
,..
MTB 373

TO: MTB Distribution

FROM: Bernard s. Greenberg

Date: 04/18/78

Subject: Real-time Editing on Multics

I. What is it?

Real-time editing is the ability to edit or enter text
seeing at all times what one has entered, as it sits in your
segment, not as you have typed it. Real-time editing is the
ability to modify a text, watching what happens as each command
is typed, as opposed to asking the editor "Now, let's see what
you did for what I told you". Real-time editing is taking
advantage of intelli~ent and semi-intelligent display terminals:
utilizing their ability to display text and alter it without
retransmiiting the entire screen. Real-time editing is the
ability to say ."Change this 9 HERE to a 10" as opposed to 11 Chan~e
the 9 which is followed by a close parenthesis, a space, a 17, a
comma and a O to a 10 11 , and find out that there were two of them.

Real-time editing brings the ability to have the
text-entry subsystem participate in the preparation of text.
Language assists, such as automatic PL/I indentation, 11 shorthand 11

expansion, or text justification, can be performed as the actual
text is being typed in. Need to indent, expand, or post-process
to match 11 begin 111 s, 11 end"'s, or parentheses, vanishes.

Real-time editing is the text-processing technology of
the 1980 1 s, based on the latest data terminal technolo~v of
today. We can have this now.

II. Why do we want it?

Text preparation and program editing time are reduced
by orders of magnitude by real-time editing. Instead of encoding
instructions to a conventional text editor to try to convince it
to do what you want, you DO what you want, watchin~ what you are
doing as you are doing it. Almost all of the steps of
conventional editing vanish. Most notable are the absence of the
"print 11 command and the substitution string, the most common of
editor inputs.

A service-quality printing terminal (e.g., Terminet
300) can be purchased for $3000, and can communicate at 300 baud.
A 1200 baud terminet is around twice that price. Printing
terminals are noisy, slow, expensive, and difficult to maintain.
They generate waste paper, and are in and of themselves a
constraint on communications technology.
Multics Project inte~nal working documentatio-n-.~N-o-t~t-o_,....b-e_r_e_p_r-oduced or dis
tributed outside the Multics Project.

Greenberg Real-time Editing Page 1

Microprocessor technology drives the price of
intelligent terminals down daily. Intelligent display terminals
capable of operating at 19.2 KLLOBAUD are available for $800 or
so. Even an extremely clever display terminal (i.e., the Delta
Data 4000) is cheaper than the 300 baud terminet. Several
Multics sites rely heavily on display terminals; they are the
data entry technology of the present. The microprocessor will
consign the printing terminal to the same place it consigned the
slide rule.

Multics is now very weak in its support of display
terminals. Users of such terminals, whose numbers are increasing
in the Multics community, can now choose between "page len~th"
processin~, or watching data float off the screen at line speed.
On the input side, editing using a display terminal on Multics is
particularly frustrating, for text being edited vanishes off the
screen as fast as you can type editing commands, and there is no
hard copy to look back at. Indeed, most time spent attempting to
use 11 qedx 11 or ."edm", 01· even ''TECO" from a display terminal is
spent saying, "Let's look at these few lines again and see what
they say••. This is absurd, for video terminal technology was
designed to facilitate editing of data as you see it.

support
flexible
Multics
which it

Multics must adapt to video terminal technology, and
the growing variety of video terminals in the same
and general way it has supported printing termin~ls.
must keep in step with the forefront of technolo~y from
came. Multics must have the best, and be the best.

III. How does it work {on the surface)?

Real-time editing is accomplished by invokin~ an
editor, a user-ring Multics program, as are conventional editors.
The editor clears the terminal screen, except for a line near the
bottom stating constant information, such as the fact that the
editor is being conversed with, a ''buffer name", and the pathname
of what is being edited, if any.

At once, the user can begin to type text. There is no
"input mode'' or -"edit n1ode". As the user types text, including
newline, space, and tab characters, the characters appear on the
screen as he or she types them. If a mistake is made, the
striking of a "II" c ;;iu ses the previous char act er to be wiped off
the screen as though it were never tyoed, as an @ will strike out
a line. Even at thjs elementary level, the text appears correct
and as intended at a~l tim~s, instead of conglomerations of pound
signs and at-signs. The displayed text is always right. The
column position is always accurate (unlike today, when line
editing forces us to type

"\fa" if we care what cc.·lumn we are at).

Greenberg Real-time Editing Page 2

As the user types text, it is entered into a "buffer,"
as in conventional editors, which may have been initially filled
from a segment, and may be written out to that or some other
segment. As characters are entered, the terminal's cursor (a
blinking mark which "runs" (lat., 11 curreo", I run) all over the
screen) provides a visible indication where the next character
will go. Normally, it is in the position right after the last
character typed, so characters follow each other as they are
typed. The basic notion of real-time editing identifies the
cursor, on the screen, with a conceptual 11 pointer.•• in to the
editor's buffer, such as the "current line" of qedx or edm, or
even more closely, the "."of TECO. The cursor is maintained bv
the editor to be at that character on the screen which is the
"current character of the current line" in the editor's
conceptualization. Thus, normal entry of characters ."moves'' the
editor's •"pointer." as characters are typed, which, as a side
effect, moves the cursor on the screen as well.

Each character typed in this way may thus be viewed as
a command to the editor to 11 insert 11 that character at the current
"pointer.", and move the pointer to the right of that character.
Thus, typing "a", 11 b 11 , and "c", in sequence means •''put in an ."a",
a ."b", and a ."0 1111 • Contrast this with qedx, where "a" means
"append", "b" means ,••go to buffer.", and l"C'' means ,"change 11 •

Similarly, 11 /1 11 means •"make the character to the left of the
"pointen" disappear.·•, which is what it has always meant in
Multics anyway, but in the context of the real-time editor, the
character actually disappears: both from the buffer and the
screen.

Now the editor can be convinced to move its ,"pointer."
around to any text in the entire buffer. This mi~ht be useful,
for example, to insert a word between two words we had already
typed. If we could convince the editor to move the "pointer"
between the two words, simply typing the new word would put those
characters right there (for we have already decided that "a"
meant put an ."a" to the right of the pointer and move the latter
by one). As they would be typed, the user would see them aooear
in the middle of the chosen line as he or she typed them, the
rest of the line moving over to the right as the new characters
were typed, one by orie. And if a mistake were made, just tvoing
"II" would delete the character to the left of the pointer, as it
always does, and that character would summarily disappear from
the screen and the buffer, the rest of the line moving to the
left visibly.

The editor can be convinced to move its pointer by
typing "non-printing characters'' at it. For instance, ."control B"

Greenberg Real-time Editing Page 3

(1) move the pointer 1"backward", i.e., to the left, and 11 control
f." moves it forward. "control P" goes to the previous line, and
"control N. 11 goes to the next line. Now each time one of these
characters is struck, not only does the editor move its pointer
within its buffer, but moves the cursor on the screen to the
corresponding position in the displayed text. Thus, the user
moves the cursor around via these controls, to the point where
editing is desired, and inserts or deletes characters once he or
she has gotten there.

A buffer (representing a segment being edited) can
surely be longer than the number of characters which can be
displayed on one screen. If an attempt is made to move the
pointer out of the part of the buffer which is on the current
screen, the editor will provide for moving the viewed ."window••
(the 20 or so lines being displayed) to a different set of lines,
so that the pointer is always visible on the screen as the
cursor. With intelligent display terminals, this can often be
done by actually instructing the terminal's microprocessor to
move existing lines around on the screen, up or down to make room
for new lines which Multics will transmit.

Now this is only the basic idea. There are much better
and more sophisticated commands available, such as ."Capitalize
the word at which the cursor/pointer points" or ."Move the cursor
to the matching close-parenthesis of the open-parenthesis where
it is now", or ."Delete the next 6 words" or .11 Put over here the 6
words I just deleted from somewhere else 11 • Some notion of the
flavor of these commands may be gleaned from the protoype command
repertoire in the appendix. In each one of these cases, a
visual indication of what was done is displayed immediately on
the screen, not by leaving a record of the editing commands, but
by modifying the displayed text on the screen. It is more akin
to the notion of editing a text with a perfect pencil and eraser
than with a computer. The user is always viewin~ the text as it
appears after the last character he or she has typed. Thus,
there is no need for the editor ."print" command, which means
"Let's see what I've done". You are always looking at what you
have done. One moves the cursor to THE character or word one
wants to change or delete, pointing at it directly, instead of
tryin~ to invent a context which specifies it uniquely, as in
printing-terminal oriented editors.

The editor manages the screen with knowledge of its
capabilities and limitations. Text neither rolls off the top as
editing is performed, nor need he printed in hardcopy to view
what one is working on. The terminal. the user, and the editor
cooper lte and interact in a fashion which is completely new to
tv1ultics.

(fT--;;-con.tr0l B" is fl,enerated on a ASCII keyboard by pressing the
"13" key while the "CTRL" key is Jeriressed.

Greenberg Real-time Editing Pap;e 4

IV. Why do you need all those silly control characters?
They're not multicious at all.

It seems to make more sense that ."a" should mean
''enter an ."a 1111 than ."append". Since all the ••good" characters
(i.e., the printing characters other than#, \, and@) are used
up in this way, we need control characters to say anything else.
The default character assignments are reasonably mnemonic, e.~.,
"control B" for backward a character, 11 control E" for end of
line, etc. Since this gives exactly 26 possible commands, and
many, many more are desired, there must be multi-character
escapes to express many of the commands.. Thus, the ASCII
"escape" (or ."alt mode") key is used as a prefix to extend the
number of commands, as is the 11 control x·• character (·1) in the
default command assignment. Thus, the most common and useful
commands are assigned to single-keystroke sequences (2) while
less common ones require the .11 escape 11 prefix, and so on, until
the least common require their full command-name to be typed (in
response to escape-X, the default character for ."read the name of
an extended command and execute it 11).

The alternative to using 11 control characters" is to
have "input 11 and 11 edit 11 modes, where the meaning of all printing
characters changes in "edi t 11 mode, as in qedx, edm, and TECO.
This is one of the worst failings of these editors, as users
happily delete lines by typing .11 dcl 11 in edit mode, write out
segments named 11 ha 11 , and insert sequences of 11 w. 11 , ,••q. 11 , and "pl 1
foo" in their segments. However, printing-terminal editors are
constrainted to printing characters, for the user must look
carefully at his or her "substitute command'' before unleashing
it by typing carriage-return, in order to ensure that it will
hopefully do the 11 right thing". This, of course is completely
unnecessary if there is a blinking dot on the screen pointing at
what you are about to delete or change.

All ASCII video terminals can generate control
characters. There is no need to be able to see characters which
are editor commands unless you don't believe that they are ~oing
to do the right thing if you "activate" them. All "delete" or
"kill" type commands can be undone. If some command character
typed deleted the wrong thing, one need only type "control Y"
(for ."Yank") to get it back. Since the effect of the deletion is

(1) All of the character-to-command assignments c2n be changed
dynamically by any user at will, if he or she so desires. This
goes as far as saying "when I type ··~·· I mean "E'', because the
"E" key on my terminal is broken."

(2) Not counting the 11 CTRL." key, on which one tends to hold one's
little finger during other sequences th~n text-insertion.

Greenberg Real-time Editing Page 5

viewed instantaneously, no further work is lost. Thus, there is
no harm in simply commanding the editor to do what you want in
real-time, undoing it if it was wrong. You don't ever want to see
what you typed (with respect to editor commands): you only care
what you have in the buffer, which you always see. Thus, you do
not have to "plan 11 and 11 plot" editor commands, as with the
conventional editors, before activating them.

Holding a "Control'' key to achieve a different function
of a key is no better or worse than holding "shift•• to capitalize
a letter. So much for control characters.

V. Can't intelligent terminals do this locally?

Well, some of them certainly can do some of it. Many
terminal manufacturers provide a facility whereby you can edit
the text on ~he screen via the use of specially marked keys on
the terminal. Response is instantaneous, since only one user is
using the terminal. When the screen is all correct, one can hit
"transmit" and the screen will be transmitted to Multics.

This approach has several problems. The most serious is
that there is no cooperation between Multics and the terminal.
All changes made are rn1de locally. If text is deleted, it is
gone, and cannot be gotten back. You cannot edit any part of your
segment except that which appears on the screen. No known
terminal on the market provides for searching, word processing,
or, in general, any form of text manipulation more sophisticated
than the insertion or deletion of single lines or characters. The
power and generality of the Multics software cannot be used.

Furthermore, since Multics does not cooperate in this
venture, a random message or unexpected transmission messes up
the displayed screen beyond repair; all work is lost, and Multics
cannot regenerate it because it was not in on the editing. It is
a situation as dynamic as setting lead type offline. Any
unexpected situation spills the type on the floor.

Another good problem with the local editing approach is
that not all terminals have the same local editing capabilities.
Many very good and popular ones (such as the DEC VT52) cannot
insert characters in the middle of ~ line, or move lines around
locally. Using local editing, these operations are simply ruled
out. Using real-time editing on the central system, it is a
simple matter for the editor to simulate these operations in
terms of the terminal's repertiore. At 1200 baud and better, the
difference is barely noticeable.

Transmitting entire screens, or even lines, at line
speed, places severe constraints upon the central system
rec9ivinR end. Larg0 buffers and split~millisecond allocations
are required. This technolop,y also requires hiRh line bandwidth
in the "transmit" direction at any speed. At lower speeds, the

Greenberg Re~l-time Editing Page 6

,.

time required to transmit a ."screen" is simply annoying.

Local editing is not extensible.
editor ."macros" for a read-only memory.

One cannot write

VI. Why don't you use those buttons with the arrows on them,
and the "program function keys"?

Experience with this kind of thing has shown that one
can edit faster if one keeps ones fingers on the normal typing
keys of the keyboard, without moving them around for editing
operations. It is partially this simole matter of "hand
efficiency".

Not all terminals have the same set of special-function
and program-function keys. The number, nature, and meaning of
these keys is a function of the manufacturer and model of the
terminal. By using nor ma 1 keys and their . "control 11 codes, the
description and availability of editor functions is a specifiable
in one place, the single document for the editor, regardless of
what type of terminal is being used, what keys it has, or what
functions it has available. Usage of the editor from a Honeywell
VIP 7200, a Perkin-Elmer FOX, or a MIT-AI Knight TV Display is
identical.

My sympathies do not lie with them that cannot
understand that 11 control B" means backwards, for its lack of a
left-pointing arrow, given that they understand the notion of
"\f". The full capabilities of the intelligent display can be
utilized without the use of random and variegated local keys;
they are simply not useful in this context.

VII. What have you done?

I have designed and implemented a real-time display
editor on Multics. Running on the MIT and CISL machines, it has,
in the month since its inception, acquired an actual user
community of about a half dozen. Display terminals are prevalent
in the MIT Computer Systems Research and Programming Development
Office groups.

The command repertoire and interface philosophy of this
editor were borrowed from the 11 EMACS 11 editor running on the MIT
AI/Mathlab PDP-10 • s. "EMACS" stands for .''Edi tor Macros", for a
screen editor implemented by Richard Stallman of the MIT AI lab
as a set of "macros" (1) in ITS (2) TECO. Mr. Stallman is fully

(1} "Macro" is the term used in TECO and many other editors to
describe user-coded programs and extensions. It is a poor term.

(2) For ."Incompatible Time Sharing," the MIT-developed operatinR
system used on the Artificial Intelligence Lab's PDP-10's.

Greenberg Real-time Editing Page 7

aware of this endeavor, and most enthusiastic about it. Having
used EMACS during the preparation of the 1978 offering of my MIT
Lisp Course, I became acquainted with this particular interface,
and enamored of it and what it represents. Nevertheless, EMACS is
not unlike, in basic ideas, any of a half-dozen other
state-of-the-art screen editors that come to mind, and neither
MIT nor DEC has any proprietary rights to the particular commands
and character assignments. The idea of real-time video editing is
also in the public domain. The fact that I have preserved the
interface of ITS EMACS has allowed an existant user community to
utilize the Multics version of EMACS immediately.

EMACS is considered to be state-of-the-art. Co~noscenti
have observed that no other video editor offers any particular
advantages of substance. It is high time that Multics editinR
technology left CTSS-oriented editing and became
state-of-the-art.

Multics EMACS, as my editor currently calls itself, is
implemented in Lisp. I will discuss this below. It is extensible,
programmable, self-documenting, and its code is transoarentlv
legible. It is already a powerful tool which I have used in my
"normal" activities with great success. It already supports seven
different makes/models of video terminal. It takes a skilled
programmer about 10 minutes to construct a support extension for
a new type of video terminal. The need to construct these
packages in the editor as opposed to in Multics stems from the
fact that Multics does not support video terminals with any kind
of mechanism like the TTT with which printing-terminal
extensibility is implemented.

The response to this project has been overwhelmingly
enthusiastic from the user community. People have offered the
opinion that it is high time that Multics had something like
this. At sites such as USL, (which runs DD4000's exclusively,
Multics EMACS' "favorite" terminal), the anticipated response can
hardly be envisioned.

Greenberg Real-time Editing Page 8

~ VIII. I have heard that you patch the FNP with hphcs_.

Indeed, this is true.

For asynchronous terminals, Multics is currently a
totally line-oriented system. Character at a time interaction is
essentially impossible. The FNP (1) will not transmit a line to
Multics until a new-line (2) character is typed. The FNP-6180
interface protocol is organized upon the transmission of
completed lines. It is precisely this technology which fosters
the growth of line-oriented editors and premeditated substitute
commands.

The Multics ARPANET implementation will transmit each
character as it arrives, and wake up a the server Multics
process. Since other hosts support character-at-a-time I/O,
specifically the TIPs (3) the MIT community has had to resort to
logging in to Multics from the MIT TIP or the PDP-10s in order to
use Multics EMACS, because Multics itself cannot perform
character-at-a-time input.

Thus, I have found it necessary, to create in the FNP
(with the help of Larry Johnson, one of the local FNP experts) a
CCT (4) which breaks on every character, and patch it into use
for my channel every time I use Multics EMACS. I do this on the
CISL development system during the time that .11 mini-service" is
run. This causes every character to be treated like a ."newline",
and transmitted to the central system from the FNP. The response
time, through the FNP, the central system interrupt side, the
ring 4 program and back out again, manifests itself as a
character-echo faster than LSLA echoing, comparable to HSLA
echoing. Admittedly, there is little or no user load on CISL,
and it takes quite a bite out of the system. This does not make
it less useful or less good.

This ,••break and ship buffer on every character.'• mode is
being proposed as an interim MCS extension to allow debugging and

(1) Front-end Network Processor, being a Datanet 355 or 18X.

(2) Carriage-return, line-feed, or either, depending upon various
modes.

(3) A TIP (Terminal Interface Processor) is a node on the ARPANET
which can be dialed up, like the FNP, from phone lines, and will
allow the user to log into any host on the ARPANET "from" it. In
the jargon of the ARPANET, the TIP is thus the 11 user. 11 end of a
"TELNE'I" connect ion, and the "foreign host" (i.e. , the desired
system) is the "server." end.

(4) Character conversion table, the hardware table in the FNP
which tells an HSLA subchannel which characters to interrupt on

Greenberg Real-time Editing Page 9

experimentation. It is planned as a tty mode for the near future.
For demo and experimentation purposes, it will be completely
adequate. It may even be totally adequate, and better DIA
protocols may not need to be devised for some time.

The current line-oriented DIA (1) protocol involves
three handshakes between the central system and the FNP to shio
that line over. Negotiations to allocate a central system
buffer, and negotiations to allocate a mailbox over which to
negotiate the central system buffer are involved. This overhead
is unacceptable, both in terms of number of interrupts, CPU time,
and response time under load for highly interactive time sharin~
applications such as real-time editing. The DIA mailbox
protocols were partly designed for NPS compatibility; these ~oals
must be reexamined.

Other systems ship characters with process
"destinations" at regular intervals (say 1/30 sec.) between
front-end processor and central system in multiplexed buffers.
Such a scheme for DIA transfer maintains the same throughput with
complete character-at-a-time response.

There are other schemes to reduce the overhead of a DIA
transaction, including the sending of short messages in the
mailboxes as opposed to negotiated buffers. Other schemes
involve the ~egular shipment to the FNP of the addresses of
available buffers. The scheme proposed above is not as radical
as ·it may first appear; it is not unlike the ring~zero
demultiplexing currently being proposed for IBM 3270 support.

(1) Direct Interface Adapter, the communications path between the
FNP and the central system.

Greenberg Real-time Editing Pap;e 10

IX. That's going to take some bite out of the
system, isn't it?

Yes. You get what you pay for. If Multics is not
responsive or fast enou~h to support this highly interactive
application, we cannot truly claim we have a truly interactive
time-sharing system. Current performance via the ARPA net on MIT
lags three or four characters behind typed input. This, however
is going through the substantial overhead of the Network Controi
Program, the IMP dim, the packet-switched ARPA network, etc.
Yet, these results are on MIT with ·•real users" logg~d in. It is
felt that Multics respon&e may not be as bad as ~ome fear; if the
TTY dim must be subjected to the same type of scrutiny and
recoding that has been performed upon page control and the Disk
Dim, then this is as good an excuse as . any. People want
functionality as well as performanc• for their computer dollars.

X. Why did you have to write it in Lisp?

The language Lisp is extremely attractive as a tool for
the development of user-extensible, modular, efficient proF.rams.
It overcomes many of the disadvantages of block-structured
languages such as PL/I, Algol, and Pascal.

In Lisp, I can make functions 3 or 4 lines lon~ that I
can call from any place in the entire subsystem with a call
overhead of about six instructions, and a stack frame overhead of
usually O to 4 words (on the Lisp stack, of course). In PL/I, for
example, I am forced to make the choice between external and
internal procedures. The call overhead for external procedures is
unacceptable, being near two dozen instructions including the
callout, entry, and return operators. The minimal 64-word stack
frame is also unacceptable. For trivial functions, such as ,••go
forward a characte~··, the external procedure must be ruled out.

The internal procedure is similarly problem-laden. By
definition, it may only be used in the procedure in which it is
defined. This means that either its text must be duplicated,
lexically and in object code, in all source modules that wish to
use it, or one very large source module must be used. In either
case, the current implementation causes the stack overhead of the
internal procedure to be paid for even when it is not being
called, adding to the frame of the procedure in which it lives.
In the first case, modularity is sacrificed because everything
must be recompiled or chan~ed if one internal procedure changes.
In the second case, maintainability is sacrificed, because one
gigantic procedure must be recompiled for the most minimal
change. Furthermore, internal procedures cannot be traced.

In neither case can user extensions call these internAl
procedures easily, or with any kind of transparency or

Greenberg Real-time Editing Page 11

modularity.

The prop;rammer efficiency of most block-structured
also leaves a great deal to be desired. Most

in a source prop;ram are syntactic constructs of the
not user variables and functions. The weight of
declaration bears heavy upon the smallest source

languages
characters
lanp;uap;e,
mandantory
module of
instruction

mo~t subsystems. Lisp object code suffers not one
for the lack of these declarations. Optional

non-generic operators address the data-type issues adeauately.

The Lisp environment provides a "process" not unlike
the Multics process environment, where any piece of the subsystem
may be called from any other. User code can call any function in
the subsystem. (1) Unlike PL/I, this does not reduce the
efficiency of the subsystem. The Lisp environment is finely tuned
for allocation in well-defined increments, as this is one of the
tenets of the language. As dynamic an application as a real-time
editor relies heavily upon this. This path is more efficient than
the standard area path.

A large Lisp subsystem can be debugged incrementally,
as functions are added (either by the developer or a user
extending it). Not only is recompilation/rebinding (worsened bv
the procedure call issues outlined above) not necessary, but the
support of an interpreter is available for debuggin~. No other
compilable language on Multics has such a facility.

Where function call is still too expensive, Lisp
provides a macro facility, whose invocations look identical to
function invocations. It is tremendously powerful, and useful. No
other compilable language on Multics provides any macro facility.

Many of the traditional complaints about Lisp are
founded in darkness. For example, be aware that ·production
subsystems in Multics Lisp are not interpreted, but compiled, by
one of the finest Lisp compilers available. The Lisp compiler (2)
produces standard Multics object segments to run in the Lisp
environment, offering a performance improvment of over 100 over
interpreted code. Compiled and interpreted functions can call
each other freely.

"Lots of Irritating Single Parentheses 11 , as the acronym

(1) Whether some limitation on this is desirable is another
issue.

(2) A particularly interesting program about which I have written
an extensive document of probable interest to those with an
interest in compiler theory. It is available upon reauest.

Greenberg Real-time Editing Page 12

·~Lisp" (1) has been accused of de noting, are a problem only when
proper editing tools are not available. The parenthesis and
S-expression balancers of EMACS (and Multics EMACS) reduce the
grief of Lisp editing by a factor of 10. Once the hang of it has
been acquired, it is found that the time to prepare a Lisp
function (say in the editor) that works can be measured in
seconds, while a comparable PL/I preparation might take 20
minutes, including all the declaring, compilin~~ binding,
debugging etc.

The efficiency of character-handling is also not an
issue. Multics EMACS contains a small amount- of ass~mbler (2)
code for inserting and deleting characters from the active line.
Note that PL/I cannot utilize an mrl instruction to open up a
line, either. Calling a LAP program from Lisp still takes the
same 6 instructions: PL/I still needs a dozen or more.

Lisp is not the optimal language for all tasks. Dealing
with machine objects already ~aid-out in storage is not
particularly efficient. The representation of data objects does
not lend itself well to packing bits and characters, etc. The
structure concept of COBOL and BL/I is superior for these
applications. But in the editor, neither of these are issues.

XI. Does this mean that we have to support Lisp?

Yes and no. Support means a lot of things. We do not
need to promote it as a product, or as an up-front user language
at this time. These things can come in time.

We must install the Lisp environment support in
whatever library this editor would be installed in. We must be
responsible for fixing bugs if necessary, and makin~ minor
extensions as needed. These commitments do not take much
personpower.

We do not need to d.istribute an ."Orange Cover,''
Honeywell user document, although that option remains open to us.
Documentation of Multics Lisp is available to us, in on-line
form, and the creators of this documentation have offered it to
us. This documentation is currently available internally, and can
continue to be so.

We do not need to create marketing documentation at
this time. We should train some more developers within the
Multics software group at this time: a tutorial document prepared
by me is available internally. It should not be necessary at

(1) Actually for ."List Processing Language".

(2) Actually LAP, the Lisp Assembly Program, a type of ALM which
produces Lisp-loadable object segments.

Greenberg Real-time Editing Page 13

this time to train supporters outside the development group; this
issue can be addressed later.

Some documentation must be distributed in order to
enable potential writers of editor extensions to code them
effectively in Lisp. This is not a large problem.

We feel that the time spent supporting Lisp in whatever
capacity will buy itself back in an increased number of
development tools. There are already some private tools in Lisp
of some importance. Any support of Lisp would vastly augment
their status.

The Multics Lisp implementation is an implementation of
MACLISP, one of the more well-thought-out and complete
implementations of Lisp available. It is completely operative,
and has no known major bugs. Major extensions are not needed at
this time. We can have it now.

XII. What about .''editor macros."?

It has been observed by those who have addressed this
problem before that editors which try to offer a single language
for interactive editing and macro-writing develop a compromise
which is inadequate at both. The qedx interface is not
unreasonable for a line-oriented printing-terminal editor. The
commands are natural, and simple, for that application. However,
developing "macros" (complex pre-written functions) out of these
functions is a feat of such magnitude that a former Multician
pinned to his door a qedx macro so complex that it could actually
play tic-tac-toe. There are no facilities for program control,
variables, subroutines, etc., in this language. It is not a good
programming language. Various attempts to add these features are
ill-conceived, and do not make it any more so suited. The qedx
language is still a human-to-editor imperative language by which
to negotiate changes to a segment.

The other end of the spectrum is TECO, either on
Multics or the PDP-10's where it was born. In an attempt to
provide functions suitable for program-writing, such as 1000
constructs, character-at-a-time movement, etc., TECO requires
someone editing a segment to devise little programs to do
something as simple as ,"change all foo 1 s to bar 1 s". Teco is
oriented towards program writing; the program-instructions are
really too primitive to be used as commands in a line-oriented
environment. On the other hand, the single-character names of the
commands, a feature to allow use as an editing language, cause
TECO programs to be notoriously abstruse. Thus, TECO fails at
both.

addressed

Greenberg

It is
this

the opinion
issue that

of those who
there should

Real-time Editing

have
be two

previously
languages

Page 1lt

associated with an editor; the keystroke language by which a user
edits his or her segment, and the language for writing macros.
This does not constrain the programming language to be terse, nor
the keystroke language to be primitive. Thus, ITS EMACS was
implemented via TECO, as a programming language, but with an
newly designed editing language optimized entirely towards
editing.

The Multics EMACS editing language is the
list of control characters and escapes.

provided

The Multics EMACS programming language is Lisp. Lisp is
a complete and powerful programming language, with all of the
features one would expect in a higher-level language. The Multics
EMACS programming language is enriched by the functions provided
in the editor environment. Many of these functions are the ones
normally invoked in response to keystrokes, such as the function
"backward-char." which is normally invoked when "control B" is
typed. If you know what "control 8 11 does, you know what invokinp;
"backward-char" does. I contend in dead earnest, by experience,
that a "macro" written in Lisp for Multics EMACS is more readily
comprehended by one who does not know lisp than a comparable
macro in TECO or qedx would be by one versed in these langua~es.
So transparent is this Lisp code. This is largely due to the lack
of syntactic overhead in Lisp, and the aforementioned Lisp macro
facility. '

I have devised and debugged Multics EMACS ~ditor
extensions {a better term than 11 macros 11) in real-time, by tvpin9:
them into a buffer, staring at it, saying 11 0K, editor, now load
it" and now ."try it". If it doesn't work, your are still lookinp.;
at it. Edit it, try it again. You never leave the editor. You
see the function and its results in front of you. It is quite
effective.

Via this technology I have devised esoteric
functionality such as hitting a control-character which fills in
the declaration for the PL/I subroutine name I just typed, and
another which allows me to "edi t. 11 the listing of a directory,
deleting the segment whose name I have pointed the cursor at, and
editing the display in parallel.

Any user-function, or any editor-provided function, can
be hooked up to any key, or invoked explicitly by its name.

I fail to see why any person who can write an editor
macro in qedx or TECO would have problems, given a
well-documented starting point, writing editor extensions in
Lisp. Knowledge of the internal organization of the editor is not
necessary. What is more, the display is managed automaticallv-SV
the editor. User extensions {or builtin functions, for that
matter) are not aware of the existence of the display; whatever
transformations upon the buffer were performed by the user code

Greenberg Real-time Editing Page 15

or the editor code, these changes will be made automatically to ~
the screen when they !!.!.!: all done, via the technolo~y known as
"redisplay.". All in a terminal-independent fashion.

XIII. What about "The Editon"? Is this instead of
the proposed qedx extensions?

If you have a display terminal, yes. I cannot
env1s1on any reason why anyone would want to use qedx or any of
its derivatives given the capability for real-time video editing.

If you don't, probably not. Although EMACS does work on
printing terminals, I would prefer qedx, and given that, the
current research into conventional editing is well worth it. The
only advantage to using EMACS on a printing terminal is the lar~e
number of user extensions that people will have developed. ITS
EMACS moves the printing-head around instead of the cursor, and
it is curious to watch.

XIV. Where can I see this thing?

In Cambridge, it is best demonstrated on the CISL
Delta-Data 4000 during CISL service, 1:00-3:15 PM. If you h~ve
any kind of display terminal and ARPANET access, you can probably
use it on the MIT machine. Contact me. {HVN 261-9330, or
617-492-9330, or Greenberg.Multics on MIT, CISL, or System M, or
Greenberg@ MIT-MULTICS (ARPANET), or BSG@ MIT-AI or MIT-MC, or
care of Honeywell Information Systems, 575 Technology Square,
Cambridge, Mass., 02139.)

I hope to have it operative on the VIP 7200 in Phoenix,
System M, in the very near future.

Greenberg Real-time Editing Page 16

Current repertoire

The following is a command list that I hand out. It is
nowhere near complete, in terms of what I plan. It is here
simply to give an idea of what some types of possible things are.
This is the current repertoire of the implmentation.

Greenberg Real-time Editing Page 17

Multics EMACS -- 4/17/78 -Bernard Greenberg

The Multics real-time editor
display-oriented text-preparation and
designed after the EMACS TECO macros
others on the MIT-AI PDP-10.

is an interactive,
editing facility

of R. Stallman and

This is an elementary list of editor commands.
Almost all printing characters represent themselves and p,o
in as text; Carriage-return or linefeed may be used to
terminate lines. The symbol ,, means •''control'' -
11 "'A 11 means depress the "a" key while the "CTRL" key of the
terminal is depressed. The symbol ESC means that the kev
1 ab el led ''ESCAPE" or . "AL TMODE '' shotJ ld be depressed and
released prior to pressing the next key. I.e., ESC-D means
the two-character sequence, ESCAPE D. (Lower case can be
used, i.e., ESC-d).

The cursor is considered to be the LEFT edge of
the blinking cursor, i.e., when in the leftmost column, it
is considered to be before the first character.

"'T

Greenberg

Go (move cursor) to beginning of line.
Go Back one character.
No-op. See :•L. """'
Delete charact~r ot (to right of) cursor.
Go to end of line.
Go Forward one character.
This is a backspace- do NOT USE.
Same as a TAB.
Same as a linefeed.
Kill to end of line, except when already at end of line,
delete the linefeed (merge lines).
With numeric arg (see below), kills that many lines.
Redisplay the screen. Use if terminal or editor starts losing,
or somebody sends you a message, etc. On FNP Multics,
follow this by ~C. because FNP will not transmit 1L alone.
Same as carriaga return.
Go to next line, same horizontal place.
Open up space, insert a linefeed, move cursor back. See "'U.
~u:u:o for instance will open up 16 lines.
Go to previous line, same place.
~uote the next character, i.e. insert it literally, as
:on to P,et a pound sign in. Same as \.
Reverse search. L~ave cursor positioned before matching string.
don't move cursor if riot found. See ~S.
Search. Will prompt at bottom of screen for search string. End
the search string with ESC.
Twiddle (transpose, interchange) the last two characters typed.
like, I like Mutl "'Tics becua~Tse ••• etc;. ~
Multiplier. When not followed by a· number, multiplies the next ·
command by 4 for e~ch use. I.e., "'u:o deletes 4 chars. ~U"'U"'D

Real-time Editing Page 18

,...

~v .. w
~x

~y

~ 7.
~@

\
@

II

ESC-[
ESC-]

ESC-<
ESC->
ESC-B
ESC-C
ESC-D

ESC-F
ESC-G
ESC-H
ESC-1L
ESC-Q

ESC-U
ESC-W
ESC-X

ESC-Y

ESC-\
ESC-11

ESC-"A

ESC-~F

ESC-~N
ESC-~O
ESC-ESC

Greenberg

deletes 16. With a number, uses that, i.e., ~U13x inserts 13 x's.
not implemented yet •
Wipe (kill) all text between cursor and the-mark. Can be
retreived with :Y.
Control X commands are two-character sequences, listed below.
Yank (retrieve) killed text to cursor. Unkills last killed word,
line, or region (~W). With an arp,ument, goes that many killings
down a 10-position ring-buffer of old killings.
does a Multics Quit.
Sets the-mark to be where the cursor is now.

Causes the next character to be inserted literaliy.
Kills all the text on the current line.
Deletes the previous character (before the cursor, which is
usually the last character typed, like in normal Multics.)

Go to beginning of paragraph, right before first word.
Go to end of paragraph, end of last line.
Runoff control lines count as paragraphs.
Go to beginning of buffer.
Go to end of buffer.
Go backward one word, leave cursor before first character of it.
Capitalize the current or last word, move to after it.
Delete the word to the right of cursor, and all whitespace
between cursor and it.
Go forward one word, leave cursor after last character of it.
Do to point/mark region what ESC-Q does to a paragraph.
Set point and mark around the current paragraph.
Lowercase the current or last word, move to after it.
"Fill" the current paragraph, like runoff with ·•.na".
With argument (i.e., ESC-1 ESC-Q), fill and adjust like runoff
with .fi and .ad. See ~XF to set fill-column.
Uppercase the current or last word, move to after it.
Like ~w, but doesn't wipe, just puts in kill ring.
Prompt for the name (and args) of an extended
command. See below.
I don't like what I just :Yanked. Get rid of it and
yank the
previous thing in its place.
Delete all whitespace surrounding cursor on current line.
Delete the word to the left of the cursor, and all
whitespace between it and cursor.

Go to beginning of Lisp function, i.e., last line
with open paren in first column.
Skip over exactly one balanced S-expression,
including parenthesized lists. This is VERY
powerful, and may be used to balance parentheses
in PL/I or anythinp; else. Diagnoses missing ")"'s.
Skip to end of current Liso list. Used internally bv ESC-~F.
Break line at this point, indent new line like this line.
Prompt for string for Lisp to evaluate. For hackers only.

Real-time Editing Page 19

ESC-(number)

:x.

Causes the next command, if one of the following,
to be repeated that many times. I.e., ESC-35-=D
deletes 35 characters. ESC-4-m inserts 4 m's. Same
as :u when used in this way.

Good for :a ~D :F # :N ~p :o ESC-B ESC-F ESC-D ESC-#

Also tells :Y how many back to yank.
Also tells ~K how many lines to kill.
Also tells ESC-Q whether to adjust or not.

:~x commands:

Set "fill prefix" to what's between beginnini;i: of
line and cursor. The 11 fill prefix" is inserted
automatically by linefeed, ESC-Q/ESC-G, and
autofill. It is also prepended to lines that are
yanked, if they follow yanked linefeeds.
Read a file into buffer, leave you at first position of first
line. Prompts for file name. Terminate file name with CR or LF.
Write out buffer to file. Prompts for file name. Terminate with
CR or LF.
Switch to new buffer, or old one. Prompts for buffer
name, which is terminated by CR or LF. Buffer name ~
shows at bottom of screen.
Set "fill" column for ESC-Q and speedtype/autofill stuff to
horizontal position where cursor is now.
Shows listing of buffers and pathnames. :xs somewhere else to
get back to what you were doing.
Lowercase all letters between cursor and the-mark.

::x=s
~x~x

Write out buffer to last file read or written in this buffer.
Exchange the cursor and the-mark, to verify whRt vou are
getting into before typing ~w.

~x~u
~X .. M

Uppercase all letters between cursor and the-mark.
Prompt for a Multics command line. Terminate with CR or LF.
Multics commands that produce output may well screw up your
display, may have to JL.

You may edit in the minibuffer (the bottom of screen prompting area),
~Y'ing things from elsewhere, etc. If you try multiple lines,
you only see 1 line at a time. Use :ocR or :oLF to get linefeeds in
when linefeed is the terminating character.

Extended commands - invoke by ESC-X. Type command and args, if
any, in minibuffer, where it puts you. Terminate by· CRorL..f:'.

replace

Greenberg

Global substitute. Will prompt for two strings, terminated
by ESC. Replaces all occurences of first string by second,
leaves you after last occurence.

Real-time Editin~ Page 20

,... speedtype Enter speedtype (word abbreviation) mode.

setab

fillon
filloff
put

get back

lvars
quit

Set a speedtype word abbrev. E.g.,

setab bsg Greenberg

Can take multiple pairs of args, if that's convenient.

Set auto-fill mode. Speedtype mode sets this automatically.
Turn off speedtype and autofill modes.
Takes one arg, a ."variable'' name. Same as ~w, but
puts text in that 11 variable" instead of on the kill
stack. Use getback to get it back.
Takes one arg. Like ny, but yanks back the named "variable''
which is its arg.
List names and lengths of all variables ever ,"put".
Exit the editor.

The editor accepts META characters from AI TV's, and does
TELNET break/interrupt processing.

This document, of course, was prepared with what it describes.

Greenberg Real-time Editing Page 21

