &then ... &fi
In this case if parameter 2 is not equal to either "0" or "2",
then the sum will equal zero which means false.

&if &((&2=0) * (&3 <= 10)) &then .•. &fi
In this case if either parameter 2 is not zero or parameter 3
is greater than 10 the product will be zero which means false.

14. Error Reporting

&error expr,string&;

A macro can discover that improper conditions exist. This
construct allows the fact to be reported. "ex pr" is
evaluated. The result must be in the range 0-4.

MULTICS TECHNICAL BULLETIN MTB_345

These
0)

1)

2)

3)

4)

values will give different forms of messages:
NOTE: Macro "xxx", linen.

string
WARNING Macro "xxx", line n.

string
ERROR SEVERITY 2 Macro "xxx", line n.

string
ERROR SEVERITY 3 Macro "xxx", linen.

string
ERROR SEVERITY 4 Macro "xxx", linen.

string

page 8

Severity 3 will stop the output segment from being created;
however processing will continue. Severity 4 will cause
immediate termination of the macro expansion.

&error 2,Second parameter missing, "13" assumed&;
&error 4,Table name not supplied.&;

VALUE CONSTRUCTS

15. Simple Parameter Reference

&n
&nn

A macro may be called with parameters. In the macro when you
want to reference the second parameter, you say "&2" or "&02".
The number after the & is either one or two digits. Note that
if the text character following is a digit and the parameter
being referenced is less than 10, then the leading zero is
necessary. Reference to a parameter which was not supplied
results in a null string being used.

Listing of &3.&1.
gives you

Listing of parameter3.parameter1.

16. Multiple Parameter Reference

&{expr}
&{ex pr 1: expr2}
&{expr1:expr2,string}

Sometimes it is necessary to reference a parameter via a
variable. Or you want to reference a series of the
parameters. The first form gives you a parameter, the number
being specified by "ex pr". The second form gives you a string
which is made up of parameters "expr1" thru "expr2" connected ~

MULTICS TECHNICAL BULLETIN MTB_345 page 9

by one space. The third form gives you a string which is made
up of parameters "expr1" thru "expr2'' connected by "string".

&{2:4, ' }
will give you

parameter2 , parameter3 , parameter4
Any occurance of "}" in "string" must be protected. "string"
is limited to 150 characters. Any macro constructs may be
used in specifying "string".

17. Protected String

&" ••• &"

This construct protects a string from the macro processor.
The &" is removed from each end and the delimited string is
not scanned for any other macro constructs.

18. Parameter Count

&*

This construct is replaced b~ the number of parameters passed
to the macro.

&{1:&*,}
gives you a string which is all parameters connected by a null
string.

19. Literal &

&&

This construct gives you an & in the output.

20. Macro Scalar Reference

&xxx

This form makes a scalar reference to a data item. "xxx" is
the name of the variable. The character immediately following
"xxx" may not be "(" or "{".

&abc(xyz)
calls macro abc with parameter "xyz".

&abc&. (xyz)
outputs the contents of variable "abc" concatenated with the
string "(xyz)".

This form of reference may be made to scalar data and stack
data. Referencing stack data causes the referenced value to
be removed from the stack. See Macro Stack Declaration for
details.

MULTICS TECHNICAL BULLETIN MTB_345

21. Macro Array/List/Stack Reference

&xxx{expr}
&xxx{expr1:expr2}
&xxx{}
&xxx{expr1:expr2,string}
&xxx{,string}

page 10

This form makes array reference to a data item. "xxx" is the
name of the array. There can be NO white-space between "xxx"
and "{". This gives all the facility described under Multiple
Parameter Reference, except that an array variable is
referenced instead of the macro parameters. Also, if
"expr1:expr2" is null, then reference is made to all elements
in the data item.

This form of reference may be made to arrays, lists, and
stacks. However, only a single element reference may be made
to a stack. See Macro Stack Declaration for further details.

22. Active Functions

&[string]

This construct allows you to make use of active functions
within macros. Macro consructs may be used to make up
"string". "string" is limited to 500 characters. The value
returned by the active function is limited to 500 characters. ~
If active functions are being nested, only the outermost [is
preceeded by &.

Today is &[date], and it is &[time].
Report is due &[date ""e &1&;"].
File it in &[directory [wd]J>status.

23. Substr Function

&substr string,expr1 &;
&substr string,expr1,expr2 &;
&substr string,expr1:expr2 &;

Only part of a string need be used. Macro constructs may be
used to produce "string". "string" is limited to 16384
characters. The first form gives you the part of "string"
from character "expr1" to the end. If "expr1" is negative,
then it is the character number from the end of the string.
"expr1" cannot reference outside "string".

The second form gives you the part of "string" from character
"expr1" for a total length of "expr2". If the number of
characters left in "string" is less than "expr2", then the
result is padded with spaces. If "expr2" is negative, the
padding is to the left, otherwise it is to the right. If no
padding is needed, then the sign of "expr2" is immaterial.

MULTICS TECHNICAL BULLETIN MTB 345 page 11

The third form gives you the part of "string" from character
"expr1" thru "expr2". Both of these values must be within
"string". In this case, if "expr2" is negative, it means to
count from the end of "string".

If you do &let xxx=abcdefg&;
then this: yields this:

&substr &xxx,2,3&; bed
&substr &xxx,3&; cdefg
&substr &xxx,-3&; efg
&substr &xxx,3,8&; dcefglSiHS
&substr &xxx,-3,8&; efglHHHrn
&substr &xxx,-3,-8&; kHHSkSkSe fg
&substr &xxx,3,5&; cdefg
&substr &xxx,3:5&; cde

24. Length Function

&length string&;

You can get the number of characters in string.
&length &1&;

will tell you how long parameter 1 is.

25. Usage Function

&usage string&;

This function allows you to document what macros went into the
generation of a macro output. "string" is an ioa control
string which describes the format of the output. It-is given
to ioa with 3 parameters: dname,ename,macname dname is the
directory name of the segment which contained the macro.
ename is the entry name of the segment which contained the
macro. macname is the macro name (less .macro) of the macro.
All white-space needed in the result must be specified in
"string". "string" is used once for each macro used.

&usage I* Aa>Aa -- Aa */A/&;
This is one way you could display macro usage at the end of a
PL/I source.

26. Quote Processing

& q u<6 t e st r in g & ;
&unquote string&;

The macro processor is supposed to language-independant. But
since it is operating in the Multics environment, I thought it
best to be able to handle quoted strings properly. The first
form will double any internal quote characters within
"string". It does NOT surround "string" with quotes.
"string" is limited to 16384 characters.

MULTICS TECHNICAL BULLETIN MTB_345 page 12

The second form removes quoting characters. Any doubled
quotes within a quoted string will be replaced by one
occurance. The quotes surrounding the string will be dropped.

Processed on : &unquote &[date time]&;
This kind of thing is necessary because -date time returns a
quoted string.

27. Null Separator

&.
&+

This construct causes no output. The first form is used when
there is ambiguity without it. Or when white-space skipping
must be terminated.

&3&.7
&name&.suffix

These cases are just resolving the ambiguity. You do not want
to reference "&37" or "&namesuffix".

&if ••• &then&&&&&xx&&&&fi
gives you an output of

xx&&&
However,

&if •.. &then&.&&&&&xx&&&&fi
gives you

The second form is a separator which "uses up" all white-space
following it. Suppose you do not want to have to say:

&if ••• &then&. xx&fi
to get the three characters of output you want. Instead you
can say:

&if •••
&then

&. xx&+
&fi

28. Rescanning

&scan string &;

The normal mode of processing is for the results of any macro
construct to be considered as a protected string, that is, it
is not rescanned. Sometimes this is not what is needed. This
construct causes macro expansion to be done on "string" and
then it is re-expanded. "string" is limited· to 16384
characters. However, complete constructs must be included
within 11 string 11 • Suppose that the fir st parameter to a macro
is 11 a,b,&[time] ,d".

This will expand
"a,b,&[time] ,d".

&call(&1)
macro "call" with one parameter:

MULTICS TECHNICAL BULLETIN MTB 345 page 13

Macro "call" will "a,b,08:21,d".

This will expand
"08:21", and "d";

&call(&scan &1&;)
receive one parameter:

&scan &&call(&1)&;
macro "call" with 4 parameters: "a", "b",

29. Macro Library Reference

&lib xxx1,xxx2, •.• &;

A macro source can specify what libraries are to be searched
for macro definitions. "xxxi" is the name of an archive (less
the .archive) to be found via system search rules. These
libraries are known through the rest of the expansion.

&lib drfdev macros,simplex&;
This tells the macro processor that you want to look for macro
definitions in drfdev macros.archive and then in
simplex.archive.

When a macro call is encountered, the macro is looked for in
this sequence:

1) macro already used or found imbedded.
2) an initiated loose segment.
3) a loose segment in the working directory.
4) a component of an archive specified in the &lib statement.

30. Macro debugging

&trace

As an aid in debugging macros, there is a tracing facility.
If the second line of a macro. definition consists of "&trace"
then information will be printed as the macro executes. This
is what a trace can look like:

1 MACR0(2) zilch
2 ARG 1: "abc"
3 ARG 2: "xyz"
4 &loc x = 2&;
5 arith (2>0)
6 log-101 (1)
7 arith (2-1)
8 &let x = 1&;
9 arith (1>0)

10 log-101 (1)
11 ...•. &if 76:107 &then 1 &else 0 &fi
12 arith (1>0)
13 log-101 (1)
14 arith (1-1)
15 &let x = O&;
16 arith (O>O)
17 log-101 (O)
18 •.... &if 76: 107 &then 0 &else 1 &fi
19 arith (O>O)

MULTICS TECHNICAL BULLETIN MTB 345

20
21

log-101
MEND(2)

(0)
zilch

page 14

Line 1 names the macro being expanded and tells the nesting
depth (2). Lines 2-3 show the arguments begin passed to this
macro. Line 4 shows the declaration of the local variable "x"
and it being assigned an initial value. Lines 5, 7, 9, 12,
14, 16, 19 indicate an arithmetic expression which will be
evaluated. The expression is printed enclosed in (); these
are not part of the source.

Lines 6, 10, 13, 17, and 20 indicate a logical value which is
being evaluated; it also is printed enclosed in(). "log-xOy"
tells the environment under which the logical is being used;
"x" represents TRUE possible; "y" represents FALSE possible.
101 and 100 mean that the result will be determined by the
expression. 001 and 000 mean that the expression is being
skipped over because a non-selected part of an IF is being
skipped over.

Lines 8, and 15 show an assignment begin done.

Lines 11 ~nd 18 shows the completion of an if-then-else-fi.
76:107 means that the &if begins at character 76 of the macro
definition and the &fi ends at character 107 of the macro
definition. The number following the "then" indicates whether
this part is begin done or not; the number following the
"else" indicates whether the part was done.

Line 21 indicates that the macro is finished, telling the name
and nesting.

31. White-space

White-space means any of : HT, SP, NL, VT, FF.

White-space is always skipped over under these circumstances:
1) After these macro tokens:

&· , &do &while &od &error
&usage &scan &substr &length &lib
"e &unquote &if &then &else
&fi &+

2) Following II (II and 11 II in a macro call (at level 1). ,
3) Following the II) II in 11 &(expr)".
4) Following fl - II in &let &loc &int and &ext.

MULTICS TECHNICAL BULLETIN MTB 345 page 15

NOTES

Each macro construct has a very specific termination
condition. When constructs are nested, the beginning and
ending of each construct must be totally within any containing
construct. There are 4 different types of constructs, as far
as termination conditions are concerned.

First there are the types of construct which are terminated by
by the even match of a delimiter pair:

&" ••• &"
& [• • •]
&xxx(string1,string2,)
&xxx{,string}
&xxx{expr1:expr2,string}
&xxx{expr1:expr2}
&xxx{expr}
&xxx{}
&{expr1:expr2,string}
&{ex pr 1: expr2}
& {ex pr}

Then there are the kinds which are self-delimiting:
&&
&*
&+
&.
&n
&nn
&return
&xxx

Also there are the kind which have a termination keyword:
&do stuff1 &while yyy &; stuff2 &od
&if xxx &then stuff 1 &else stuff2 &fi
&if xxx &then stuff 1 &fi
¯o xxx<NL> ••• &mend<NL>

And finally, &; terminates these constructs:
&comment ••. &;
&error expr,string&;
&length string&;
&let xxx:yyy&;
&let xxx{expr1:expr2}=yyy&;
&let xxx{expr}=yyy&;
&lib xxx1 ,xxx2, ••• &;
&loc xxx&; (int or ext may replace loc)
&loc xxx=yyy&;
&loc xxx{expr1:expr2}&;
&loc xxx{expr1:expr2}:yyy&;
&loc xxx{expr1:expr2}var&;
&loc xxx{expr}fifo&;

MULTICS TECHNICAL BULLETIN MTB 345

&loc xxx{expr}lifo&;
&loc xxx{expr}list&;
"e string&;
&scan string &;
&substr string,expr1 &;
&substr string,expr1,expr2 &;
&substr string,expr1:expr2 &;
&unquote string&;
&usage string&;
&while yyy &;

page 16

The keywords to the macro processor are reserved. That is to
say, they cannot be used as data names. It does not stop
their use, however, as macro names. This is the list of
current reserved words. It does contain some for future
expansion.

arg comment do
else empty error
ext f i hbound
j_ f int let
lbound length lib
member loc macro
mend quote return
scan subs tr unquote
usage while

EXAMPLES

Here is a macro which helps in referencing error table names:
¯o et
&int et {50}list&;
&if &(&lr:O)
&then
dcl error table $&et{, fixed bin(35)ext static;
dcl error-table-$} fTxed bin(35)ext static;
&return - -
&fi
&let et =&1&;
error table $&1&mend - -

If you expand this segment:
if (code = &et (badarg))
then code= &et_(notfound);

code = &et_(badarg);

&et ()
end;

MULTICS TECHNICAL BULLETIN MTB_345

You get this segment:
if (code = error table $badarg)
then code = error_table_$notfound;

code = error_table_$badarg;

page 17

dcl error table $badarg fixed bin(35)ext static;
dcl error=table=$notfound fixed bin(35)ext static;

end;

You call this macro each time you want to reference to an
error table value. It gives you the complete name string
back,-and puts the name into a list. The last call is made
with no argument. Upon this condition, the list (which
contains one occurance of each of the names referenced) is
dumped out into a list .of declarations.

MULTICS TECHNICAL BULLETIN MTB_345· page 18

USAGE

There are 2 ways to use this macro processor: as a subroutine
or as a command. The subroutine is written to be called by
any procedure which wants a macro expanded. This could be a
compiler, exec com, etc. The command interface was added to
allow direct use, also. Both are on System M in the directory

>udd>m> jaf> prog

Syntax: macro macroname {control_args}
macro "&string"

Function: To expand a segment containing macro constructs. The
segment macroname.macro expands into a segment named macroname.

Argument: macroname is an entryname of the segment to be
expanded. It is found by macro search rules. The suffix macro is
supplied if not present.

&string is any string beginning with a 11 &11 •

expanded and then printed.

Control arguments: One of the following.

This string is macro

-print, -pr: print the resulting expansion, instead of creating
segment.
-long, -lg: print which macros were used after expansion is done.
-call XXX: if no error occurred in processing, execute XXX after
expansion is complete.

Note: macro "search rules" in this case are:
1) initiated segments
2) working directory

. ' ..

r

MULTICS TECHNICAL BULLETIN MTB 345 page 19

call macro (macname,outptr,outlen,arglp,argct,msg,code);
call macro=$expand(segname,outptr,outlen,arglp,argct,msg,code);

dcl macro entry(char(32)var,ptr,fixed bin(24),ptr,fixed bin,
char(200)var,fixed bin(35));

dcl macro_$expand entry(char(32)var,ptr,fixed bin(24),ptr,
fixed bin,char(200)var,fixed bin(35));

Function: To find a segment and expand it. The segment may be
either a source containing macro constructs, or a macro
definition.

Arguments:
macname: name of macro to expand. (IN)
segname: name of segment to expand (IN)
outptr: pointer to resulting expansion (IN)
outlen: index of last character used (IN/OUT)
arglp: pointer to argument structure (IN)
argct: number of arguments supplied (IN)
msg: text to support error code
code: standard system return code

Note:The argument structure has this form.
dcl 1 argl(argct) based(arglp),

2 p ptr, I* points to argument string */
2 1 fixed bin; /* length of argument string */

External and internal macro variables, known macros, and macro
library names are retained across calls to this routine. To cause
these to be forgotten:

call macro_$free;

Note: Macro libraries can be made available with this call:
call macro $library(libname);
dcl macro_$library entry(char(32)var,fixed bin(35));

libname: is the name of an archive (without .archive), it will be
found via system search rules.

