
Multics Technical Bulletin MTB-383

To: Distribution

From: Richard J.C. Kissel

Date: 07107178

Subject: Revised tape interface to IOI

PREFACE

This MTS is essentially a reissue of MTB-301 by Johnson,
Klinger, Phillips, and Silver. Changes have been made to take
account of changes in the· RCP interface which have occurred since
the MTS was originally published. Changes involve: removal of
tape ioi $attach and tape ioi $detach since these functions will
be handled by resource control (to be documented); changes to
the tape_ioi_$activate entry; changes to the
tape ioi $allocate work area entry; and changes in the error
counting-and error-reporting strategy.

Deletions are marked by a "*" and insertions and changes by
change bars.

INTRODUCTION

This memorandum describes a proposed new internal tape
interface, tape ioi (TAPE IOI). An interface like TAPE IOI was
first proposed In MTB-051, 11New Tape DCM". TAPE IOI will-provide
the interface between tape I/O mod~les and the I/O Interfacer
(IOI).

This memorandum has been written for readers with varying
levels of interest in TAPE IOI. Each section becomes
successively more detailed. Reading just one or two sections
should give a reader a general overview of TAPE IOI. The
memorandum as a whole is intended to serve as a complete
functional specification of TAPE IOI. An outline of the sections
contained in this memorandum is given below:

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

07/07 /78 MTB-383

OVERVIEW

Implementation Plans
What TAPE IOI Does
Why TAPE lOI is Needed
Design Criteria

TAPE IOI CONCEPTS

Managing the IOI Workspace
Tape I/O Operations and Primitives
Buffer States
Block Modes
Data Lengths and Special Length Processing
Error Recovery
Status Information
Interface to RCP

SUMMARY

List of Capabilities
List of Entry Points

APPENDICES

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:

MTB-383

Subroutine Interface Documentation
Tape Order Commands
TAPE IOI Modes
Result Index Summary
Sample Scenarios

2 07/07/78

OVERVIEW

This section discusses plans for implementing TAPE IOI, what
TAPE_IOI does, why we need it, and how it was designed. In
general, what TAPE_IOI does is to replace the interface between
tape I/O modules and IOI that is now provided by the program
vdcm_ (TDCM). The TDCM interface should be replaced because it
has many deficiencies. TAPE IOI was designed to correct those
deficiencies.

Implementation Plans

TAPE IOI will play an important part in the improvement of
the Multics tape facility. See MTB-109 for an overall view of
the future Multics tape facility. The implementation of TAPE IOI
is a necessary first step in the eventual implementation of a
true raw tape I/O module. Other standard Multics tape I/O
modules (tape mult , tape ansi , tape ibm , ntape) will be
improved by rewritTng them to call TAPE IOI rather than TDCM.
None of the "ios " tape dims (tape_, nstd) will be converted to
use TAPE IOI.

The immediate plans for TAPE IOI are to approve the TAPE IOI
interface design presented in this memorandum. Then
implementation design and actual implementation of TAPE IOI will
begin. The reimplementation of tape I/O modules using TAPE IOI
may also be done in parallel with the TAPE IOI implementation.
One tape I/O module, probably tape_ansi_, will definitely be
converted to call TAPE IOI.

What TAPE IOI Does

The primary users of TAPE IOI will be tape I/O modules.
(TAPE IOI will also be used by-RCP in ring 1 to process tape
labels.) In order to understand the role of TAPE IOI in the
vverall scheme of tape processing, consider what happens when a
~ser executes a command that involves tape processing. Several
levels of I/O subsystems are involved. The command procedure
calls IOX. IOX calls the specified tape I/O module. The tape
I/O module will call TAPE IOI. TAPE IOI will call IOI. IOI (and
other programs in ring -0) will perform the actual tape I/O.
Figure 1 shows the relationship of TAPE IOI to the other I/O
subsystems involved in tape processing.

07/07/78 3 MTB-383

TAPE COMMAND

!OX

OUTER RING TAPE I/O MODULE

I

TAPE IOI I
l<--->I

...;,__~~~~..,-~~~~- I

I I IOI
I I -----------------------T------------- I

I
I WORKSPACE

1<--->I
~~~~~~~ 

RING 0 IOI 

Figure 1: Tape Processing Subsystems 

IOI is the Multics supervisor interface for all user 
peripheral I/O. It is a primitive, low level interface that 
ullows user programs to have complete control over physical 
devices. Programs that call IOI must understand and deal with 
devices at the hardware level. 

Interfacing 
It also involves 
is a segment that 
programs, and I/O 

with IOI involves more than just calling IOI. 
managing the IOI workspace. The IOI workspace 
contains all of the IOI status queues, channel 
buffers needed to perform tape I/O. 

The tape processing functions described above are currently 
performed by TDCM. Before IOI was developed, TDCM resided in 
ring O and was the Multics supervisor interface for tape I/O. 
All tape I/O modules had to interface with TDCM. When IOI became 
available, TDCM was moved into the user ring and was rewritten to 
interface with IOI. The interface to TDCM, however, remained 
basically unchanged. 

Why TAPE IOI is Needed 

An interface like TAPE IOI is needed and· is useful because 
the functions it provides are common to all tape I/O modules. 
The development and use of TAPE IOI does not in any way prohibit 

\ 

a user from developing some other tape interface to IOI. For 

MTB-383 4 07/07/78 



exa~ple, it is expected that all tape T&D programs will continue 
to interface directly with IOI. However, in order to make tape 
I/O modules interface directly with IOI, a large amount of 
complex and hardware-dependent code would have to be added to 
each one. It is hoped that the interface provided by TAPE IOI 
will be so complete, efficient, and useful that it will not be 
necessary to bypass or replace it. 

The question of whether or not we need an intermediate 
interface between tape I/O modules and IOI is really moot since 
we already have such an interface in TDCM. The important 
'iuestion is: "Why~ should TDCM be replaced?" The answer, simply, 
is that a better interface can be provided. TDCM has many 
deficiencies, none of which can be remedied without changing the 
TDCM interface. The deficiencies of TDCM are listed below in 
three groups. The first group consists of tape I/O capabilities 
that cannot be performed via TDCM. The second group consists of 
performance problems inherent with TDCM. The third group consist 
of facilities that TDCM does not provide, but could and should 
provide in order to make tape I/O modules simpler and easier to 
write and understand. 

FACILITIES TDCM DOES NOT PROVIDE 

1. 

2. 

3. 

4. 

07107178 

TDCM does not allow a caller to issue tape order 
commands that use data. This means that writing 
special End-of-File records, reading and writing 
of device status, etc., cannot be performed via 
TDCM. 

A caller of TDCM cannot obtain all of the hardware 
status information that is available. The 
right-hand 52 bits of IOM status is not available. 
TDCM does not return special status at all. 

The element size supported by TDCM is one word (36 
bits). It should be one character (9 bits). One 
problem with this word orientation is that TDCM 
cannot properly write records that have a length 
that is not an integral number of words. Also, 
TDCM cannot correctly return the length of a 
record that is not an integral number of words. 

A caller of TDCM cannot specify the channel 
instruction field to be used in tape read 
v~erations. For certain models of tape drives, 
this field can be used to specify that automatic 
hardware error retry i~ to be performed. 

5 MTB-383 

* 



TDCM PERFORMANCE PROBLEMS 

1. The main TDCM performance problem is that it must 
copy all input and output data. All input and 
output data is processed by the tape hardware in 
the IOI workspace segment. All input and output 
data is processed by tape I/O modules in another 
work segment called a tseg (TSEG). The data copy 
performed by TDCM involves moving data between the 
IOI workspace segment and the TSEG. 

2. TDCM cannot maintain continuous I/O on a tape 
drive. Once TDCM initiates I/O for a set of 
buffers, it must wait for the completion of I/O 
for all of these buffers before it can initiate 
any more I/O. This means that tape I/O must 
terminate at least once for each set of buffers. 
If TDCM initiates I/O for a set consisting of more 
than one buffer, it will not be able to process 
the first buffer of this set until the I/O has 
completed for the last buffer of the set. This 
means that the caller of TDCM must wait to process 
data that is already available. 

3. When reading variable length records, the above 
performance problem is replaced by an even more 
serious performance problem. If a caller wants to 
know the length of an input record (and callers do 
want to know this when reading variable length 
records) then TDCM can process only one buffer at 
a time. This restriction is, in truth, forced on 
TDCM by restrictions in the ring 0 I/O facilities. 
These ring O restrictions are being removed in 
conjunction with the development of TAPE IOI. 

4. The method used by TDCM to define buffers in the 
TSEG results in the restriction that only one 
buffer may be processed at a time if that buffer 
is larger than 1040 words. 

FACILITIES TDCM SHOULD PROVIDE 

1. Most tape I/O modules implement read-ahead and 
write-behind. This allows the tape I/O module to 
overlap its processing of data with the actual 
hardware reading and writing of data. This common 
tape I/O module function should be provided by an 
interface like TDCM. 

2. 

MTB-383 

TDCM provides two levels of status information. 
The first, and highest level, just indicates 
whether or not an I/O operation has completed, and 
if so, whether it has completed successfully. The 
second, and lower level, consists of raw hardware 

6 07 /07 /7 8 



status. Each tape I/O module must interpret this 
raw hardware status. An interface like TDCM 
should interpret this status and return it to its 
caller in a more useful form. It should also 
return all available raw hardware status. 

3. Every tape I/O module performs its own error 
recovery. An interface like TDCM should be able 
to perform the simple and straightforward error 
recovery procedures that are common to many tape 
I/O modules. 

4. An interface like TDCM should allow a caller to 
decide when to block. It should also do the 
blocking for a caller if the caller does not want 
to do it. TDCM does not give its callers a choice 
and always does the blocking. The ability of a 
tape I/O module to control blocking means that 
tape I/O modules and tape application programs 
could be developed that overlap the processing of 
more than one tape drive. 

5. Tape I/O modules should have more control over 
their interface to the Resource Control Package 
(RCP). TDCM interfaces directly with RCP and 
effectively prohibits any tape I/O module from 
calling RCP. 

6. Tape I /0 modules should be able to per form a t.ape 
order command (such as backspace record) several 
times with one call. TDCM limits its callers· to 
10. This is an unnecessary and annoying 
restric~ion. 

7. Tape I/O modules are called by IOX which requires 
that all string and record lengths be expressed in 
characters. Tape I/O modules should not have to 
deal with an interface like TDCM in terms of 
words. 

Design Criteria 

The considerations that motivated the design of TAPE IOI 
idvolved the deficiencies of TDCM listed above. The goal of-the 
design was to develop an interface that is better than TDCM. It 
was clear that solving all TDCM problems required a totally new 
interface. The main design problem was what should this new 
interface be like. Intuition and experience with TDCM and tape 
I/O modules guided the preliminary specification. However, many 
technical decisions had to be made before the TAPE IOI interface 
described in this memorandum was defined. In order-to make these 
decisions, three design criteria, really guiding principles, were 
established. These design criteria are listed below in order of 
importance. 

07/07/78 7 MTB-383 



1. A caller of TAPE IOI should be able to perform 
every non-privileged I/O function allowed by the 
tape controller. All physical status information 
should be available. TAPE IOI should not perform 
any tape I/O operations unless told to do so. 

2. TAPE IOI should be efficient. Not only should 
each- TAPE IOI entry point be as efficient as 
possible, but a tape I/O module that calls 
TAPE IOI must be able to efficiently perform its 
"critical path" functions. 

3. The TAPE IOI interface should be as simple and as 
useful as possible. Basic tape processing 
~unctions should be easy to perform. Functions 
which are common to several tape I/O modules 
should be performed by TAPE IOI and thus not 
duplicated in each. 

As was the case with the design, any analysis of the 
TAPE IOI interface must be done with consideration of the above 
design criteria. The task now is to evaluate the design criteria 
themselves and to make sure that the proposed TAPE IOI interface 
really meets them. 

MTB-383 8 07/07/78 



TAPE IOI CONCEPTS 

This section discusses some of the basic concepts of 
TAPE IOI. These concepts represent the theoretical basis for the 
design of the TAPE IOI interface. 

Managing the IOI Workspace 

A major part of the task of interfacing with IOI involves 
managing the IOI workspace. The IOI workspace is a segment that 
is created by IOI when the tape drive is attached. Only the 
attaching process has access to this segment. 

In order to understand how the IOI workspace is used, it is 
necessary to know what data it contains. Since the 
implementation of TAPE IOI has not yet been designed, it is not 
possible to present a detailed and accurate description of the 
data TAPE_IOI will keep in the IOI workspace. Such a description 
would not, in general, be interesting anyway. An important 
~~1Jcept of TAPE IOI is that a caller never has to know the 
structure and format of the data kept in the IOI workspace. What 
is interesting in terms of understanding TAPE IOI, and what can 
be described now, are the types of data kept in the IOI workspace 
by rAPE IOI. These types of .data are listed below and are shown 
in Figure 2. 

Channel Programs: The channel programs that actually 
perform the tape I/O must be in the IOI workspace. 
TAPE IOI builds and updates these channel programs as 
needed depending upon the I/O requests of the caller. 

IOI Status Queues: Status information detailing the 
result of I/O operations is returned to TAPE IOI in 
status queues. These status queues must be in the IOI 
workspace. TAPE IOI sets up and interrogates these 
status queues. IOI fills them in. 

TAPE IOI Information: Although this is an 
implementation design consideration, it is possible and 
quite probable that TAPE IOI will keep most of its 
internal information in the IOI workspace. 

I/O Buffers: Reading and writing physical records 
involves the use of buffers. These buffers are 
ullocated in the IOI workspace by TAPE IOI as requested 
by the caller. Each buffer may. contain one and only 
one physical record at a time. Each buffer is 
identified by a pointer that references the beginning 
of the buffer. This feature of TAPE IOI allows a 
caller to directly process input and'output data in the 
IOI workspace. 

Caller Work Area: TAPE IOI will allow a caller to 
allocate----awork area in the IOI workspace. This work 

01 1 07178 9 MTB-383 



area may be allocated either before or after all I/0 
buffers have been allocated. The work area size plus 
all I/0 buffers plus all necessary channel programs, 
status queues, and tape_ioi_ information cannot exceed 
the maximum workspace size which RCP allows the user. 
If the work area is allocated after the I/O buffers it 
may be no longer than the unused words remaining in the 
last IOI workspace page containing I/O buffers. That 
is, no additional pages will be used. For this reason, 
if a certain size work area must be available it should 
be allocated before any I~uffers are allocated. 
This optional work area can be used to keep important 
data needed by the caller, for example, an IOX open 
data bloc~. By placing this data in the IOI workspace 
(which is often wired) fewer page faults will be 
generated by references to this data. 

CHANNEL PROGRAMS 

IOI STATUS QUEUES 

TAPE IOI INFO 

BUFFER 

BUFFER N 

WORK AREA 

Figure 2: Possible Organization of IOI Workspace 

TAPE IOI provides entry points that allocate and deallocate 
I/O buffers and the caller work area. These allocation and 
deallocation entry points are simple and straightforward but not 
necessarily powerful. They are perfectly suited for the standard 
tape I/O modules. These I/O modules need to allocate just once 
a set of buffers all having the same length. Dyn~mi~ allocatio~ 
and deallocation of buffers of different lengths can be performed 
by making a series of calls to these entry points. 

TAPE IOI is responsible for 
workspace segment. As buffers 

MTB-383 10 

maintaining the size of the IOI 
are allocated, TAPE IOI will 

07 /07 /78 



increase the size of the IOI workspace segment up to the maximum 
size allowed by RCP. If buffers are deallocated, then TAPE IOI 
will decrease the size of the IOI workspace segment accordingly. 
TAPE_IOI will always make sure that the IOI workspace segment 
consists of the fewest possible pages. This is important because 
all of the pages of the IOI workspace segment will be wired 
whenever any I/O is in progress. 

Tape I/O Operations and Primitives 

Designing 
the basic tape 
comprise them. 
below: 

the TAPE IOI interface involved analysing all of 
I/O operations and the primitive functions that 

The three basic tape I/O operations are listed 

reading 
writing 
order commands 

Each of the basic tape I/O operations can be defined as a 
combination of primitive functions. These primitive functions 
are listed below in alphabetical order. Although the 
descriptions below are oriented primarily toward reading and 
writing, most of these primitive functions apply to order 
commands as well. 

Allocate: Allocate a buffer to be used for I/O. 

Check: Check to see if a buffer is ready for 
~recessing. In order to be ready for processing, I/O 
being performed on the buffer must be completed. 

Deallocate: Deallocate a buffer. 
longer be used for I/O. 

The buffer can no 

Processing: Process the data in the buffer. This is 
not a TAPE IOI function, but rather a function to be 
performed by the caller. For reading, this means 
~opying data out of the buffer. For writing, this 
means copying data into the buffer. 

Queue: Queue I/O for this buffer. 

Figure 3 shows how each of the three basic tape I/O 
operations are comprised of the primitive functions described 
above. Each example shows the primitive functions involved in 
performing that I/O operation once. 

01.101rrB 11 MTB-383 



READING WRITING ORDERS 

ALLOCATE ALLOCATE 
QUEUE PROCESS QUEUE 
CHECK QUEUE CHECK 
PROCESS CHECK 
DEALLOCATE DEALLOCATE 

Figure 3: Primitive I/O Functions 

Figure 3 shows the primitive functions performed in order to 
read or write one physical tape record. Tape I/O modules usually 
process many physical records during an attachment. Thus they 
perform these primitive functions over and over. The allocate 
and dealloca~e functions should not be part of the loop that 
performs this repeated I/O. Allocated buffers can be used over 
and over. The read and write loops are the critical paths of any 
tape I/O module and are the paths that must be optimized for 
efficiency. Figure 4 shows how the primitive I/O functions are 
performed within read and write loops. 

READING 

ALLOCATE 

:-->QUEUE 
l CHECK 
:<--PROCESS 

DEALLOCATE 

Figure 4: 

WRITING 

ALLOCATE 

l-->PROCESS 
: QUEUE 
:<--CHECK 

DEALLOCATE 

Critical Path Loops 

Analysing the primitive functions that comprise reading and 
writing led to the realization of the following seemingly obvious 
but subtly important principle: 

"Reading and writing are different." 

This principle is not so obvious given the hauntingly 
similar combination of primitive functions that comprise reading 
and writing. It was also not especially obvious to the designers 
of the TDCM interface since they decided to have one TDCM entry 
point perform both operations. 

The differences between reading and writing outweigh the 
similarities. It is possible to play games, and rotate the order 
in which the primitive functions are performed, so.that the order 
is the same for both operations. There is no way, however, to 
avoid the reality that, when reading, I/O must be performed 
before data can be processed. When writing, data must be 
processed before I/O is performed. Another important difference 

MTB-383 12 07107178 



is the direction of data flow. 
TAPE IOI to the caller. When 
caller to TAPE IOI. 

When reading, data is passed from 
writing, data is passed from the 

In accordance with the above principle, TAPE_IOI provides 
entry points to perform the queue and the check primitive 
functions for each of the three basic tape I/O operations. These 
entry points allow a caller to perform the exact sequence of I/O 
operations wanted. For example, a tape I/O module could use 
these entry points to implement its own special read-ahead or 
write-behind algorithms. The fact that there are a set of entry 
points for each basic tape operation means that it is. more 
_fficient and simpler to perform any one operation. 

The design criterion that states that a caller be able to do 
everything that is physically possible with a tape drive is well 
served by the TAPE IOI entry points described above. In order to 
~o meet the other-design criteria of efficiency and simplicity 
within the critical path of a tape I/O module, TAPE IOI also 
provides entry points that perform multiple primitive functions. 
There are entry points that allow a caller to efficiently and 
simply perform read-ahead, write-behind, and order commands. 

Buffer States 

Except when performing order commands, the primitive 
functions described above operate on I/O buffers. Each primitive 
function changes the state of a buffer. An I/O buffer is always 
in one, and only one, of the following states: 

Null: The buffer does not exist. 

Ready: The buffer does exist and a caller has, or can 
get, a pointer to the buffer. The validity of data in 
the buffer is determined solely by the caller. A 
caller may perform any kind of processing it wishes on 
the data in the buffer. 

~: The buffer is participating in a read or write 
~ operation. A caller should not perform any 
processing of data in the buffer. 

Suspended: The buffer had been busy for writing, but 
due to an error in another buffer, it was not written. 

Figure 5 shows how each primitive I/O function changes the 
state of a buffer. It shows the state of the buffer before and 
after the primitive function is performed. Primitive functions 
performed on suspended buffers have the same result as if they 
were performed on ready buffers. 

07/07/78 13 MTB-383 



Block Modes 

F 
u 
N 
c 
T 
I 
0 
N 
s 

STATES 

+ BEFORE i AFTER 
I I -----------T--------T-------

ALLOCATE + NULL READY 

DEALLOC 

QUEUE 

CHECK 

PROCESS 

I 
T 
I 

T 
I 
T 
I 

T 
I 

T 
I T 
I 
T 
I 

T 

READY NULL 

READY BUSY 

BUSY READY 

READY READY 

Figure 5: Buffer State Changes 

The check primitive function checks to see if a buffer is 
ready for processing. If the I/O operation queued for this 
buffer has not completed, the buffer will still be busy. Until 
the buffer is in the ready state, processing of data in the 
buffer cannot begin. Therefore, someone has to wait until the 
I/O queued for this buffer has completed. 

IOI, in ring O, receives the hardware interrupt that signals 
the completion of the I/O operation queued for the buffer. IOI 
tells the outer ring of this event by sending a wakeup. 

The block modes supported by TAPE IOI determine who goes 
blocked waiting for this wakeup from IOI. There are two choices 
and therefore two block modes. They are listed below: 

Simplex: In simplex block mode TAPE IOI blocks. 
TAPE IOI will automatically wait for any I/O that is 
.. eeded to complete the check function. This is the 
default block mode. 

Multiplex: In multiplex block mode the caller must 
block. TAPE IOI will never block. If waiting for I/O 
is required in order to complete a check function, 
TAPE IOI will inform the caller that it must wait. 

Simplex block mode corresponds 
capabilities currently provided by TDCM. 
modules will operate in simplex mode. No 
will be added to these tape I/O modules 
perform all of the blocking. 

to the wait/block 
All standard tape I/O 
additional complexity 
since TAPE IOI will 

Multiplex block mode adds tape processing capabilities not 
provided by TDCM. By allowing the caller to block, and to decide 
when to block, new tape I/O modules and tape application programs 
can be developed that multiplex the processing of two or more 
tape drives. One planned user of multiplex block mode is RCP. 

MTB-383 14 07 /07 /78 



Since RCP executes in an inner ring it cannot block. However, 
RCP can still use TAPE IOI for label checking and other tape 
drive processing by operating in multiplex block mode. Multiplex 
block mode allows RCP to pass on the task of blocking to its 
caller in the user ring. 

Data Lengths and Special Length Processing 

The· element size supported by TAPE IOI is one character (9 
bits). All data and buffer lengths are expressed in terms of 
characters. This is especially convenient for tape I/O modules 
since they interface with their caller, IOX, in terms of 
characters. 

Treating all tape input and output data as character strings 
results in several problems. These problems are due to the way 
the tape controller works, and depend upon the tape controller 
data mode being used. It is beyond the scope of this memorandum 
to discuss in detail how the tape controller works. The 
allowing examples are presented in order to give the reader some 

idea of the issues involved. 

1. When writing a record whose length is an odd 
number of words, if the tape controller is in 
~inary data mode, then it will append 4 zero bits 
onto the output record. Normally, these bits 
uhould be stripped off by TAPE IOI when reading 
this record. 

2. When writing a record that is not an integral 
number of words, the tape controller must be in 
ASCII data mode~ With model 500 tape controllers, 
vhe output data must be right aligned. 

There are six read/write data modes supported by Honeywell 
model 500 9-track tape drives. TAPE IOI provides a mode entry 
point to set the read/write data mode to any one of the six. 
Each of the read/write data modes supported . by the tape drives 
interface with the tape controller in either binary or ASCII. 
Figure 6 lists the six tape drive read/write data modes and their 
associated tape controller data modes. 

TAPE DRIVE CONTROLLER 

BINARY BINARY 
BCD BINARY 
ASCII BINARY * 
EBCDIC BINARY * 
TAPE 9 ASCII * ASCII/EBCDIC ASCII * 

* => 9 track only 

Figure 6: Tape Drive and Controller Modes 

07/07/78 15 MTB-383 



For most callers, the standard way that TAPE_IOI deals with 
record lengths is correct and sufficient. However, some callers, 
for example a raw tape I/O module, need special length 
~rocessing. This special length processing involves reading and 
writing records that do not end on a word boundary. The 
processing of such records is rather complex and is only done 
when a caller tells TAPE IOI, via the set mode entry point, that 
special length processing is needed. 

The rules enforced by TAPE IOI for data arid buffer lengths 
are listed below. Some of these-rules apply to all cases, ·others 
depend upon the length processing mode, the tape I/O operation, 
and the tape controller mode. The binary and ASCII modes 
referred to in the following rules are tape controller modes as 
described in Figure 6. 

GENERAL 

1. I/O buffers must be 0 mod 8 characters in length 
(2 words). This is required since, when in binary 
mode, the tape controller always transfers data in 
units of 2 words. 

2. The minimum length of an output record is 4 
characters. The tape controller is incapable of 
writing a record smaller than one word. Users of 
TAPE IOI are cautioned that it is unwise to write 
records that are less than 64 characters in length 
_ince there is little chance of succe~sfully 
reading back a record that is any smaller. This 
is because the tape controller treats short input 
records as noise. 

NORMAL LENGTH MODE 

1. ..eading - Binary: Input record lengths are always 
0 mod 4 characters in length (1 word). Any data 
contained in a partial last word· will not be 
included in the record length. 

2. Reading - ASCII: Input record lengths will 
reflect the actual number of characters read. 

3. Writing: In both binary and ASCII modes, output 
records must be 0 mod 4 characters in length (1 
word). Any attempt to write a record that is not 
an integral number of words will be rejected by 
TAPE IOI. 

MTB-383 16 07107178 



SPECIAL LENGTH MODE 

1. Reading - Binary: Input record lengths are 
returned the same way as in regular length mode. 
In addition, the bit count of the record, 
including any data read into a partial last word 
will be saved. This bit count can be obtained 
from status kept by TAPE IOI for each buffer. 
Reading with the controller in binary mode and 
TAPE_IOI in special length mode is the only way a 
caller can read the exact data in all tape 
records. 

2. Reading - ASCII: Input record lengths are 
.eturned the same way as in regular length mode. 

3. Writing - Binary: Record lengths that are not O 

4. 

mod 4 characters (1 word) will be allowed. If 
necessary, the length of the record actually 
processed by TAPE IOI will be increased to make it 
O mod 4 characters. However, no right hand 
~adding of the output record will be performed. 

Writing - ASCII: Record l~ngths that are not O 
mod 4 characters (1 word) are allowed. TAPE IOI 
will set the initial and terminate character 
position fields according to the specified record 
length. The data for this record must be right or 
left. aligned by the caller depending upon the 
setting of the TAPE_IOI align mode. Writing with 
the controller in ASCII mode and TAPE IOI in 
special length mode is the only way a caller can 
.rite a record that is not an integral number of 
words. 

Error Recovery 

Most tape I/O modules perform similar error recovery 
procedures. The Multics standard tape I/O module is a notable 
exception in that it will perform its own special error recovery 
procedures. If told to, TAPE IOI will perform what are 
considered to be the standard tape error recovery procedures. By 
providing this common service, the complexity of tape I/O modules 
can be reduced and more development effort can be devoted to 
doing a better job of error recovery within TAPE_IOI. 

In order to to help callers that must do their own read 
error recovery, TAPE IOI allows them to specify the channel 
instruction field to be used in tape read operations. This 
allows the caller to specify the kind, if any, of hardware error 
retry to be performed. 

The standard error recovery procedures performed by TAPE IOI 
are listed below. These procedures will be initiated if, in-the 

07/07/78 17 MTB-383 



opinion of TAPE IOI, an I/O operation failed in a way that is 
recoverable. 

Reading: Every read operation will be initiated with 
automatic hardware error retry enabled and with normal 
deskew window and threshold. In the event of an error, 
TAPE IOI will backspace over the record in error and 
retry the read operation. Each retry will be 
performed with automatic hardware error retry enabled 
and a different deskew window and threshold. TAPE IOI 
will retry the read operation until all combinatlons 
(8) of deskew windows and thresholds have be tried. 

Writing: When a write operation fails, TAPE IOI will 
backspace over the record in error, erase, and try to 
rewrite the record. This sequence will be attempted up 
to 30 times. Performing this backspace erase sequence 
more than 30 times will result in a blank spot on the 
tape that cannot be read past. 

Order Commands: Depending upon the error and the order 
_ommand being executed, TAPE IOI will retry the order 
command a limited number of t1mes. 

Status Information 

TAPE IOI returns status information in increasing levels of 
detail. Huch of the complexity of all tape I/O modules involves 
the interpretation of status. An important feature of TAPE IOI 
is its interpretation of status for its caller and its ability to 
return this interpreted status in a useful form. TAPE IOI, 
however, does not limit its callers to using this interpreted 
status. Another important feature of TAPE IOI is that it 
provides a caller with _§_11 available raw status. Interpreted and 
raw status are the highest and lowest levels, respectively, in 
the TAPE IOI status hierarchy. Figure 7 shows all four levels of 
the TAPE IOI status hierarchy. 

interpreted 
descriptive 

reformatted 
raw 

Figure 7: TAPE IOI Status Hierarchy 

INTERPRETED STATUS 

TAPE IOI returns interpreted status in the form of a result 
index. Most callers of TAPE_IOI can perform all of their tape 
processing with just the status interpretation provided by result 
indexes. Result indexes are fixed binary variables that are 
~ntended to be used in referencing PL/I label arrays. A result 

MTB-383 18 07/07/78 



index is returned by all TAPE IOI entry points that perform a 
check primitive function. The result index value is generated by 
TAPE_IOI by interpreting the hardware status associated with the 
tape I/O operation that was checked. The result index values 
returned by TAPE IOI are listed below. See Appendix D for a 
complete list of the result index values returned for each tape 
I/O operation. 

(-1) Block: This result index value indicates that the 
I/O operation being checked has not yet completed. 
This value will be returned only when TAPE IOI is 
operating in the multiplex block mode. A wakeup 
will be sent to the caller when the I/O operation 
has completed. The caller should go blocked 
waiting for this wakeup. When waked up, the 
caller should call TAPE IOI to again check the I/O 
operation. Before going blocked the caller may 
~erform other processing. 

(O) Success: The I/O operation being checked has 
completed successfully. If the I/O operation was 
a read or a write, the caller may now begin 
~rocessing data in the buffer associated with this 
I/O operation. 

(1) Program Error: The caller has violated some 
requirement of TAPE IOI. The requested action was 
not performed. The- status code returned contains 
an error table value that indicates the 
particular error: 

(2) Unrecoverable I/O Error: The I/O operation being 
checked has failed in such a way that (almost 
certainly) precludes it from ever being performed 
successfully. It is also unlikely that subsequent 
I/O operations will succeed. Such an error 
rrobably indicates an eve~t requiring manual 
intervention by the operator or a hardware 
malfunction. The status code returned contains an 
error table value that indicates the particular 
error. 

(3) I/O Error: The I/O operation being checked has 

07 /07 /78 

failed. However, in the opinion of TAPE IOI, 
retrying the operation may succeed. For- I/O 
operations that read or write, this implies that 
the I/O operation succeeded in at least moving the 
tape. Such an error probably resulted either from 
a defective section of tape, or a spurious 
hardware error condition. This ,result index value 
will be returned only wHen !APE IOI is not 
performing error recovery. If TAPE IOI is 
~erforming error recovery, the occurrence-of such 
an error will cause TAPE IOI to retry the I/O 
operation. The check function will not be 

19 MTB-383 



( 4 ' 

completed until either the I/O operation is 
successful or all error recovery procedures have 
been tried and have failed. If, after trying all 
error recovery procedures, TAPE_IOI cannot 
~uccessfully complete the I/O operation, it will 
return a result index value (2) that indicates an 
unrecoverable I/O error. The status code returned 
contains an error table value that indicates the 
particular error. 

5, 6) Special Event: The I/O operation being 
checked has completed and some special event has 
occurred that is normal for this I/O operation. 
These result index values are operation d~pendent. 
Examples of special events are: reading an EOF 
record, writing past the end of tape reflector, 
backspacing when at BOT, etc. The status code 
returned contains an error_table value that 
indicates the particular event. 

DESCRIPTIVE STATUS 

TAPE IOI provides an entry point that will return a 
character string containing an English language d~scription of 
the hardware status resulting from the last I/O operation 
checked. See the description of the hardware status entry point 
in Appendix A. Tape I/O modules can provide-an order call that 
returns this status string. The caller of the tape I/O module 
can then display this status string to the user. 

REFORMATTED STATUS 

Some callers of TAPE IOI may need to perform their own 
interpretation of the hardware status resulting from an I/O 
operation. The hardware status entry point also returns hardware 
status in a reformatted 1orm. The status irrformation returned is 
the major and substatus for the last I/O operation that was 
checked. 

I 

The purpose of returning reformatted major and substatus is 
to make it easier for the caller to interpret this status. It 
also means that the calling programs will be interpreting logical 
status (as generated by TAPE IOI). This will make them more 
independent of future changes in the real hardware status. 

RAW STATUS 

The TAPE IOI hardware status entry point- also returns all 
raw hardware status available from the last I/O operation 
checked. This status information includes all 72 bits of IOM 
status. 

MTB-383 20 07/07/78 



Interface to RCP 

TAPE IOI allows its callers to interface with RCP through 
resource control . This is possible because TAPE IOI itself does 
not have to interface with RCP. 

U'{ IL)'{/'( 8 21 MTB-383 



SUMMARY 

This section summarizes and lists the major capabilities and 
entry points provided by TAPE IOI. 

List of Capabilities 

Below is a list summarizing the major capabilities of 
TAPE IOI. The reader is urged to read this list and then compare 
it wTth the list of TDCM problems presented in the overview 
section. 

1. Complete management of the IOI workspace. 

2. The ability to allocate the exact number and size 
of I/O buffers needed, provided there is room in 
the IOI workspace. Also the ability to read and 
write records that are longer than 16,384 
characters. 

3. Allows a caller to directly process input and 
output data in the IOI workspace. 

4. Provides a character oriented interface that is 
especially useful for IOX tape I/O modules. 

5. Provides an entry point for each combination of 
primitive function and basic I/O operation. 

6. Provides entry points that perform read-ahead and 
write-behind. These entry points perform the 
combinations of primitive functions that are found 
within the critical paths of read and write loops. 

7. Will modify channel programs in execution in order 
to queue a buffer for reading or writing. This 
feature will allow a user, who is receiving 
Jufficient processing time from the system, to 
perform continuous I/O. 

8. Allows a caller to issue order commands that read 
or write data. 

9. Can read all data contained in records that are 
not an integral number of words in length. 

10. Can write records that are not an integral number 
of words in length. 

11. Performs all blocking, or optionally allows the 
caller to perform all blocking. 

12. Performs standard error recovery procedures. 

MTB-383 22 07107178 



13. Allows a caller to specify the channel instruction 
field to be used in any read operation. 

14. Interprets hardware status for the caller and 
returns it in a useful form. 

15. Provides a caller 
_tatus. 

with all available hardware 

16. Support for 9-track and 7-track tape drives. 

07107178 

Support for 500 and 600 model tape drives. 
Provides an interface that is independent of the 
model tape drive being used. 

23 MTB-383 

* 



APPENDIX A 

This appendix gives MPM style documentation for all the 
entry points in the proposed TAPE IOI facility. 

07/07/78 A-1 MTB-383 



* 
* 

tape_ioi_ tape ioi 

Name: tape_ioi_ 

List of Entry Points 

Below is a list 
the entry points are 
point is accompanied 
point does. 

of the TAPE IOI entry points. In this list 
ordered according to function. Each entry 
by a brief description of what the entry 

INITIALIZATION ENTRY POINTS 

activate: Initiates a TAPE IOI activation. 

deactivate: Terminates the TAPE IOI activation. 

WORKSPACE ALLOCATION ENTRY POINTS 

allocate buffers: Allocates the 
I/O buffers, all 
same· length. 

specified number of 
of which must be the 

allocate work area: Allocates a caller work area in 

deallocate: 

SPECIAL ENTRY POINTS 

set mode: 

get_mode: 

the IOI workspace. 

Deallocates all I/O buffers and any 
caller work area. 

Sets one of the TAPE IOI modes. 

Gets one of the TAPE IOI modes. 

set buffer ready: Puts a specified buffer in the 
- - ready buffer state • 

... top_ tape: 

STATUS ENTRY POINTS 

Stops all I/O operations currently in 
progress. All buffers are put into the 
ready buffer state. 

list buffers: Returns a list of all allocated buffers, 
or all buffers that are currently in a 
specified state. 

MTB-383 A-2 07 /07 /78 



tape ioi_ tape_ioi 

buffer status: Returns all information relevant to the 
specified buffer. 

hardware status: Returns all available hardware status 
obtained from the last I/O operation 
that was checked. 

READ ENTRY POINTS 

.ueue_read: 

check read: 

read: 

WRITE ENTRY POINTS 

'iueue write: 

check write: 

write: 

Queues a read operation for the 
specified I/O buffer. 

Performs a check of the read operation 
that has been queued the longest. 

Queues read operations for all ready I/O 
buffers. It then performs a check of 
the read operation that has been queued 
the longest. 

Queues a write operation 
specified I/O buffer. 

for the 

Performs a check of the write operation 
that has been queued the longest. 

Queues a write operation for the 
specified I/O buffer, or optionally for 
all I/O buffers currently in the 
~uspended buffer state. It also returns 
u pointer to a ready buffer. If there 
are no ready buffers, then it will 
perform a check of the write operation 
that has been queued the longest. 

ORDER COMMAND ENTRY POINTS 

queue order: 

check order: 

order: 

07107178 

Queues the specified tape order command. 
No other I/O may be in progress. 

Performs a check of the current order 
I/O operation. 

Queues the specified tape order command. 
No other I/O may be in progress. It 

/ 

A-3 MTB-383 



tape_ioi_ 

MTB-383 

tape ioi_ 

also performs a check of this order 
operation. 

A-4 07/07/78 



tape_ioi_ tape_ioi 

Entry: tape_ioi_$activate 

This entry point initiates a TAPE IOI activation for a tape 
drive. In order for the activation to succeed, the specified 
tape drive must be attached to the calling process. Only one 
TAPE IOI activation is allowed at ~ one time for the same tape 
drive. 

No TAPE IOI entry points may be called unless TAPE IOI is 
activated. This entry point returns an ID that must be used in 
calls to all other TAPE IOI entry points. 

Usage 

dcl tape ioi $activate entry (ptr, fixed bin, 
bit(}6) aligned, fixed bin(35)); 

call tape_ioi_$activate (rsc_ptr, ioi_index, tioi id, code); 

where: 

1 • rsc ptr 

2. ioi index 

3. tioi id 

4 . code 

is a pointer to a structure containing 
information needed by TAPE IOI for this 
activation. A description of this structure 
is given below. (Input) 

is the ioi index which 
the attachment which 
TAPE IOI is to use. 
obtaTned by 

uniquely identifies 
this activation of 
This index can be 

calling 
resource control_$assign ioi index. 

is an identifier that uniquely identifies 
this TAPE IOI activation. This ID must be 
.sed in -subsequent calls to TAPE IOI. 
(Output) 

is a standard Multics system status code. 
(Output) 

The rsc ptr pointer must point to a resource description 
structure. All fields in this structure are considered to be 
~nput by tape ioi $activate. A declaration for this structure 
can be found in-the-include file: resource_descriptions.incl.pl1. 

07/07/78 A-5 MTB-383 



tape_ioi tape ioi 

Entry: tape_ioi $allocate_buffers 

This entry point allocates I/O buffers in the IOI workspace. 
Any number of buffers may be allocated, limited only by the 
buffers that are already allocated, the size of the buffers being 
allocated, and the size of the IOI workspace. All buffers 

* allocated in any one call will be the same size. I/O buffers may 
subsequently be redefined in the IOI workspace by calling 
tape_ioi $deallocate. 

Usage 

dcl tape ioi $allocate buffers entry (bit(36) aligned, 
fixea bin(21), fixed bin, fixed bin(21), fixed bin, 
dim(*) ptr, fixed bin(35)); 

call tape io $allocate buffers (tioi id, req length, 
req_number, act length, act_number, buffer ptrs, code); 

where: 

1. tioi id 

2. req length 

3. req number 

4. act_ length 

5. act number 

6. buffer ptrs 

MTB-383 

uniquely identifies this TAPE IOI activation. 
(Input) 

is the requested length (in characters) of 
the buffers to be allocated. If this length 
is zero, then TAPE IOI will allocate the 
requested number of buffers, each as long as 
possible. (Input) 

is the requested number of I/O buffers to be 
allocated. If this number is zero, then 
TAPE IOI will allocate as many buffers as 
possible, each with the requested length. A 
program error will occur if both the 
requested length and the requested number of 
buffers is zero. (Input) 

is the actual length of the buffers allocated 
by this call. This length will always be 0 
modulo 8 characters (2 words). (Output) 

is the actual number of I/O buffers that were 
allocated by this call. (Output) 

is an array of pointe~s to the I/O buffers 
that were allocated. If 
hbound(buffer ptrs,1) is less than the number 
of buffers allocated, then only that number 

A-6 07107178 



tape ioi_ tape_ioi_ 

1. code 

of buffer . pointers 
hbound(buffer ptrs,1) 
pointers are returned. 

are returned. If 
is zero, no buffer 

(Output) 

is a standard Multics system status code. 
(Output) 

Entry: tape_ioi_$allocate work area 

This entry point allocates a work area in the IOI workspace. 
The caller can use this work area to keep information needed to 
yrocess this tape. The allocation will not succeed if a work 
area is already allocated. A work area may be allocated either 
before any I/O buffers are allocated or after all I/O buffers are 
allocated. If the work area is allocated before any buffers then 
its size is only limited by the maximum IOI workspace size. If 
the work area is allocated after all buffers then only the unused 
words, if any, in the last workspace page are available. Thus, 
if a certain size work area must be available it should be 
allocated before any buffers are allocated. 

Usage 

dcl tape ioi $allocate work area entry (bit(36) aligned, 
.ixed bin(19), fixed bin(19), ptr, code); 

call tape ioi $allocate work area (tioi id, req_size, 
act_size~ work_area_ptr~ code); -

where: 

1 • tioi id 

2. req_size 

01101178 

uniquely identifies this TAPE IOI activation. 
(Input) -

is the size (in words) of the work area to be 
allocated. If the workarea is allocated 
before any buffers then this size must be 
specified. If the workarea is allocated 
after all buffers then the allocation will 
fail, and a program error will occur, if 
there is not enough space left in the last 
page of the IOI workspace for a work area of 
the specified size. If this size is zero, 
.then all of the remaining space in the last 
page of the IOI workspace will be allocated 
as a work area. (Input) 

A-7 MTB-383 



* 

tape_ioi_ 

4. act size 

3. work area_ptr 

4. code 

is the 
allocated. 

actual size 
(Output) 

of the 

is a pointer to the 
the IOI workspace. 

work area 
(Output) 

tape_ioi 

work area 

allocated in 

is a standard Multics system status code. 
(Output) 

Entry: tape ioi_$buffer status 

This entry point returns the status of the specified I/O 
buffer. 

Usage 

dcl tape ioi $buffer status entry (bit(36) aligned, ptr, 
ptr,-fixed bin(35)); 

call tape ioi $buffer status (tioi_id, buffer_ptr, tbs_ptr, 
codeT; -

where: 

1. tioi id 

2. buffer ptr 

3. tbs ptr 

4. code 

uniquely identifies this TAPE IOI activation. 
(Input) -

is a pointer to the buffer whose status is 
requested. (Input) 

is a pointer to a TAPE IOI buffer status 
structure. A description of this structure 
is given below. (Input) 

is a standard Multics system status code. 
(Output) 

The tbs ptr must point to a structure with the format shown 
below. All fields in this structure, except the version number 
field, are output fields whose values will be set by TAPE_IOI. A 
declaration for this structure can be found in the include file: 
tioi_buffer status.incl.pl1. 

MTB-383 A-8 07107178 



,,... 
tape ioi tape ioi -

dcl 1 tbs based(tbs ptr) aligned, -2 version fixed bin, I* 1. *I 
2 state fixed bin, I* 2. *I 
2 buffer len fixed bin(21), I* 3. *I 
2 data len fixed bin(21), I* 4 . *I 
2 bit len fixed bin(24), I* 5. *I 
2 modes aligned, 

3 cif bit(6), I* 6 . *I 
3 data char(4), I* 7. *I 

( 3 align bit(1), I* 8 . *I 
3 length bit(1), I* 9 . *I 
3 recovery bit(1), I* 1 0. *I 
3 pad 

where: 

1. version 

2. state 

3. buffer len 

4. data len 

5. bit len 

6. modes.cif 

7. modes.data 

8. modes.align 

9. modes.length 

07107178 

bit(33)) unaligned; 

is the version number of this structure. 

is the current state of the buffer, as 
.. ollows: 

1 => ready 
2 => busy 
3 => suspended 

is the allocated length of this buffer, in 
characters. 

is the length (in characters) of the actual 
data in this buffer. 

is the length (in bits) of the actual data in 
this buffer. This field is valid only when 
the buffer has been used for a read operation 
nhile TAPE IOI was in special length mode. 

is the setting of the channel instruction 
ield use to process this buffer. 

is the setting of the 
buffer at the time the 
See Appendix C for a 
data modes. 

data mode for this 
buffer was queued. 

list of the TAPE IOI 

is the setting of the align mode at the time 
this buffer was queued. This field may 
contain the following values: 

"0"b => Left Aligned 
"1"b =>Right Aligned 

is the setting of the length mode at the time 
this buffer was queued. This field may 

A-9 MTB-383 



tape_ioi_ tape_ioi 

contain the following values: 
"O"b => Normal Length Mode 
"1"b => Special Length Mode 

10. modes.recovery is the setting of the error recovery mode at 
the time this buffer was queued. This field 
may contain the following values: 

"O"b => No Recovery 
"1"b => Error Recovery 

Entry: tape_ioi $check_order 

This entry point performs a check of the order I/0 operation 
currently queued. A program error 
(error table $device not active) 
operation queued. - -

will occur if there is no order 

For order operations that involve special interrupts 
(rewind, rewind and unload, etc.) the check operation will be 
completed when the order operation terminates. In order to check 
the special interrupt itself, the caller must use the "ready" 
order command. See Appendix B for more information about this 
order command. 

Usage 

dcl tape ioi $check order entry (bit(36) aligned, 
iixed bin, fixed bin, fixed bin(35)); 

call tape_ioi_$check_order (tioi id, ocount, rx, code); 

where: 

1. tioi id 

2. ocoun t 

3. rx 

4. code 

MTB-383 

uniquely identifies this TAPE IOI activation. 
(Input) 

is the number of times the order command was 
actually performed. (Output) 

is the result index generated by interpreting 
the status obtained from the order operation 
being checked. (Out put) 

is a standard Multics system status code. 
(Output) 

A-10 07/07/78 



tape_ioi_ tape_ioi_ 

Entry: tape_ioi $check_read 

This entry point performs a check of the read operation that 
has been queued the longest. The successful checking of a read 
operation means that the buffer used in this read operation will 
be placed in the ready state. The caller may begin processing 
the data read into this buffer. A program error 
(error table $device not active) will occur if there is no read 
operatTon queued. - -

Usage 

dcl tape ioi $check read entry (bit(36) aligned, ptr, 
~ixed bin(21), fixed bin, fixed bin(35)); 

call tape ioi $check read (tioi_id, buffer ptr, data len, 
rx, code); -

where: 

1. tioi id 

2. buff er ptr 

3. data len 

4. rx 

5. code 

uniquely identifies this TAPE IOI activation. 
(Input) -

is a pointer to the buffer used in the read 
operation being checked. (Output) 

is the length (in characters) of the data 
actually read into the buffer. (Output) 

is the result index generated by interpreting 
vhe status obtained from the read operation 
being checked. (Output) 

is a standard Multics system status code. 
(Output) 

Entry: tape_ioi_$check_write 

This entry point performs a check of the write operation 
that has been queued the longest. The successful checking of a 
write operation means that the buffer used in this write 
operation will be placed in the ready state. The caller may 
begin copying output data into this buffer. A program error 
(error table $device not active) will occur if there is no write 
operatTon queued. - -

07/07/78 A-11 MTB-383 



tape ioi tape ioi 

If other write operations are queued, and any kind of I/O 
error or special event occurs (result index value is> 1), then 
these other write operations will be suspended and the buffers 
used for these write operations will be placed in the suspended 
state. 

Usage 

dcl tape ioi $check write entry (bit(36) aligned, ptr, 
fixed bin,·fixed bin(35)); 

call tape ioi $check_write (tioi id, buffer ptr, rx, code); 

where: 

1 • tioi id 

2. buffer ptr 

3. rx 

4. code 

uniquely identifies this TAPE IOI activation. 
(Input) 

is a pointer to the buffer used for the write 
operation being checked. (Output) 

is the result index generated by interpreting 
the status obtained from the write operation 
being checked. (Output) 

is a standard Multics system status code. 
(Output) 

Entry: tape_ioi_$deactivate 

This entry point will terminate the current TAPE IOI 
activation for a tape drive. As a result of deactivation, all 
I/O buffers and any work area will be deallocated. 

If .any I/O operations are currently queued for this tape 
drive, .then a program error will occur. Therefore, if it is not 
~nowri whether or not I/O operations are currently queued, a call 
should be made to tape ioi $stop tape before calling this entry 
point. - - -

Usage 

dcl tape ioi $deactivate entry (bit(36) aligned, ptr, 
fixed bin(35)); 

call tape ioi $deactivate (tioi_id, error ptr, code); 

MTB-383 A-12 07/07/78 



,... 

tape_ioi_ 

where: 

1. tioi id 

tape_ioi 

uniquely identifies this TAPE IOI activation. 
After deactivation, this TAPE IOI ID is no 
longer valid. Any subsequent calls to 
TAPE IOI using this TAPE IOI ID will result 
in a program error. (Input) 

') 
c.. • error_ptr is a pointer to a structure which will be 

filled in with various error count 
information accumulated during this TAPE IOI 
activation. A description of this structure 
is given below. (Input) 

3. code is a standard Multics system status code. 
(Output) 

The error ptr must point to a structure with the format 
shown below. ~ declaration for this structure can be found in 
the include file: tioi_error_counts.incl.pl1. 

dcl 1 tee based (tioi_error_counts_ptr) aligned, 
2 version fixed bin, 
2 total reads fixed bin(35), -
2 read errors fixed bin(35), 
2 to ta I writes fixed bin(35), 

-
2 write - errors fixed bin(35), 
2 total orders fixed bin(35), -2 order errors fixed bin(35); 

where: 

1. version 
is the version number for this structure. (Input) 

2. total reads 
is the total number of read operations done during 
this TAPE IOI activation. (Output) 

3. read errors 
is the total number of errors that occured during 
read operations during this TAPE IOI activation. 
(Output) 

4. total writes 

07 /07 /78 

is the total number of write operations done during 
vhis TAPE IOI activation. (Output) 

A-13 MTB-383 



tape_ioi_ tape_ioi_ 

5. write errors 
is the total number of 
write operations during 
(Output) 

errors that occured during 
this TAPE IOI activation. 

6. total orders 

7. 

is the total number of order operations done during 
this TAPE IOI activation. (Output) 

order errors 
is the total number of 
order operations during 
(Output) 

errors that occured during 
this TAPE IOI activation. 

Entry: tape_ioi_$deallocate 

This entry point will deallocate all I/O buffers and any 
work area. A program error occurs unless all I/O buffers are in 
the ready or suspended state. The caller may allocate new I/O 
buffers and a new work area by calling the TAPE IOI allocate 
entry points. 

Usage 

dcl tape ioi $deallocate entry (bit(36) aligned, 
fixed bin(35)); 

call tape_ioi_$deallocate (tioi id, code); 

where: 

1. tioi id 

2. code 

uniquely identifies this TAPE IOI activation. 
(Input) 

is a standard Multics system status code. 
(Output) 

Entry: tape_ioi_$get_mode 

This entry point will return the current value of any one of 
the TAPE IOI modes. See Appendix C for more information about 
the TAPE-IOI modes. 

MTB-383 A-14 07107178 



tape_ioi tape_ioi 

Usage 

dcl tape_ioi_$get_mode entry (bit(36) aligned, char(8), 
ptr, fixed bin(35)); 

call tape_ioi_$get_mode (tioi id, mode, data ptr, code); 

where: 

1. tioi id 

2. mode 

3. data_ptr 

4. code 

uniquely identifies this TAPE IOI activation. 
(Input) 

specifies the name of 
returned. (Input) 

the mode to be 

is a pointer to a location where the current 
value of the mode is to be stored. (Input) 

is a standard Multics system status code. 
(Output) 

Entry: tape_ioi_$hardware_status 

This entry point returns all available status information 
obtained from the last I/O operation for which a check has been 
COCipleted. 

Usage 

dcl tape ioi $hardware statui entry (bit(36) aligned, ptr, 
fixed bin(35)); -

call tape_ioi_$hardware_status (tioi_id, ths_ptr, code); 

where: 

I • tioi id 

2. ths ptr 

3. code 

Yi /0'{ /'{ 8 

uniquely identifies this TAPE IOI activation. 
(Input) 

is a pointer to a TAPE IOI hardware status 
structure. A description of this structure 
is given below. (Output) 

is a standard Multics system status code. 
(Output) 

A-15 MTB-383 



tape_ioi_ tape_ioi 

The ths ptr must point to a structure with the format shown 
below. All fields ·in this structure, except the version field, 
are output fields whose values will be set by TAPE IOI. A 
declaration for this structure can be found in the include file: 
tioi_hardware_status.incl.pl1. 

dcl 1 ths based(ths ptr) aligned, - fixed bin, I* 1. *I 2 version 
2 description char(128) varying, I* 2. *I 
2 major fixed bin, I* 3. *I 
2 substatus bit(36), I* 4. *I 
2 iom bit(72); I* 5. *I 

where: 

1. 

2. 

3. 

4. 

5. 

version 

description 

major 

substatus 

iom 

is the version number of this structure. 

is an English language description of this 
hardware status. 

is reformatted major status. A description 
is given below. 

is reformatted substatus. 
given below. 

A description is 

is the raw !OM hardware status. 

The include file tioi hardware status.incl.pl1 also contains 
constants that can be used-to reference the fields of reformatted 
major and substatus. The values that represent each major 
status, and the names of the constants that should be used to 
reference each major status value are given below: 

dcl subsystem ready fixed bin in it (O) static; 
dcl device busy fixed bin init ( 1 ) static; 
dcl device - attention fixed bin init (2) static; -dcl device data alert fixed bin init ( 3) static; 
dcl end of-file - fixed bin init ( 4) static; 
dcl command reject fixed bin init (5) static; 
ul,;l mpc device attention fixed bin init(10) static; - -dcl mpc device data alert fixed bin init(11) static; 
dcl - command reject fixed bin init(13) static; mpc_ 
dcl power_ off fixed bin init(16) static; 
dcl system_ fault fixed bin init(17) static; 
dcl iom central - fixed bin init(18) static; 
dcl iom channel fixed bin init(19) static; 
dcl time out fixed bin init(20) static; 

Each substatus, for a given major status, is represented by 
one bit in the ths.substatus field. Whenever more than one 

MTB-383 A-16 07 /07 /78 



tape_ioi_ tape_ioi_ 

substatus occurs at the same time, the bits representing each 
will be set. For each major status, there is a set of constants 
representing the values for all substatuses possible for that 
major status. As an example, listed below are the values and the 
names of the constants used to represent the substatuses 
associated with the subsystem_ready major status. 

dcl device_ready bit(36) ini t ("10000000"b) static; 
dcl write protected bit(36) init ("01000000"b) static; 
dcl at bot bit(36) init ("00100000"b) static; 
dcl nine track bit(36) in it ("00010000"b) static; 
dcl two bit fill bit(36) init ("00001000"b) static; 
dcl four bit fill bit(36) init ("00000100"b) static; 
dcl six bit fill bit(36) init ("00000010"b) static; 
dcl ascii alert bit(36) init ("00000001"b) static; 

Entry: tape_ioi_$list~buffers 

This entry point will return a list of pointers to buff~rs 
~n the IOI workspace. All buffers, or all buffers in a 
particular state can be listed. When all buffers are listed, 
they will be listed in the order in which they were allocated. 
When all buffers in a particular state are listed, they will be 
listed in the order in which they were put into that state. 

Usage 

dcl tape ioi $list .buffers entry (bit(36) aligned, 
fixed bin, dim(*) ptr, fixed bin, fixed bin(35)); 

call tape ioi $list buffers entry (tioi id, state, 
buffer_ptrs, num_buffers, code); -

where: 

1. tioi id 

2. state 

07 /07 /'i 8 

uniquely identifies this TAPE IOI activation. 
(Input) 

specifies the state of the buffers to be 
returned. The acceptable values are listed 
below: 

0 
1 
2 
3 

(Input) 
=> al1 buffers 
=> aJ.l ready buffers 
=> nll busy buffers 
=> all suRpended buffers 

A-I l MTB-383 



tape_ioi_ tape_ioi 

3. buffer_ptrs is an array of pointers to the buffers. Only 
the number of buffer pointers that will fit 
into this array, hbound(buffer_ptrs,1), will 
be returned. (Output) 

4. num buffers 

5. code 

is the number of 
requested. (Output) 

buffers in the state 

is a standard Multics system status code. 
(Output) 

Entry: tape ioi $order 
' - -

This entry point is called to queue and check an order. 
Calling this entry is .equivalent to calling, in succession, 
tape_ioi_$queue_order and tape_ioi_$check_order. 

Usage 

dcl tape ioi $order entry (bit(36) aligned, char(4), 
fixed bin, ptr, fixed bin, fixed bin, fixed bin(35)); 

call tape ioi $order (tioi id, order, count, data_ptr, 
ocount, rx, code); -

where: 

1. tioi id uniquely id en ti fies this TAPE IOI activation. 
(Input) 

2. order see tape_ ioi $queue order. (Input) - -

3. count see tape ioi $queue order. (Input) - - -
4. data ptr see tape_ioi_ $queue order. (Input) - -

5. ocount see tape_ioi $check - order. (Output) 

6. rx see tape_ioi_ $check - order. (Output) 

7. code is a standard Multics system status code. 
(Output) 

MTB-383 A-18 07/07/78 



tape_ioi_ tape ioi_ 

K~~c~: tape ioi_$queue order 

This entry point will queue one tape order command. A 
program error will occur if an order command is already queued or 
if any read or write operations are queued. All non-channel 
orders are supported. See Appendix B for a list of the 
mnemonics, counts, and data associated with these order commands. 

Usage 

dcl tape ioi $queue order entry (bit(36) aligned, char(4), 
fixed bin, ptr,-fixed bin(35)); 

call tape ioi $queue order (tioi_id, order, count, data_ptr, 
code); - -

where: 

1 • tioi id 

order 

3. count 

4. data_ptr 

5. code 

07 /07 /78 

uniquely identifies this TAPE IOI activation. 
(Input) 

is the mnemonic name of the order to be 
~ueued. The reason for using these mnemonics 
is to make the use of this entry point 
simple, and to present a logical rather than 
a physical interface wherever possible. 
(Input) 

is the number of times the order is to be 
executed. For some orders this field is 
ignored and the order command is executed 
only once. (Input) 

is a pointer to any data required/returned by 
the order command. For orders which do not 
involve data, this argument is ignored. 
Warning: For order commands that return data, 
TAPE IOI will remember this pointer and will 
use it to return data when the order 
operation is checked. It is the callers 
responsibility to make sure that this pointer 
is valid when the order operation is checked. 
(Input) 

is a standard Multics system status code. 
(Output) 

A-19 MTB-383 



tape __ io i tape ioi 

Entry: tape_ioi_$queue_read 

This 
specified 
buffer is 
operation 

entry point will queue a read operation for the 
I/0 buffer. A program error will occur if this I/0 

already queued for reading, any order command or write 
is queued, or any buffer is in the suspended state. 

Usage 

dcl tape ioi $queue read entry (bit(36) aligned, ptr, 
fixed bin(35));-

call tape_ioi_$queue_read (tioi_id, buffer ptr, code); 

where: 

1. t io i id 

2. buff er ptr 

3. code 

uniquely identifies this TAPE IOI activation. 
(Input) 

is a pointer to the buffer for which the read 
operation is to be queued. (Input) 

is a standard Multics system status code. 
(Output) 

Entry: tape ioi_$queue write 

This entry point will queue a write operation for the 
specified I/O buffer. A program error will occur is this I/O 
buffer is already queued for writing or if any order command or 
read operations are queued. 

Usage 

dcl tape_ioi_$queue_write entry (bit(36) aligned, ptr, 
fixed bin(21), fixed bin(35)); 

call tape ioi $queue write (tioi_id, buffer ptr, data_len, 
code); -

where: 

1. tioi id 

MTB-383 

uniquely identifies this TAPE IOI activation. 
(Input) 

A-20 07/07/78 



tape_ioi tape_ioi_ 

2. buff er ptr 

3. data len 

4. code 

is a pointer to the buffer for which the 
write operation is to be queued. (Input) 

is the length (in characters) of the actual 
data to be written from this buffer. (Input) 

is a standard Multics system status code. 
(Output) 

~ntry: tape_ioi_$read 

This entry point will queue a read operation for every ready 
buffer. It will then perform a check of the read operation that 
has been queued the longest. This is equivalent to calling 
tape ioi $queue read for all available buffers, and then calling 
tape-ioi$check read. For normal tape reading, this is the only 
read-entry point that the caller needs. 

Usage 

dcl tape ioi $read entry (bit(36) aligned, ptr, 
1ixed bin(21), fixed bin, fixed bin(35)); 

call tape ioi $read (tioi id, buffer_ptr, data_len, rx, 
code); -

where: 

1 • tioi id 

2. buffer ptr 

3. data len 

4 . rx 

5. code 

07 /07 /78 

uniquely identifies this TAPE IOI activation. 
(Input) 

see tape_ioi_$check_read. (Output) 

see tape_ioi_$check_read. (Output) 

see tape_ioi_$check_read. (Output) 

is a standard Multics system status code. 
(Output) 

A-21 MTB-383 



tape ioi_ tape __ i1.) i 

Entry: tape ioi_$set_buffer_ready 

This entry point changes the state of an I/O buffer from 
suspended to ready. A program error will occur if the buffer is 
not in the suspended state. If a buffer is in the busy state 
(I/O is queued for this buffer) it can be changed to the ready 
state only by a check operation. Buffers can be changed to the 
null state only via the tape_ioi_$deallocate entry point. 

Usage 

dcl tape ioi $set buffer ready entry (bit(36) aligned, ptr, 
fixed binC35)); -

call tape_ioi_$set_buffer_ready (tioi_id, buffer ptr, code); 

where: 

1. tioi id 

2. buffer ptr 

3. code 

uniquely identifies this TAPE IOI activation. 
(Input) -

is a pointer to the buffer to be set ready. 
(Input) 

is a standard Multics system status code. 
(Output) 

Entry: tape_ioi $set_mode 

This entry point will set any one of the TAPE IOI modes. 
See Appendix C for more information about the TAPE IOI-modes. 

Usage 

dcl tape ioi $set mode entry (bit(36) aligned, char(8), 
ptr,-fixed bin(35)); 

call tape_ioi_$set_mode (tioi id, mode, data_ptr, code); 

where: 

1 • tioi id 

MTB-383 

uniquely identifies this TAPE IOI activation. 
(Input) 

A-22 07/07/78 



tape ioi tape ioi_ 

2. mode 

3. data_ptr 

4. code 

specifies the name of the mode to be set. 
(Input) 

is a pointer to data representing the setting 
of the mode. (Input) 

is a standard Multics system status code. 
(Output) 

Entry: tape_ioi_$stop_tape 

This entry point will stop any I/O currently in progress. 
The results of any queued I/O operations are undefined. All 
buffers will be set to the ready state. This entry point is 
intended for use within a cleanup handler or a close procedure in 
order to guarantee that all queued I/O operations are stopped. 
It can also be useful when positioning the tape reel. 

Usage 

dcl tape ioi $stop tape entry (bit(36) aligned, fixed bin, 
fixed bin, fixed bin(35)); 

call tape_ioi_$stop_tape (tioi_id, count, rx, code) 

v:here: 

1 • t io::. id 

2. count 

3. rx 

4. code 

07 /07 /78 

uniquely identifies this TAPE IOI activation. 
(Input) 

is the number of I/O operations that 
completed before the tape was physically 
stopped. If the tape was already stopped 
this number will be zero. (Output) 

is the result index of this operation. Only 
values of -1 through 1 may be returned by 
this entry point. (Output) 

is a standard Multics system status code. 
(Output) 

A-23 MTB-383 



tape ioi tape ioi 

En~i:_y_: tape ioi $write 

This entry point is a useful combination of the 
tape ioi $queue write and tape ioi $check write entry points 
Optionally, it will queue a write operation for a specified I/0 
buffer. A program error will occur if the specified I/O buffer 
is already queued for writing or if any order command or read 
operations are queued. 

If there are any suspended buffers, then write operations 
will be queued for all of these suspended buffers. Any buffer 
specified in this call will be queued first. Then the suspended 
buffers will be queued in the same order in which they were 
suspended. The data length and other mode specifications used 
for each suspended buffer will be the same as when the buffer was 
originally queued. 

This entry point will also return a pointer to a ready I/O 
buffer. If the call to this entry point is successful, the 
caller may begin to copy output data into this buffer. 

If there are no ready buffers, then this entry point will 
obtain one by performing a check of the write operation that has 
been queued the longest. If the check operation is successful, 
it will result in the buffer used for that write operation 
becoming ready. A pointer to this checked and newly readied 
buffer will be returned. 

dcl tape ioi $write entry (bit(36), ptr, fixed bin(21), 
ptr,-fixed bin, fixed bin(35)); 

call tape ioi $write (tioi id, qbuffer ptr, data_len, 
rbuffer ptr, rx, code); 

where: 

1 • tioi id 

qbuffer ptr 

3 . data len 

4. rbuffer ptr 

MTB-383 

uniquely identifies this TAPE IOI activation. 
(Input) 

is a pointer to a buffer for which a write 
operation is Lo be queued. This value may be 
null. (Input) 

see tape ioi $queue write. (Input) 

is a pointer to a ready buffer. If the 
result index indicates that a write operation 

A-24 07/07/78 



-

tape _ioi_ 

5 . 

6 . 

rx 

code 

07/07/78 

tape ioi 

was checked and an I/O error occurred, then 
this will be a pointer to the buffer in 
error. (Output) 

see tape ioi $check_write. (Output) 

is a standard Multics system status code. 
(Output) 

A-25 MTB-383 



APPENDIX 8 

Tape Order Commands 

TAPE ORDER COMMAND MNEMONIC COUNT COMMAND DATA 
---------------------------------------------------~-------------

Ready 

Backspace One File 
Backspace One Record 
Forward Space One File 
Forward Space One Record 
Write End-of-File Record 
Erase 
Data Security Erase 

Rewind 
Rewind/Unload 
Tape Load 

Request Status 
Reset Status 
Request Device Status 
Reset Device Status 

Set 200 bpi density 
Set 556 bpi density 
Set 800 bpi density 
Set 1600 bpi density 

Set File Permit 
Set File Protect 

Reserve Device 
Release Device 

Read Control Registers 
Write Control Registers 

rdy 

bsf 
bsr 
fsf 
f sr 
eof 
ers 
dse 

rew 
run 
lod 

rqs 
rss 
rqd 
rsd 

den 
den 
den 
den 

per 
pro 

rsv 
rel 

rcr 
wcr 

* 
* 
* 
* 
* 
* 
* 

1. Set by TAPE IOI 

2. Set by Caller 

3. Set by TAPE IOI 

4. Set by TAPE IOI 

5. Set by Caller 
II II 

II II 

II II 

6. Set by TAPE IOI 
6. Set by Caller 

* implies that "count" may be more than 1. 

1. 

2. 
3. 

4 . 
5 . 
6. 

07 /07 /7 8 

Data returned is 36 bits of special status. If no 
special system was generated by the previous I/O 
operation, then this field will be zero. 
Optional, 6 bits that form a 1 character record. 
Data returned is the TAPE IOI hardware status 
structure. 
Data returned is 24 packed 8 bit bytes. 
Data specified is a fixed binary density setting. 
Data is 8 2-byte counters (4 words). 

8-1 MTB-383 



MODE NAME DECLARATION 

align (1.) bit(1) 

cif (2.) bit(6) 

data char(4) 

event fixed bin(71) 

length bit(1) 

recovery bit(1) 

wait bit(1) 

APPENDIX C 

TAPE IOI Modes 

VALUES 

"O"b 
"1"b 

* "010000"b 
11 010001 "b 
"010010"b 
"010011"b 
"011000"b 
"011001"b 
"011010"b 
"011011"b 

* "bin" 
"bed" 
"tap9" 
"asc" 
"ebc" 
"ale" 

* "0 "b 
"1"b 

* "0 "b 
"1"b 

* "0 "b 
II 1 11 b 

* implies default setting 

MEANING 

Left Aligned 
Right Aligned 

No retry, high 
No retry, low 
No retry, high, +deskew 
No retry, low, +deskew 
Retry, high 
Retry, low 
Retry, high, +deskew 
Retry, low, +deskew 

Specifies actual read 
or write commands used. 

IPC Event Channel 

Normal 
Special 

No Error Recovery 
Error Recovery 

Simplex 
Multiplex 

1. DefaulL alignment depends upon the model tape dr1ve 
being used. Model 500 => right aligned, model 600 => 
le ft aligned. 

2. This mode is ignored if error recovery is ON. 

07/07/78 C-1 MTB-383 



APPENDIX D 

Result Index Summary 
Special Events 

The result indexes returned by TAPE IOI are generated by 
interpreting the hardware status (IOM major and substatus) for 
the I/O operation last completed. The result index values are 
summarized below: 

-1 => block (multiplex block mode) 
0 => success 
1 => program error 
2 => unrecoverable I/O error 
3 => recoverable I/0 error 
4 => special event 
5 => special event 
6 => special event 

The special event result indexes are returned for different 
statuses depending upon the I/O operation. A summary of special 
events is given below: 

Re ads: 4 => EOF 
5 => Blank Tape on Read 
6 => Code Alert (Data modes asc, ebc, or a/e) 

Writes: 4 => EOT 
5 => recoverable error and EOT 
6 => Code Alert (Data mode = tap9 or a/e) 

Back Space: 4 => BOT 
5 => EOF (backspace record only) 

Forward Space: 4 => Blank Tape on Read 
5 => EOF (forward space record only) 

Request Status: Only result index values (-1, O, 1) are 

Ready: 

All Others: 

07107178 

returned. Hardware status information returned in 
data structure. 

Only result index values (-1, O, 1) are returned. 

No special events. 

D-1 MTB-383 



STATUS 

Subsystem Ready 
At BOT 
ASCII Alert 
All Others 

De~ice Busy 

Status Classes 

STATUS CLASS 

AB (At Beginning) 
CA (Code Alert) 
OK (Result Index = 0) 

In Rewind 
Device Loading 
All Others 

SI (Special Interrupt) 
SI 
UE (Unrecoverable Error) 

Device Attention (All) 

Device Data Alert 
Blank Tape on Read 
Timing Alert 
All Parity Errors 
End of Tape 
ET and any DA 

End of File (All) 

Command Reject 

UE 

ET (End of Tape) 
DA (Data Alert) 
DA 
ET 
DE (Data, End) 

EF (End of File) 

Positioned at BOT AB 
All Others UE 

MPC Device Attention 
All UE 

MPC Device Data Alert 
PE-Burst, NRZI CCC DA 
Preamble, Postamble DA 
Multi-track, Marginal DA 
Code Alert CA 
All Others UE 

MPC Command Reject (All) UE 

Power Off UE 
System Fault UE 

IOM Central 
IOM -> PSIA 
PSIA -> l0M 
All Others 

IOM Channel (All) 

MTB-383 D-2 

IP (IOM -> PSIA) 
DA 
UE 

UE 

07 /07 /78 



Table of Result Indexes 

The table below shows the resu::..: indexes returned for each 
unique combination of I/O operation and status class. 

OPERATION STATUS CLASSES 

AB CA DA DE EF ET IP SI UE 

rbin 2 2 3 2 4 5 3 2 2 
rbcd 2 2 3 2. 4 5 3 2 2 
rtp9 2 2 3 2 4 5 3 2 2 
rasc 2 6 3 '"' 4 5 3 2 2 c:. 
rebc 2 6 3 2 4 5 3 2 2 
ra/e 2 6 3 2 4 5 3 2 2 

wbin 2 2 3 I 5 2 4 3 2 2 
wbcd 2 2 3 5 2 4 3 2 2 
wtp9 2 6 3 5 2 I 4 6 2 2 
wasc 2 2 3 5 2 4 3 2 2 
webc 2 2 3 5 2 4 3 2 2 
wale 2 6 I 3 5 2 4 3 2 2 
eof 2 2 3 5 2 4 3 2 2 
ers 2 2 3 5 2 4 3 2 2 

bsr 4 2 2 2 5 2 2 2 2 
bsf 4 2 2 2 0 2 2 2 2 
f sr 2 2 2 2 5 I 4 2 2 2 
fsf 2 2 2 2 0 4 2 I 2 2 

rqs 0 0 0 0 0 0 0 ·O 0 
rdy 0 1 1 1 1 1 1 -1 1 

others 2 2 2 2 2 2 2 2 2 

07/07/78 D-3 MTB-383 



APPENDIX E 

Sample Scenarios 
Activation and Reading 

I* Process options to build resource_descriptions. */ 

call resource control $assign ioi index 
- - (rsc-ptr~ ioi index, cd); 

if cd A= 0 then goto ERROR; - -

I* Data in resource_descriptions may be changed here. *I 

call tioi $activate (rsc ptr, ioi_index, tioi_id, cd); 
if cd A~ 0 then goto ERROR; 

recovery = "1 "b; 
call tioi $set mode (tioi id, 
if cd A~ 0 then goto ERROR; 

I* Error recovery ON. *I 
"recovery", addr(recovery), cd); 

call tape_ioi_$allocate_buffers (tioi id, 4096, O, act len, 
act_num, buf_ptrs, cd); 

if cd A= 0 then goto ERROR; 

READ LOOP: 
call tape ioi $read (tioi_id, buf ptr, data len, rx, cd); 
goto READX (rx); - I* RX =>-decision. */ 

READX(O): /* Read succeeded. */ 
call PROCESS INPUT (buf_ptr, data len); 
goto READ_LOOP; 

READX( 1): 
READX(2): 
READX(3): 

goto ERROR; 

HEADX(4): 
READX(5): 

goto END_OF_FILE; 

07107178 E-1 

I* Program error. */ 
I* Unrecoverable error. *I 
I* Recovery ON => error. *I 

I* End of File. */ 
I* Blank tape => EOF. */ 

MTB-383 



!* 

Writing and Deactivation 

Attach and activate, error recovery ON. */ 

buf ptr = null(); I* Initialize. */ 
rx; O, data len = 1; 

d0 while ((rx = O) & (data len > O)); 

end; 

call tape ioi $write (tioi id, buf ptr, data len, 
- - next-buf ptr~ rx, cd);-

buf ptr = next buf ptr; - 7* If OK fill buffer. */ 
if rx = 0 then call FILL_BUF (buf_ptr, data_len); 

goto WRITEX (rx); I* Out of loop, rx => why. */ 

WRITEX(O): STOPX(O): I* No more data, flush. */ 
call tape ioi $check write (tioi id, buf ptr, rx, cd); 
goto 'STOPX (rx); - - I* Check the check. *I 

STOPX(1): /*Program error. *I 
if cd A= error table $device not active 
then goto ERROR;- - - -

I* No more buffers queued, write EOF to close file. */ 

call tape ioi $order (tioi id, "eof", 1, null(), x, rx, cd); 
if cd A~ 0 then goto ERROR; 

call tape ioi $deactivate (tioi id, error ptr, cd); 
call resource-control $release Toi index Tioi index, cd); 
return; - - - - -

WRITEX(1): 
WRITEX(2): STOPX(2): 
W?ITEX(3): STOPX(3): 
E?ROR: 

[ - - - - - - - - - ] 

WRITEX(4): STOPX(4): 
WRITEX(5): STOPX(5): 
END OF VOLUME: 

[-- - - - - - - - - - - - - - ] 

E-2 

I* Program error. *I 
I* Unrecoverable error. *I 
I* Recovery ON => error. *I 

I* End of Tape */ 
I* EOT and error. *I 

07/07/78 


