
Multics Technical Bulletin MTB-362 

To: Distribution 

From: Steve Herbst 

Subject: Variables in exec com 

Date: 2/29/78 

This MTB proposes a variable substitution feature to be 
added to exec com. Hopefully, the &value syntax described here 
is unambiguous- and will not interact adversely with other 
features of the language. 

Each exec com line is processed in two distinct stages: 

1. Variable, parameter and active function substitution. 

2. Execution of control lines and delivery of other lines to 
the input switch. 

Only the first stage is concerned with variables. 

A variable name is defined and assigned a value by the &set 
control line: 

&set variable_name value_string 

The string variable name cannot contain ampersands, parentheses, 
brackets or white space. The variable keeps its value until the 
exec com returns or until the value is explicitly changed by 
another &set statement. Variable names and their values are 
stored in a per-stack frame data base and are local to an 
invocation of exec com. If an exec com A sets the value of a 
variable, that value-is not known to any exec com that A calls or 
to any exec_com that called A, including other invocations of A. 

Reference is of the form: 

&value(variable name) 

and can appear anywhere inside exec com lines. Reference to an 
unset variable is a semantic error and aborts the exec com. 

Active functions can be evaluated in the substitution stage 
by saying: 

&af value[active function args] 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 



Page 2 MTB-362 

The substitutable constructs in exec com are &value strings, 
parameters, and the && escape sequence. Examples: 

1. &value(foo) 
2. &af value[plus [divide 6 4] 2] 
3. &1,-&q1, &r1, &f1, &n 
4. &&f2 

The last evaluates to the literal string &f2 and no parameter 
substitution is performed. 

All of these constructs have equal priority. Substitutables 
are expanded from left to right. Substitution is also recursive 
and iterative. 

1. Recursion: When substitutables are nested, the innermost one 
is expanded first. 

(where args = 2, a, b, c, d) 
&set arg_index_3 2 

&r&value(arg index &af value[plus &1 1]) -> 
&r&value(arg-index-&af-value[plus 2 1]) -> 
&r&value(arg-index-3) => 
&r2 -> "a~ - -

&f&value(arg index 3) -> 
&f2 -> a b c-d -

&&value(arg index 3) -> 
&value(arg Tndex 3) 

- (not expanded) 

2. Iteration: After substitution, the string is re-scanned. 
Expansion continues until there are no substitutables. 

3. Both: 

&set one &&value(two) 
&set two MIT 

&value(one) -> &value(two) -> MIT 

(args = tape, map, debug) 
&set one &&1 
&set tape 50207 

&value(&value(one)) -> 
&value(&1) -> 
&value(tape) -> 50207 



-z-----

MTB-362 Page 3 

It is an error to have a looping definition, and users have 
to be warned in the documentation. Two examples of looping 
definitions are: 

and: 

&set one &&value(one) 

&set one &&value(two) 
&set two &&value(one) 


