
Multics Technical Bulletin MTB-361

To: Distribution

From: O. D. Friesen

Date: April 6, 1978

Subject: MDBM Recovery and Concurrency Control

Introduction

This MTB discusses the recovery and concurrency control features
to be made available to users of the Multics Data Base Manager
(MDBM) for MR7.0. Information about the MDBM as it is currently
implemented may be gleaned from the Multics Relational Data Store
(MRDS) Reference Manual (Order No. AW53), the Multics Integrated
Data Store (MIDS) Reference Manual (Draft), and the LINUS
Reference Manual (Draft). Please mail any comments or
suggestions to Friesen.Multics on System M or call (602) 249-7245
or HVN 8*341-7245.

Proposal

With the transaction processing facilities to be available as a
part of MR7.0 (December 1978) it will be possible for MDBM users
to access a data base concurrently for update purposes without
being required to reserve relations on an exclusive basis. (Which
is currently the case in MRDS when using set scope and dl scope
and in MIDS when using keepx and freex.) Instead users will be
able to interact with the checkpoint and rollback features and
will be able to lock out portions of the data base (or data
bases) on an 'as needed' basis. Thus, in the event that
processing is interrupted for some reason, users will be able to
restore the data base to its state of existence when the last
checkpoint was executed. Furthermore the level of granularity
for lockout will be at the block level, rather than the relation
level. (A block consists of Multics pages, the number of which is
determined at data base creation time. For more detail
concerning the proposed changes to the data base architecture,
see MTB-359, ''Enhancements to the Multics Data Base Manager.")

Concurrent users will also be assured that data accessed between
the execution of checkpoints is consistent and repeatable. That
is, data retrieved from a tuple at time tl will contain identical
values when the tuple is retrieved again at time t2, if no
checkpoint has been executed between times tl and t2.
Alternatively, users will have the option of ignoring the
repeatability feature, if they are only retrieving data. Thus,
data retrieved from a tuple at time tl may contain different
values when the tuple is retrieved again at time t2.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-361

Repeatability can
not updating data.
users.

be ignored only if the user is retrieving and
Repeatability is always enforced for update

Data bases created after the MR7.0 release will be assigned a new
version number and will be recoverable using rollback and
checkpoint. The scope mechanism (including keepx and freex in
MIDS) used by current version data bases will still be
operational for current version data bases after MR7.0. In order
to use the rollback and checkpoint entry points, it will be
necessary to redefine and reload the data base as a new version
(recoverable) data base. A recoverable data base will not
recognize the scope requests.

An administrative opening mode will be provided for use by the
Data Base Administrator(DBA). With this opening mode it will be
possible to quiesce selected files within a data base for dumping
or restructuring. Exclusive openings of recoverable MRDS data
bases will no longer be supported, and a null mode must be
specified when opening a data base.

MIDS will continue to be usable with current version data bases
as well as new version data bases. Currently, MIDS does not
recognize the concept of area as an entity separate and distinct
from the concept of data base. That is, MIDS areas are regarded
as synonymous with MIDS data bases. This will continue to be the
case for MR7.0.

For new version data bases the mode parameter supplied in the
call to ready an MIDS data base will be interpreted to conform to
the notion of repeatability. Thus, for new version MIDS data
bases the concepts of concurrent retrieval/update and protected
retrieval/update have no meaning. The concept of an area as a
subset of a data base will be supported with the introduction of
MIDS-II, hopefully prior to the release of MR 8.0.

Recovery of a data base by 'bringing it forward' using after
images is made possible by the -after option to be provided by
vfile • This allows after images of each updated block to be
collected on a sequential file at checkpoint time. This
sequential file may reside on disk or tape.

MRDS User Interface

It is proposed that the dsl $open entry be
new entries be provided for dsl • They
dsl $reset ctl file, dsl $ready file,
dsl=$checkpoint and dsl_$rollback. -

modified and that six
are dsl $set ctl file,

dsI_$finish=file,

.
'

MTB-361 Page 3

Entry: dsl_$open

This entry causes the specified data bases to be opened for
processing in the designated modes. For each opened data base,
an index that is to be used to specify that data base in future
MRDS calls is returned. If two or more data bases are to be
concurrently open to the same process they must be opened in the
same call to dsl $open. If one or more of the data bases
specified cannoI be opened for any reason, none of the others
will be opened.

The maximum number of data bases permitted to be open to any
process is 64.

Usage

declare dsl_$open entry options (variable);

call dsl_$open (data_submodel_pathl, data_base_index1,model,
. . . '

data_submodel_path~, data_base_index~, mode~, code);

where:

1. data submodel pathi (Input) (char(*))
is a characier string containing the absolute or
relative path name of the data submode! (or the data
base) defining the relevant portion of the data base.
If the path of the data base itself is specified, the
data model is used in place of the data submode!.

2. data base indexi (Output) (fixed bin(35))
is-an inieger that is to be used in subsequent MRDS
calls to specify the corresponding data base
designated in this opening.

3. modei (Input) (fixed bin(35))
is an integer (0,1,2,3,or 4) indicating the usage
mode for which the data base is to be opened.

O null mode is used when opening new version
data bases. This is the only mode in which a
new version data base may be opened.

2

retrieval with concurrent access to the data
base (both for update and retrieval) by other
processes allowed. This is only applicable
for old version data bases.

ufdate with concurrent access to the data base
both for update and retrieval) by other

processes allowed. This is only applicable
for old version data bases.

Page 4

4 . code

3 exclusive retrieval prohibiting the
access to the data base by other
for update purposes. This is only
for old version data bases.

MTB-361

concurrent
processes

applicable

4 exclusive update prohibiting the concurrent
access to the data base by other processes
for either update or retrieval. This is only
applicable for old version data bases.

(Output) (fixed bin(35))
is a standard status code.

MTB-361 Page 5

Entry: dsl_$set_ctl_file

To insure recoverability and to guard against conflicts in a
concurrent environment it is necessary for the MRDS user to
associate the data base (or data bases) with a control file. The
control file is used by vfile to coordinate transactions made
against the data base and to record the state of completion of
each transaction for the purposes of checkpoint and rollback.

Usage

dcl dsl_$set_ctl_file entry options (variable);

call dsl_$set ctl_file (control_sw, dbil, ... ' dbi_!!, code);

where:

1. control sw (Input) (char(32))

2. db ii

3. code

Notes

Ts the switch name of the control file used by vfile
to record the-state of each transaction.

(Input) (fixed bin(35))
are the data base indexes of the data submode ls or
data bases against which accesses are to be
coordinated.

(Output) (fixed bin(35))
is a standard status code.

Only one control file per process is allowed to be set at any one
time for a given data ~ase for each user of the data base.

This call must .be executed after the data base has been opened.

If the control sw is not already attached, then an attach
description is created and the attachment is performed. If the
control sw is not open, then it is opened for keyed sequential
update.-

Page 6 MTB-361

Entry: dsl $reset ctl file

To terminate the use of a control file the dsl $reset ctl file
entry is called.

Usage

dcl dsl_$reset_ctl_file entry (char (32), fixed bin(35));

call dsl $reset ctl file (control_sw, code);

where:

1. control sw (Input)
Is the switch name of the control file used by vfile
to record the-state of each transaction.

3. code (Output)
is a standard status code.

Note

This call should be made only after all file accesses have been
completed, else an error will be returned upon an attempt to
access the file. Normally this call would be made between the
finishing of one set of files and the readying of another set of
files.

MTB-361 Page 7

Entry: dsl_$ready_file

After a new version (or recoverable) data base has been opened,
before any data can be accessed it is necessary to call
dsl_$ready_file. A call to ready file, after a data base has
been opened, causes the specified files to be attached and
opened. If the ready mode desired for this file equals 1 (=
retrieve), then the -transact option is not included in the
vfile attach description. If the ready mode is 2 (=
monit~r retrieve) or 3 (= update), the attach description
includes the -transact <switch name> option, where <switch name>
is the control sw entered in the call to set ctl file.- The
attach options -stationary and -shared are also-included in the
attach description.

All files to be readied concurrently must be readied within the
same call.

Usage

dcl dsl_$ready_file entry options (variable);

call dsl $ready file (dbi1, file name1, rdy mode1,
file_name~, rdy=mode~,- ••• , dbi~, file_name~, rdy=mode~, -code);

where:

1. dbii (Input) (fixed bin(35))
are the indexes to the data bases or data submodels
of which the files to be readied are a part.

2. file namei (Input) (char (30))
- ari the file names representing each file to be

readied in each of the open data bases.

3. rdy modei (Input) (fixed bin)
- is the mode in which each of the files are to be

readied.
1 => retrieve (repeatability not assured)
2 => monitor retrieve (repeatability assured)
3 => update Trepeatability assured)

4. code (Output) (fixed bin(35))
is a standard status code.

Notes

All files readied must be readied in the same call statement.
Before another ready file call can be made it is necessary to
call finish file for ail readied files or to close all data bases
which contain a readied file.

If the data base is being referenced through a data submode!,

Page 8 MTB-361

then the file may in reality reference a subset of those
relations appearing in the file.

When files are readied in the monitor retrieve or update mode the
user is assured that repeated accisses of the same tuple,
uninterrupted by checkpoints, will either yield identical data or
will return an error code of mrds error $asynch change. When
this error code is returned the user ihould- call ~sl $rollback.
The data base is then returned to its state when the most recent
call to dsl $checkpoint was executed by this user. (Only changes
made by thii user are rolled back, and changes made by other
users remain unaffected.)

When a file is readied in retrieve mode the checkpoint and
rollback facilities need not be used. In this mode the user is
assured only that the retrieved data is "clean" or valid data.
It is entirely possible that other users may update data being
queried by this user. Hence, repeatable retrievals cannot be
guaranteed.

MTB-361

f"' Entry: dsl $finish file

After a file has been readied it is necessary that
finished. This is accomplished implicitly
containing data base is closed. Files may also
explicitly by calling dsl_$finish file.

Usage

dcl dsl_$finish_file entry options (variable);

Page 9

the file be
whenever the

be finished

call dsl $finish file (dbi1, file namem, file name~, ••• ,
dbi~, file_name~, file=name!, .•. ~code);-

where:

1. dbii (Input) (fixed bin(35))
are the indexes to the data submodels or data bases
of which the files to be finished are a part.

2. file namei (Input) (char (30))
- are the file names representing each file to be

readied in each of the open data bases.

3. code (Output) (fixed bin(35))
is a standard status code.

Page 10 MTB-361

Entry: dsl_$checkpoint

In order to mark a series of updates to a data base as complete
and final the user calls dsl $checkpoint. This entry is also
called to release the references-to retrieved blocks when a file
is open in monitor retrieve mode.

Usage

dcl dsl_$checkpoint entry (fixed bin (35), fixed bin (35));

call dsl_$checkpoint (trans_id, code);

where:

1. trans id (Output)
is an identifier for the transaction being
checkpointed.

2. code (Output)
is a standard status code.

MTB-361 Pa~e 11

,,... Entry: dsl $rollback

This entry allows a user to effectively erase changes made to the
data base since the last call to dsl_$checkpoint.

Usage

dcl dsl_$rollback entry (fixed bin(35), fixed bin(35));

call dsl $rollback (trans_id, code);

where:

1. trans id (Output)

2. code (Output)

is an identifier for the transaction
being rolled back.

is a standard status code.

Page 12 MTB-361

Example

call iox $attach name (control sw, control iocb_ptr, atd,
ref ptr, code);

where:

1. control sw (Input) (char(*))
Is the switch name to be assigned to the
control file.

2. control iocb ptr (Output) (pointer)
Is a-pointer to the control block of the
control fiie.

3. atd (Input) (char(*))
is the attach description for the control
file.

4. ref ptr (Input) (pointer)
is a pointer to
procedure.

5. code (Output) (fixed bin(35))

the

is a standard status code.

referencing

call iox_$open (control iocb_ptr, mode, "O"b, code);

where:

1. control_iocb_ptr (See above)

2. mode (Input) (fixed bin)
equals 10 for keyed sequential update.

call dsl_$open (db path, dbi, open_mode, code);

where:

1. db path (Input) (char(*))
is the path name of the data submode! or
data base to be opened.

2. dbi (Output) (fixed bin(35))
is the data base index.

3. open_mode (Input) (fixed bin(35))
equals 0 (null).

4. code (Output) (fixed bin(4.))
is a standard status code.

MTB-361 Page 13

call dsl_$set_ctl_file (control_sw, dbi, code);

call dsl_$ready_file (dbi, file_name, rdy_mode, code);

where:

1. dbi (See above)

2. file name (Input) (char(30))
- is the name of a file to be readied.

3. rdy mode (Input) (fixed bin)
- is equal to 3 for update.

This gives update permissions to all relations in the specified
file.

. . . '
call dsl_$modify
code);

(dbi, selection_expression, new_ values,

To checkpoint a transaction after having established a control
file and having readied the relevant files, the MRDS user calls
dsl_$checkpoint.

call dsl_$checkpoint (trans_id, code);

If the code after returning from the call to dsl $modify was
non~zero, then it is possible that the user would wish to
rollback the data base to the state of its existence at the last
checkpoint (which in this example would be equivalent to its
state at open time). Then the user would call rollback.

call dsl_$rollback (trans_id, code);

call dsl $finish file (dbi, file_name, code);

call dsl $close (dbi, code);

MIDS User Interface

It is proposed that dml $ready be modified and that four new
entries be provided for dml • When readying new version data
bases, the mode parameter will-·be mapped onto the retrieve,
monitor retrieve and update modes recognized by new version data
bases. -The new entries are dml $set control, dml_$reset_control,
dml_$checkpoint and dml_$rollback. -

Page 14 MTB-361

Entry: dml_$ready

This entry causes the specified data bases to be readied for
processing in the designated modes. For each readied data base,

-an index which is to be used to specify that data ba~~ in future
MIDS calls is returned. If two or more data bases are to be
concurrently ready to the same process, they must be readied in
the same call to dml $ready. If one or more of the data bases
specified cannot be readied for any reason, none of the others
will be readied.

Usage

1 •

2.

declare dml_$ready entry options (variable);

call dml $ready (sub schema path, data base index, mode,
.•• ,-sub_schema_path, data_base_index, moae, code);

sub schema path (Input) (char(*))
- is- the absolute or relative path name of

sub-schema defining the relevant portion of the
base.

data base index (Output) (fixed bin(35))

the
data

is an index which is to be used in future
to specify the data base designated
corresponding sub_schema_path.

MIDS calls
by the

3. mode (Input) (fixed bin(35))
is an integer indicating the usage mode for which the
data base is to be opened:

1 => concurrent retrieval (for old version data
bases only) with concurrent access to the data
base (both for update and retrieval) by other
processes allowed. For new version data bases
this mode will be mapped to the retrieve
ready_mode.

2 => concurrent update (for old version data bases
only) with concurrent access to the data base
(both for update and retrieval) by other
processes allowed. For new version data bases
this mode will be mapped to the update
ready_mode.

3 => protected retrieval (for old version data bases
only) prohibiting the concurrent access to the
data base by other process for update purposes.
For new version data bases this mode will be
mapped to the monitor_retrieve ready_mode.

4 => protected update (for old version data bases

MTB-361 Page 15

only) prohibiting the concurrent access to the
data base by other processes for either update
or retrieval. For new version data bases this
mode will be mapped to the update ready_mode.

4. code (Output) (fixed bin(35))
is a standard system return code.

Page 16 MTB-361

Entry: dml_$set_ctl_file

To insure recoverability and to guard against conflicts in a
concurrent environment it is necessary for the MIDS user to
associate the data base (or data bases) with a control file. The
control file is used by vfile to coordinate transactions made
against the data base and Io record the state of completion of
each transaction for the purposes of checkpoint and rollback.

Usage

dcl dml_$set_ctl_file entry options (variable);

call dml_$set_ctl_file (control_sw, dbil, ••• , dbi~, code);

where:

1. control sw (Input) (char(32))
Ts the switch name of the control file used by vfile
to record the-state of each transaction.

2. dbii (Input) (fixed bin(35))
are the data base indexes of the data submodels or
data bases against which accesses are to be
coordinated.

3. code (Output) (fixed bin(35))
is a standard status code.

Notes

Only one control file per process is allowed to be set at any one
time for a given data base for each user of the data base.

This call must be executed before the data base has been readied.
If this call is not made prior to the call to ready a data base,
then the MIDS creates a control file as a default.

If the control sw is not already attached, then an attach
description is created and the attachment is performed. If the
control sw is not open, then it is opened for keyed sequential
update.

MTB-361 Page 17

Entry: dml $reset ctl file

To terminate the use of a control file the dml_$reset_ctl_file
entry is called.

Usage

dcl dml_$reset_ctl file entry (char (32), fixed bin(35));

call dml $reset ctl file (control sw, code);

where:

1. control sw (Input)
is the switch name of the control file used by vfile
to record the-state of each transaction.

3. code (Output)
is a standard status code.

Note

This call should be made only after all data base accesses have
been completed, else an error will be returned upon an attempt to
access the data base. Normally this call would be made between
the finishing of one set of data bases and the readying of
another set of data bases.

Page 18 MTB-361

Entry: dml_$checkpoint

In order to mark a series of updates to a data base as complete
and final the user calls drnl $checkpoint. This entry is also
called to release the references to retrieved blocks when a file
is open in monitor retrieve mode.

Usage

dcl dml_$checkpoint entry (fixed bin (35), fixed bin (35));

call drnl_$checkpoint (trans_id, code);

where:

1. trans id (Output)
is an identifier for the transaction being
checkpointed.

2. code (Output)
is a standard status code.

MTB-361 Page 19

,.... Entry: dml $rollback

This entry allows a user to effectively erase changes made to the
data base since the last call to dml_$checkpoint.

Usage

dcl dml_$rollback entry (fixed bin(35), fixed bin(35));

call dml $rollback (trans_id, code);

where:

1. trans id (Output)

2. code (Output)

LINUS Implications

is an identifier for the transaction
being rolled back.

is a standard status code.

The LINUS user may also rollback and checkpoint recoverable data
bases as well as ready and finish files. When a LINUS user opens
a data base the mode no longer needs to be specified. This is
done when a file, or files, is readied. If the LINUS user opens
an old version (nonrecoverable) data base without specifying a
mode, a message is printed informing the user that the data base
requires a mode to be specified. The alternative choices are
then printed, and the user is requested to enter the open request
again.

When the request to open a data base is received by LINUS, a
default attach description is generated for a transaction control
file and the control file is attached and opened for keyed
sequential update.

When a LINUS user readies a file, an appropriate attach
description is generated which includes the -share and
-transaction <control sw> options, where the <control sw>
references the controI file opened when the data base is opened.
After the file to be readied is attached, it is opened for keyed
sequential input or output, depending on the user's request.

When a file is readied in update or monitor retrieve mode a LINUS
macro called <unique name>.recovery.linus- is created in the
user's process directory. This macro grows with the addition of
each LINUS request entered by the user between checkpoint
commands. When a checkpoint command is entered the macro is
truncated and made ready for receiving the next set of LINUS
commands. If the MRDS returns a mrds error $asynch change error,
then the data base is automatically r~lled Eack to Tts state at
the time of the most recent checkpoint, after which one of the

Page 20 MTB-361

following two paths are followed, depending on whether the
process is absentee or interactive.

If the process is an absentee process, or if there has been no
user interaction with LINUS via the terminal since the execution
of the most recent checkpoint, then the
<unique name>.recovery.linus macro is automatically invoked,
processed and executed. A message is printed on the user
terminal saying "Consistency verification being performed." Any
output generated by the <unique name>.recovery.linus macro is
then generated. If the MRDS error Is again encountered at the
same point, rollback is performed up to a total of 10 times.
Then if the process is an absentee process the data base is
closed and the LINUS session is terminated. If the process is
interactive, then the message "File <file name> is busy." is
printed on the user terminal, and the user is free to take
whatever action is deemed advisable.

If the process is interactive and if the user has interacted with
LINUS via the terminal since the execution of the most recent
checkpoint, then the "Consistency verification being performed."
message is printed. It is followed by the first command in the
<unique name>.recovery.linus macro, which is printed at the user
terminaI. The user is then asked whether the command is to be
executed or skipped. Each command in the macro is stepped
through in this manner. Thus, the user may choose to ignore
those commands which may not be relevant to the internal data
base structure.

If a user desires to use a LINUS program in conjunction with
another program which accesses different data bases or files and
if the user desires to maintain consistency across all files,
then the transact command can be used to reference an exec com
which might use LINUS and other programs. An example of such a
usage would be:

transaction control sw "ec user.ec"

where control sw is the switch name of a control file
and user.ec is a user written exec com containing
references to LINUS and any other programs the user
wishes to execute. This control sw references a
different control file than is referenced by the LINUS
macro invoked within the exec com.

I .

MTB-361 Page 21

Request: ready, rdy

This request allows a user to ready a file or files in one of
three modes. Before any accesses can be made to a data base, it
is necessary to ready the appropriate files.

After a file has been readied it is not possible to do another
ready until all readied files have been finished. (See the finish
request.)

Usage

ready file name1 rdy_model file namen rdy_mode~

where:

1. file namei

2.

are the names of the files to be readied. These are
the files containing the tables which the user wishes
to access.

rdy_modei
are the modes in which the respective
readied. The allowable modes are:

update, u
retrieve, r
monitor_retrieve, mr

files are to be

Request: finish

When a user no longer desires to access a file, the finish
request can be issued. All readied files are implicitly finished
when the data base is closed by the user.

Usage

finish file name1 file namen

where:

1. file namei
are the names of the files with which the user is
finished.

Page 22 MTB-361

Request: ~heckpoint, chp

This request causes all updates made since
checkpoint request to be marked as complete, if
open in update mode. If the files are open in
mode then this request causes the monitor to be
the data repeatability controls do not take
previous retrievals.

Usage

checkpoint

Request: rollback, rlb

the most recent
the files are

monitor retrieve
reset, so that
into account any

If a user realizes that erroneous updates to a data base have
been made, they may be effectively erased by issuing the rollback
request.

Usage

rollback

(END)

