
Multics Technical Bulletin 

To: Distribution 

From: Michael Asherman 

Subject: Multics Data Base Consistency 

Date: 18 April 1978 

Multics Data Base Consistency 

contents: 

Introduction Purpose Background 
trouble reports 
MIT crash statistics 
damaged files Types of Inconsistencies 
1. invalid snapshot 
2. time lag loss 
3. interruption 
4. any other cause of bad data 
summary Illustration 
type 1 

example 
an apparent solution 

type 2 example 
type 3 example 

f (.fj 

type 4 example Sketch of the Proposed Solution 
Type 1 Inconsistencies 

summary 
directories and msfs 
recovery 
imp 1 em e n tat i on 

file maps 
page control 

passive references 

MTB-369 

first modification {shared bit is on} 
subsequent modifications {shared bit is off} 

disk I/O 
usage 

typical 

cost 
highly active files 

extra virtual storage 
page images 
old file maps 

extra I/O 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 



Page 2 MTB-369 
extra processing 
summary 

example 
locality of references 
estimated ad~itional cost 

Type 2 Inconsistencies 
summary 
recovery 
implementation 

usage 
cost 

journalization 
vfile 
page control 

incremental backup 
with online generations 
with low level journalization 
without online generations or page 
journalization 

normal use 
journalization 

highest level 
lower levels 

incremental backup 
recovery 

Type 3 Inconsistencies 
summary 
atomic operations 
recovery 
implementation 

usage 

cost 

lowest level 
intermediate level 
highest level 

lowest level 
intermediate level 
highest level 

lowest level 
machine 
programmer 

intermediate level 
machine 
programmer 

highest level 
machine 
programmer 

Type 4 Inconsistencies 
summary 
recovery 
usage 
cost Summary Appendices 

A. vfile interruption recovery program logic 
B. notes-on interruption recovery 



l•JTB-369 
Page 3 

Introduction 

Data base and system administrators too frequently find 
themselves bothered by inconsistent files. The fraction of 
money, programming effort, and machine time spent just on this 
pro~lem may well be half the cost the system, yet we still lack a 
sat1sfactor~ solution for certain infrequent, but inevitable 
~ardware failures where volatile memory is lost. The following 
is a proposal to change Multics so that it can handle having its 
plug pulled. The solution comes as a by-product of protection 
from arbitrary causes of data destruction. 

Purpose 

The purpose of this document is to bring a serious problem 
to the attention of the small group ~f Multicians who can 
implement its solution. The first step must be to recognize that 
we have a real problem. I hope to persuade the reader that a 
complete, efficient solution also exists. The next step is 
yours. 

Background 

I offer only a sketch, because I am unfamiliar with the 
innermost workings of the system. My ignorance prevents me from 
making even a crude guess as to the amount of reprogramming or 
possibly hardware changes that will be required to implement 
these changes. Nevertheless, as the one responsible for 
maintainaining and improving vfile , I am compelled to respond to 
increasingly frequent complaints-from justifiably irate victims 
of system failures. 

trouble reports 

The rate of reports of damaged files showing signs of damage 
due to unsuccessful Emergency Shut Down (ESD) is approaching one 
per week; this figure will undoubtedly increase as more Multics 
systems are sold, and as the number of large shared data base 
applications grows. 

MIT crash statistics 

MIT has reported the following statistics for ESD failures: 

1978 
1977 

damaged files 

3 ( as of 3123118 ) 
15 

More than one of these occasions damaged the permanent 
syserr log. Similar difficulties have been reported elsewhere, 
for example at Phoenix on the heals_log, as well as the 
syserr_log. 



Page 4 MTB-369 
Types of Inconsistencies 

I treat the following potentially undesirable situations as 
distinct types of inconsistencies: 

1. invalid snapshot 

The data base appears to be in a state which does not 
correspond to a snapshot for any time; pages comprising it are 
unpredictably ''out of synch" because of a failure to flush core 
before its loss. Having a snapshot implies that the exact 
sequence of modifications made by programs is preserved. 

2. time lag loss 

The data base is a valid snapshot, but not its 
image. 

3. interruption 

most recent 

The data base is a valid snapshot, but of an intermediate 
state of a complex operation that is supposed to ap~ear atomic. 

4. any other cause of bad data 

The current image is unsatisfactory for whatever reason. 

summary 

Each case is considered below, but I stress the first class, 
because Multics is most deficient in this regard, and the 
solution to this problem will greatly improve our handling of the 
latter types of inconsistencies as well. 

Illustration 

type 

example 

Suppose that an initially empty segment is modified by 
turning on each bit, left to right. The only permissible images 
of such a file have the form: 

1111111111111111111111111 ••• 10 ••• 00000000000000000000000 

i.e some number of 1's followed by zeroes to the end of the 
segment. 

If concurrent references are causing paging activity on this 
file, tt1en at any given moment the non-volatile disk image, when 
taken alone, may not be consistent in the above sense. 



MTB-369 
Specifically, the disk pages might show: 

Page 5 

page O: 000 .•• 0 (this page pinned in core by heavy use) page 1: 
111 ••• 1 page 2: 111 ••• 1 page 3: 111 ••• 1 page 4: 110 ••• o page 
5-end of segment: 000 ••• 0 

If a page is written to the disk while a less recently 
modified page remains unwritten (because of a more recent 
reference, for example), then the disk image may cease to be a 
valid snapshot of the logical file for any point in time. An ESD 
failure at such a point might leave the only copy of the file in 
an unpredictable, seemingly impossible state. 

an apparent solution 

At first glance 
trouble by using 
algorithm, instead 
doesn't work, as can 

it might seem that we can get out of this 
a least-recently-modified page removal 

of the present LRU; unfortunately, this 
be seen from the following: 

step 1: modify word 0 of page 1 step 2: modify word O of page 2 
step 3: modify word 1 of page 1 

If none of the modified pages have yet been written out, and 
at this point a page must be expelled, then we are in trouble, 
since the least recently used page also contains a more recent 
modification. In other words, neither page can be written 
without causing at least a transitory inconsistency of the disk 
image. 

type 2 example 

As an illustration of the second type of inconsistency, 
suppose that a ready message is printed or some other visible 
side-effect occurs indicating the completion of this operation. 
If the most recently modified page is not written out before an 
ESD failure, then the file is inconsistent in the sense of a time 
lag loss of information, even though it may be a valid snapshot. 

type 3 example 

If the user wishes to regard this as an atomic operation, 
then its partial completion must be regarded as an inconsistency 
of the third type, even though the most recent snapst1ot may 
reside on disk. In other words, the inconsistency lies in the 
file's being in an unallowable, albeit well-defined, state. 

type 4 example 

Finally, barring any of the other types of inconsistencies, 
there is still the possibility of file damage, for example 
because of an act of God, such as a disk struck by lightning. 
More typically, the user might have clobberred his file by typing 
the wrong command. 



Page 6 MTB-369 
Sketch of the Proposed Solution 

Type 1 Inconsistencies 

summary 

Briefly, I propose that files have generations of file maps, 
and that pages written out not immediately overrite their 
µrevious disk images. Each saved file map, except possibly the 
current one, would be guaranteed to describe a consistent image 
of the file residing entirely on disk. The number and frequency 
of previous files images retained could be controllable either by 
setting branch attributes, or by using explicit calls. For the 
sake of simplicity, we shall assume at most one additional file 
map in the following discussion. 

directories and msfs 

The task of supporting generations of directories and msf's 
is going to have to be tackled in order to handle large data 
bases. Implementing the needed hardcore changes might be a big 
job, but there should be no great conceptual difficulty in 
extending the idea of generations of consistent file maps to that 
of generations of sets of file maps. 

recovery 

After an ESD failure or any other possible cause of damage 
to a file, one of the snapshot images always must be used. The 
retension of a file generation guarantees that a valid snapshot 
is immediately available online at all times. Disregarding any 
other types of inconsistencies for the moment, recovery is 
therefore guaranteed and immediate. 

impl em en tat ion 

file maps 

Page control must note that a file map becomes consistent 
when all its pages have been flushed. Before the next 
modification to this file, a new file map may be initialized by 
copying the old one; each page table word (PTW) of the new map 
would then be marked to indicate that the corresponding page is 
shared by a previous image. A consistent snapshot can always be 
obtained without any delay by resetting the current file map and 
freezing the old one. The unwritten modifications belonging to 
the frozen image may then be written out to guarantee saving a 
consistent copy at least up to this point in time. 

page control 

In order to keep from overriting pages belonging to a 
previous file generation, page control could use the following 
scheme, assuming that a prior snapshot is always maintained: 



MTB-369 
passive references 

Page 7 

Proceed with normal paging logic, leaving the PTW's shared 
bit unchanged. 

first modification {shared bit is on} 

Assign a new address for the current image of this page; 
then replace its PTW in the current file map with the shared bit 
set to zero. 

subsequent modifications {shared bit is off} 

Proceed with normal paging logic. 

disk I/O 

With regard to the first class of inconsistencies, there is 
no need wait for any I/O's to complete in order to resume 
activity on a file once a new map is initialized; i.e. 
maintaining prior disk snapshots does not interfere with normal 
file activity. Although there may be a number of modifications 
belonging to the frozen image, as well as the file map itself to 
write out, these I/O's can take place concurrently with 
modifications to the current file without jeopardizing the 
consistency of earlier snapshots. 

usage 

The use of generations would, of course, include the present 
(and only) option of having just one file map, i.e. the case of 
zero consistent prior images. Presumably one would use 
generations only for permanent data bases. 

typical 

The most common usage involves far more passive references 
than data base modifications. Consequently, there are many 
applications in which the natural paging behavior leads to an 
acceptable mean time between file generations. 

highly active files 

For extremely large, heavily modified files, the frequency 
of file generations might be deliberately regulated by 
periodically freezing the current file map and setting up a copy 
as the new current map. Note again that it is not necessary to 
wait for any I/O in order to accomplish this switch; the only 
requirement for snapshot consistency is that a map be correct 
when it is written out. 

cost 

extra virtual storage 



Page 8 MTB-369 
page images 

The amount of additional virtual storage required to save 
pages of a previous file generation is given roughly by the 
formula: 

X = TM, 

where: X is the number of extra pages of the previous snapshot 
which must be retained in addition to their counterparts in 

the 
current file map. 

T is the mean time between generations, i.e. 1/generation 
frequency. 

M is the average rate of page modifications. 

This approximation assumes that references are in a uniform 
random distribution across the file, as one might expect in the 
limit of large files and small values of T; to the degree that 
this assumption does not hold, X will be smaller. Note that for 
sufficiently small T, X is limited by processor speed and becomes 
independent of the file's size. 

old file maps 

The extra online storage for old file maps can be kept small 
in comparison with the overhead for the file pages by which they 
differ. This may require the use of a difference representation 
for old file maps in the limit of large files and small T (i.e., 
few differences between generations). Basically, enough virtual 
storage for two file maps is required, but only the old one need 
ever be on disk. Only active file maps need ever be in core. 

extra I/O 

The number of additional I/O's to disk required for saving a 
snapshot of each new generation is given by the formula: 

I = 1 + P, 

where: I is the extra I/O's per generation. 

P is the average number of modified pages pinned in core for 
a time 

exceeding T, the mean time between generations. 

One additional I/O is required to save the frozen file map 
if the file is active most of the time. 

extra processing 

Each time a file map is frozen and a new one initialized, 
there will be some of additional processing required to make the 



~ 

MTB-369 Page 9 
switch. This expense is the limiting factor on setting 
arbitrarily small time intervals between generations. Since file 
maps are orders of magnitude smaller that the files they 
describe, it is reasonable to suppose that seemingly small time 
intervals on the order of a minute between generations will still 
be very large in comparison to the limit imposed by the cost of 
map initialization. Thus the extra processing to support 
generations with frequencies in the range corresponding to 
anticipated usage can be kept negligible. 

summary 

Even in relatively large active data .bases, online backup 
copies probably can be maintained within seconds of the lastest 
version at a tolerable cost, without interference from/to normal 
file use. The additional storage requirement only applies to 
pages which differ between images. Thus a higher frequency of 
generating file maps reduces extra storage overhead, in exchange 
for a gradual increase in I/O and processing. Where the cost is 
greatest, in heavily modified files, the need for protection from 
inconsistency is most urgent, since these applications are most 
likely to suffer from eventual system failures. 

example 

locality of references 

Consider a typical transaction processing application with 
the following paging behavior, described in terms of the 
distribution of page modifications by mean time before removal of 
the page from core: 

maximum time core-resident 

.1 second 
1 second 
10 seconds 
100 seconds 

estimated additional cost 

Assuming that each transaction 
following table estimates the extra 
consistent disk snapshot: 

% of modifications 

50% 
90% 
99% 
100% 

modifies one page, the 
cost of maintaining a 

T = 1 second T = 10 seconds T = 100 seconds 
pages I/O's pages I/O's pages I/O's 

Transaction 
Rate 

1/sec 1.1/sec 10 .11/sec 100 
.01/sec 

10/sec 10 2/sec 100 1.1/sec 1000 



Page 10 
.01/sec 

100/sec 
.01/sec 

100 11/sec 

Type 2 Inconsistencies 

summary 

MTB-369 

1000 10.1/sec 10000 

To entirely eliminate the risk of time lag inconsistencies, 
it is both necessary and sufficient to have after image 
journalization at the highest level of accepting transactions. 
One may also have lower levels of after image journalization and 
incremental file backups in order to speed up recovery, but this 
is not strictly necessary for any other reason. 

recovery 

The recovery procedure restores the latest available 
snapshot of the data base, and then must reapply any transactions 
journalized subsequent to the time of the snapshot. It is not 
necessary that the snapshot to be rolled forward be consistent in 
the third sense to do this, i.e. any snapshot will suffice, so 
long as one provides a separate mechanism for causing data base 
operations to behave atomically. 

implementation 

journalization 

vfile 

An option will be provided allowing vfile users to specify 
a separate sequential journal file where -after images are 
automatically written prior to each file modification. If the 
f'ile being journalized is used within a transaction, after images 
would be saved at checkpoint time; otherwise, journalization 
occurs before each modification. It is necessary to wait for the 
completion of I/O's to the journal file if one expects to be 
assured of recovery to this point in time. 

page control 

One may also use a lower level form of journalization to 
accelerate recovery by providing a more recent snapshot than the 
latest available complete backup copy. This entails having page 
control write after images of modified pages to a separate 
sequential file before writing the the data base changes to disk. 
A mark must be made in the journal file at each point all 
modified pages are known to have been written out. In order to 
obt~in a more recent snapshot of the file, the latest snapst1ot, 
whether an online generation or an incremental backup copy, would 
be rolled forward from journalized page modifications up to, but 
not beyond tt1e latest mark defining a point of snapshot 
consistency. This procedure might be sped up by using an index 



MTB-369 
into the journal file. 

Page 11 

incremental backup 

with online generations 

Incremental backup is greatly simplified by having a frozen 
file generation online. The complete snapshot may be copied in 
one pass, without interference from or to activity on the current 
file image. Of course one must not free any old maps or their 
pages while backup is in progress. 

with low level journalization 

~hen low level after images are journalized, incremental 
backups can be produced entirely from the journal file and 
previous backup copies. An old backup copy would be rolled 
forward by applying all subsequent modifications journalized up 
to, but not beyond a more recent point of snapshot consistency 
marked in the journal file. 

without on line generations or page 
journalization 

If the file is not frozen, saving complete file snapshots 
becomes somewhat trickier. After a complete pass through the 
file, some of the pages saved early in the pass may have 
undergone modifications subsequent to saving other pages later in 
the pass. This necessitates resaving those pages which were 
modified during the previous pass in another pass through the 
file map, etc., until a pass can be made during which no 
additional changes occur. Note that the number of pages that 
must be saved in each subsequent pass will tend to decrease, i.e. 
this procedure tends to converge, assuming a moderate, uniform 
rate of file modifications. Specifically, the mean number of 
modifications occurring in the time required to save one page 
must be less than one. Of course, one could intermittently lock 
and unlock files to reduce the rate of modifications to an 
acceptable level, but this sort of interference is undesireable. 

usage 

If one is willing to settle for limited time lag losses, 
high level journalization may be avoided. This compromise may be 
particularly attractive with the small time lags achievable 
through online file generations. 

cost 

normal use 

journalization 

highest level 



Page 12 MTB-369 
The minimum overhead of protection from time lag losses in 

normal use is the cost of the highest level of journalization. 
Assuming that the accompanying data base changes are considerably 
more complex than the operation of saving their highest level 
specification, the greatest component of the cost of journalizing 
at this level is the additional I/O on the journal file. 
However, this is at most one extra I/O per transaction, and may 
ue even further reduced if transactions are aggregated before 
their journalization and acknowledgement of receipt. 

lower levels 

Low level after image journalization generally implies at 
least as much extra I/O as required by the higt1est level of 
journalization. The only justification for this cost would be in 
those cases where the expense of saving complete snapshots at 
sufficiently frequent intervals is even greater without 
journalization. Having online generations eliminates the need 
for incremental file backup as long as we are disregarding the 
fourth class of inconsistencies. Otherwise it is strictly a 
question of trading off overhead in normal use versus the cost of 
recovering after a crash. 

incremental backup 

Incremental backup is an unsatisfactory substitute for using 
online file generations as a means of speeding recovery from time 
lag losses in large active files. The reason is that the cost of 
incremental backup is proportional to both its frequency and the 
file's size, which makes keeping fairly recent complete snapshots 
prohibitively costly in these limits. Furthermore, unless low 
level journalization is used, there is the additional problem of 
interference from/with current file usage. On the other hand, 
none of these factors have so direct an impact on the expense of 
maintaining online file generations. 

recovery 

The cost of recovering to the most recent file image 
consists of retrieving the most recent available snapshot and 
reapplying any transactions journalized after that point. If an 
online generation exists, there is no additional cost to obtain a 
snapshot, and the entire expense is therefore proportional to the 
mean time between generations, which can be kept small. Without 
generations, one must resort to offline retrieval of incremental 
backup copies, and rolling forward from low level journals as 
means of reducing the number of transactions that must be 
reapplied. This implies considerably more cost to retrieve a 
snapshot, and considerably more transactions to reapply unless 
frequent backups or low level journalization is used. 

Type 3 Inconsistencies 

summary 



MTB-369 Page 13 
Using atomic operations is the key to avoiding 

inconsistencies from interruptions. The problem is achieving 
efficiency with minimal programming effort. Depending upon the 
level of programming involved, there are appropriate methods of 
guaranteeing atomicity. These techniques culminate in a general 
transaction encapsulation facility, which permits one to wake 
arbitrarily complex atomic data base operations. 

atomic operations 

A modification is atomic if it has no detectable 
intermediate states. This appearance ultimately always derives 
from the hardware atomicity of a limited set of machine 
operations. Restricting access of data structures to a 
well-defined set of interfaces can create the appearance of 
atomicity with respect to this constraint. Thus, strictly 
speaking, even "absolutely" atomic hardware operations are atomic 
relative to the constraint that one use only the standard 
operations; sufficiently microscopic examination invariably will 
reveal a continuum of states. 

recovery 

Unless one entirely avoids the possibility of interruption 
by a specialized low level method, the higher level data base 
interfaces must be prepared to automatically detect and adjust 
partially completed operations. This is accomplished by checking 
for such states at every synchronization point, i.e. at opening 
time and at the start of every shared data base operation. The 
adjustment is performed by either undoing or completing any 
interrupted modification before proceeding with a new operation. 

impl emen tat ion 

lowest level 

At the lowest level, there are a few inherently atomic 
hardware operations. This means that their use can never lead to 
inconsistencies of the third type. In order to make a procedure 
atomic, the data representation and program logic are designed 
around the machine's instruction set. See appendix B for some 
examples of low level coding techniques. 

intermediate level 

Vfile uses a more general method of making atomic 
operations- which imposes few constraints on the choice of 
algorithms and data structures. This technique, described in 
appendices A and B, requires that programs be modified from their 
basic logic so as to execute in eitper a normal or a "repeating" 
state, during which a prior operation is retraced to the point of 
its interruption, possibly bypassing certain "protected" 
procedures on the way. The normal execution is required to 
periodically increment a permanent tracking variable, and other 
program variables must be classified as either protected or 



Page 14 
reconstructed. By observing the rules outlined, 
complex procedures can be made atomic. 

highest level 

MTB-369 
arbitrarily 

The new transaction processing facility permits users to 
make complex atomic procedures with e~sentially no reprogramming. 
For the initial implementation, the data base must be a 
collection of indexed files manipulated through vfile • Records 
and index pages have a format which permits their having both a 
before and an after image. Transactions are made atomic by 
representing their state of completion through a flag on an index 
entry in a control file shared by users of the data base. See 
MTB-370 for details. 

usage 

lowest level 

This method is most appropriate at the innermost level of 
system programming, e.g. for page control, where optimizing 
performance is the paramount concern, and the kinds of procedures 
involved are relatively simple. Because of the difficulty of 
this kind of programming, its use should be avoided when higher 
level techniques are available. 

intermediate level 

The intermediate solution belongs in the realm of those 
system programs which underlie the implementation of a high level 
transaction facility, ~ut which are too complex to program at the 
lowest level. 

highest level 

Transactions are the method of choice for all applications 
where they can be used. This includes both user programs and any 
system functions that are built on top of vfile • The purpose of 
the more cumbersome lower level techniques- is to enable the 
system to support such a facility. 

cost 

lowest level 

machine 

When an operation is naturally expressible as a single 
atomic hardware instruction, the cost of atomicity is minimal, 
assuming the hardware is efficient. However, to the degree that 
such an implementation compromises the choice of an optimal 
algorithm and data representation, this is a deception. 

programmer 



r 

MTB-369 Page 15 
Programming techniques at this level tend to be highly 

specialized, requiring the most effort and ingenuity, since the 
constraint on the available operations is greatest. As the 
complexity of procedures increases, eventually the cost of 
programming applications by such methods becomes unthinkable. 

intermediate level 

machine 

Some additional processing and storage is needed in for this 
method of achieving atomicity, but experience has shown it to be 
small in comparison with the basic expense of the operations 
involved. For the case of vfile , I would estimate that less 
than 15% of the cost of a mo~ification is processing overhead 
needed to achieve atomicity. The additional storage requirement 
is negligible in comparison to the size of even a modest file. 
Furthermore, these costs are fixed per modification; they do not 
depend on either the size or degree of activity of the data base. 

programmer 

This solution is a compromise between the low and high level 
mechanisms, both in terms of efficiency and reprogramming. Its 
principle benefit over the former lies in the fact that one is 
not generally required to modify the basic logic and data 
representations, except in a superficial way, whicl1 is arrived at 
by systematic program transformation guided by a few general 
rules. 

highest level 

machine 

Use of the transaction facility implies a small additional 
expense in storage and processing compared the the basic cost of 
performing typical operations. The storage overhead comes from 
reserving several words for each record and index page to keep 
track of before and after images. There is also a temporary need 
for additional storage during the course of a single transaction, 
resulting from the retension of before images of modified items 
to allow for a possible rollback. Tl1e extra processing 
requirement is associated with manipulations of the transaction 
control file and temporary reference lists. So long as 
transactions are short enough to complete before the pages they 
touch are removed from core, no additional disk I/O is required. 

programmer 

The advantage of transactions is that they permit one to 
construct atomic operations with the minimum conceivable 
reprogramming of any vfile application. All that is required of 
the user is to specify wha~ procedure, e.g. a command line, is to 
be invoked as a single atomic operation. 



Page 16 i•lT B-369 
Type 4 Inconsistencies 

summary 

Ideally, one would like to have an archive of all snapshots 
_of every data base for their entire histories, if the cost could -
be neglected. Given the mechanisms for dealing with the first 
three types of inconsistencies the only problem that remains is 
to adjust the parameters governing them, so as to arrive at an 
acceptable compromise between the cost of recovering and the 
overhead in normal use. 

recovery 

The recovery procedure consists of 
complete data base snapshot, and 
subsequently journalized transactions. 

usage 

retrieving 
selectively 

a previous 
reapplying 

Saving journalized transactions gives the finest resolution 
one really needs between old snapshots. However, the time to 
recover from the journal alone may be excessive, unless 
occasional complete snapshots are also made available. The user 
can control this expense through the following parameters: 

number of online generations 
frequency of generations 
frequency of incremental backup 
use of lower levels of journalization 

If one is willing to accept less than perfect resolution 
among backup copies, the high level transaction journalization 
may be forgone. At the other extreme, paranoid users could have 
redundant journalization (in parallel), to compensate for any 
estimate of hardware unreliability. 

cost 

Storage is obviously going to be the biggest cost, which has 
to be weighed against the time and ability to recover an 
acceptable snapshot. Users control the the parameters deciding 
these factors, and they should bear the expense as an incentive 
to choose efficient solutions. For example, this applies to 
quota for online file generations. The space required for 
journal files is minimized by avoiding excessive low level 
journalization and using compact, difference representations for 
changes (e.g. field level as opposed to record level 
juurnalization). 

~:ummary 

Tilere is at present a serious hole in Multics reliability. 
heliability is like silence; any disturbance spoils it, however 
quiet the rest of the world may be. One cannot sensibly assign a 



MTb-369 
Page 17 

~ost to intermediate degrees of reliability. Either you've got 
it or you don't. People who really care are not going to take 
~hances; they will go to whatever lengths they can afford to 
insure that any forseeable data base calamity is, for all 
practical purposes, impossible. This has led to a myriad of 
~~efficiencies that have wrongly come to be associated with the 
ioea of protection from file inconsistency. 

Multics does not have to settle for limited reliability if 
we c~n take the E out of ESD. I have outlined a complete 
solution to the problem of data base inconsistencies which 
hinges on solving this basic problem. The point of ~Y broad 
presentation of this subject has been twofold: first, to show 
that there really is a complete, rigorous solution to the problem 
of consistency, thereby putting the particular problem of ESD in 
context as the key weakness in the present Multics system; 
second, I have made a reference guide to assist in producing an 
efficient implementation of reliability safeguards. 

In contrast to what many users have come to expect, one does 
not have to pay a high price for reliability. Nor is it 
necessary to sacrifice the advantages of a virtual memory 
environment; in fact this feature makes Multics potentially more 
efficient than systems which must journalize before images. 
Another inefficiency often contemplated is the needless 
interference of consistency mechanisms with normal usage, which 
tends to become increasingly evident in large, shared, heavily 
modified files. It would be most unfortunate if a serious 
performance degradation were introduced in the limits for which 
Multics is otherwise so well suited. Fortunately, there seems to 
be a simple solution that does not suffer from interference, and 
which permits rapid recovery. Furthermore, the problem can be 
solved once and for all. No additional programming will be 
required to maintain data base consistency once we have a 
reliable transaction processing facility. 

The highest priority must be given providing the missing 
elements of reliability underlying the file system. I have cited 
the particular problem of ESD as the crucial unsolved one. There 
may also be some inadequacies in the present backup and other 
file system programs, but I don't know to what degree this is the 
case. In particular, incremental backup must always obtain 
snapshots, and this should not suffer interference to or from 
current file use. The file system and underlying primitives 
should behave atomically, in an efficient and rigorously correct 
manner. Any system which depends upon heuristic salvaging as a 
solution to this problem is less than ideal. If we intend to 
support large, reliable transaction processing applications, then 
these changes must also be applied to directories and msf's. 
However much work is involved, we cannot ignore such a serious 
user concern. 

Appendices 

A. vfile interruption recovery program logic 

The following is an ~xcerpt from the Multics User Ring I/O 
System P LM , ( AN 5 7 ) , The v f i 1 e I I 0 Mod u 1 e • 



Page 18 MTD-369 

E. notes on interruption recovery 

These notes were used for a presentation to a Multics staff 
n1eeting, in which I outlined a general solution for recovery from 
interrupted operations, as implemented in vfile • 



RECOVERY FRUM INTERRUPTIONS 

Introduction 

It can happen that while vfile_ is modifying a file, its 
execution is interrupted and not resumed (e.g., the system 
crashes). This can leave the file in a state where new 
operations cannot be performed, e.g., a node has been split but 
the new entry has not yet been made in its parent node. The 
program vfile_ has been coded so that the next time the file is 
used, the interrupted operation is automatically completed. 

This feature requires the use of a substantial portion of 
file header and a separate restart procedure. The rest of 
mechanism is embedded throughout the file-altering sections 

each 
the 
of vf'ile_. 

( 

A uniform strategy applies, . except in a few simple 
special-case situations. File-altering operations are designed 
to execute in either of two states, normal or repeating. In the 
normal state, each operation keeps track of its progress by 
saving certain variables in the file header. When an 
interruption is detected, the restart procedure reinvokes the 
interrupted operation in the repeating state. This results in 
the completion of the interrupted operation, whereupon the 
restart procedure returns, a.nd the operation that detected the ( .. 
inconsistency proceeds normally. 

The Normal State of Update Processing 

The distinction between the normal and repeating states is 
made through the variable indx_cb.repeating. At opening, its 
value is set to "O"b, indicating the normal state. 

On each file alteration, a certain amount of additional 
processing is done that is extraneous to the actual 
transformation that results. This extra work guarantees that any 
intermediate state of execution can be reconstructed and 
correctly resumed, provided only that the file itself is 
preserved intact. 

For this purpose, two kinds of data are periodically saved 
in the file header during each update operation. First, there is 
the information that keeps track of the nature and degree of 
completion of an operation. Second, various external variables 
are saved that might otherwise perish with the user's process, or 
perish because of a subsequent assignment during the current 
opera ti on. { 

9-14 AN57 



( 

( 

Tracking Variables 

In order to keep track of each operation's progress, the 
following variables are used: 

file_base.file_state_block.file_action 
indicate~ which "file-altering operation, if any, is 
currently in progress. 

file base.file state block.file substate 
- is-a counter indicating how far the current operation 

has come toward completion. 

file_base.index_state_block.index_action 
indicates which kind of index change, if any, is in 
progress. 

file_base.index_state_block.index_substate 
is like file_substate, but applies only to the index 
alteration phase of the operation. 

For each update operation, there is a corresponding 
file-action code that is set just before and cleared immediately 
after the file transformation takes place. Similarly, each index 
alteration is associated with a nonzero setting of index_action. 

The substate counters are zeroed and periodically 
incremented during every transformation. By minimizing the 
frequency of substate changes, additional-processing is reduced. 
This optimization, as it turns ou~, is largely achieved through 
otherwise arbitrary choices in coding style, such as the order of 
independent assignments. 

Other Header Variables 

The action and substate variables just discussed make up 
only a small part of the file header. Somewhat more than one 
page is reserved for the rest of the recovery-related file 
variables. 

The remaining header variables are used during normal 
execution to save copies of certain other variables. Arguments 
and other external nonpermanent information that can affect the 
subsequent operation, e.g., file position, must be saved before 
any inconsistency is introduced. This precaution is required by 
the condition that the recovery mechanism always completes an 
interrupted operation. The other variables that must be 
duplicated are those permanent file variables that are altered 
subsequent to their affecting the course of the transformation. 

9-15 AN57 



Several optimizations apply to the saving of variables 
during updates. For example, the record argument is not saved 
during write and rewrite operations. This exception is handled 
by automatically deleting or flagging the record after 
restarting. Although it may be necessary to save many variables 
in a single update, the duration over which a given value must be 
saved is often shorter than the entire operation. Thus, a single 
header variable can serve as a repository for any number of 
separate values during the course of one operation. Another 
optimization that substantially reduces the cost of saving 
variables takes advantage of the efficiency of multiword 
assignments on Multics hardware. 

The Restart Procedure 

Whenever an entry point sets a file's lock, the header 
variable file_action is tested before proceeding with the body of 
the operation. If file action is nonzero, an inconsistency 
exists in the file as the result of the interruption of a 
previous update operation. This sit~ation is detected upon 
opening and at th~ start of shared update operations. It is 
dealt with simply by calling the external procedure restart. 

The restart procedure performs the following simple tasks: 

1 • Saves the process information describing the state of 
the current opening (var~ables in the ·structure 
iocb.open_data_ptr->indx_cb). 

2. Restores some arguments and process information for the 
interrupted operation, using values saved in the 
file_header. 

3. Sets the variable indx_cb.repeating to "1"b and 
reinvokes the appropriate entry in open_indx_file to 
complete the interrupted operation. 

4. Finally, after returning from the restarted operation, 
the process information for the current opening is 
restored and a return is made. 

For the write_record, rewrite_record, and record_status 
operations, some additional steps are taken. In the case of 
rewrite_record, the user may be alerted to the potential 
inconsistency of the record's contents. For the 6ther two 
operations, the new record is automatically deleted immediately 
after finishing the interrupted operation. This special· 
treatment is required on writes and rewrites because efficiency 
considerations preclude saving the buffer argument at the start 
of every update. 

9-16 AN57 

( 

( 



( . 

. 

( 

{_ 

The Repeating State of Execution 

The last major feature of the recovery mechanism is the 
alternate state of update processing, characterized by the 
setting of indx_cb.repeating to ''l"b. This situation only arises 
as a result of the detection of an interruption and invocation of 
the restart procedure discussed in the previous section. 

What will ultimately be shown is that the result of 
reinvoking any interrupted operation in the repeating state is 
the same as it would have been, had the operation run to· normal 
completion. Furthermore, the process of recovery must also be 
completely restartable. 

To guarantee the correctness of restarting as described, it 
is sufficient to show that some set of conditions exist such that 
the total machine state (relevant to an operation). that existed 
just prior to any interruption is somehow reconstructed. The 
term "machine state" refers to both the state of execution (level 
of procedure invo·ca tion, for · example) and the va1·ues of all 
variables that can subsequently be referenced. Since we are 
presumably dealing with a deterministic system~ the replication 
of any prior state must produce the same outcome. 

The essential difference between the two states of 
processing is that certain portions of code are bypassed in the 
repeating state. Otherwise, the flow of control is identical to 
that of normal execution. In restarting an operation, the 
repeating state automatically reverts to the normal state before 
reaching the point of interruption. Thus, the repeating state 
only applies to portions of code previously executed. 

9-17 AN57 



Sections of code to be skipped in the repeating state are 
embedded in internal procedures of the following for~: 

(a "prote'cted" procedure) 
routine_x:proc; 

if indx_cb.repeating then do; 
call check_file_substate; 
return; · 

end; 

(body of procedure 
executed only in 
the normal state) 

file_base.file_substate= 
file_base.file_substate+1; 

end routine_x; 

where check_file_substate is the following procedure: 

check_file_substate:proc; 
indx_cb.next_substate=indx_cb.next_substate+1; 
if file_base.file_substate=indx_cb.next_substate 
then indx_cb.repeating="0"b; 

end check_file_substate; 

Also, each update entry in open_indx_file starts with a call 
to the following internal procedure (some details omitted for 
clarity): 

initialize_substate:proc; 
if indx_cb.repeating 
then if file base.file substate=0 

then indx_cb.repeating="0"b; 
else indx_cb.next_substate=0; 

else file_base.file_substate=0; 
end initialize_substate; 

Flow of Control 

Half the problem of reconstructing the interrupted machine 
state is getting back to the right location in the code. If the 
program were completely linear, i.e., without ·any internal 
procedures or do loops, then a simple transfer would suffice. In 
general, the skipping mechanism used with the repeating state 
achieves the same end without the requirement of linear program 
flow. The correctness of this technique, however, does imply 
certain constraints. 

9-1b AN57 

( 

( 



( 

To guarantee that flow of control returns to the point of 
interruption, it is required that the original path be followed, 
deviating only when it is certain that the bypassed code has 
already been completely executed, and in such cases always 
returning to the original path. Any control-altering statement 
that is repeated must therefore have the same outcome as before. 
This implies that any variables upon which a control-altering 
statement depends must be restored before the statement is 
repeated. Conversely, any control-altering statement that 
depends on a variable whose value can have changed must be 
skipped in the repeating state. 

Reversion to the Normal State 

The function of the internal procedure check file_substate 
and the temporary counter indx_cb.next_substate is to ensure that 
the transition from repeating to normal execution takes place at 
the right moment. Strictly speaking, the right moment to stop 
skipping sections of normally executed code is the point after 
the last machine ·instruction executed before the interruption 
occurred. In general, however, some number of prior instructions 
can be repeated without altering the outcome. The permanent 
substate values delimit sections of code according to this 
property. Thus, for an interruption anywhere within a section of 
code corresponding to a single substate value, it is sufficient 
to revert to normal execution just prior to entering that 
section, or "logical block," of code. 

The next_substate in the repeating state is initialized and 
periodically incremented so as to correspond to the normal 
substate value for the upcoming logical block. This practice 
allows the logical block of an interruption to be found simply by 
comparing next_substate with the permanent substate saved in the 
file_header. However, it should be noted that the mechanism for 
incrementing the next_substate described earlier introduces the 
constraint that such "protected" procedures not be nested. For 
this reason, a second permanent substate counter is used in the 
procedure change_index. ~vidently, the use of multiple permanent 
substate counters effectively removes ·the constraint agai~st 
nesting protected procedures. 

Restoration of Variables 

Having des6ribed the mechanism whereby flow of control 
returns to the point of interruption, it remains to be shown how 
the program variables are correctly restored to their previous 
values at the instant of reverting to normal execution. For this 
purpose, the variables are. divided into two classes, 
distinguished by the constraints they impose upon protected 
procedures. All program variables upon which the completion of 
any update operation depends are required to fall into one of 
these classes. 

9-19 AN57 



Reconstructed Variables 

A variable is "reconstructed" if every assignment to it is 
repeated and produces the same outcome as that prior to ( 
interruption. Thus a reconstructed variable cannot appear on the 
left of an assignment statement within a protected procedure. 
This definition guarantees. that at any reference to such a 
variable while repeating, its value i.s the same as it was during 
previous normal execution. It follows, therefore, that when the 
reversion to the normal state takes place, all reconstructed 
variables have their former values, as required. 

Protected Variables 

A variable is "protected" if every assignment to it {except 
possibly the last) is skipped in the repeating state. Its value 
will therefore remain unchanged between th~ time an interruption 
occurs and normal execution is resumed. Prot~cted variables must 
reside in the file, since only the file is assumed to be 
preserved. 

A file variable can be protected first and then 
reconstructed, but not vice-versa. This constraint prevents any 
interrupted recovery from altering the protected value until it 
is no longer needed. 

Statements that are repeated must have the same putcome in 
order to correctly reconstruct the interrupted machine state. 
This implies that no repeatable statement can depend upon any 
subsequently assigned protected variable. 

The basis for subdividing the program into logical blocks, 
each corresponding to a substate value, lies in the dependencies 
on protected variables. Specifically, a single logical block is 
required to be independent of any protected variables 
subsequently altered in the same block. Otherwise, the outcome 
of reexecuting a block would depend on the point of interruption 
inside the block, which contradicts the defining assumption 
stated earlier. 

9-20 AN57 

( 

( 



( 

( -

( 

Repeating State-Summary 

Another point that was noted earlier is the requirement that 
the process of recovery from interruption itself be interruptible 
in the same sense. Fortunately, this problem has already been 
solved through the assumption that all variables are either 
reconstructed or protected. Since the file is thus constrained 
from changing its state until normal execution resumes, the only 
nontrivially distinct intermediate states are those as~ociated 
with normal execution. Therefore an interrupted restart is 
always recoverable through the standard recovery mechanism. 

9-21 A~57 


