
¥' .. : .. " j' -i' I _./
I ..

~ULTICS TECHNICAL BULLETIN - 393

To: Distribution

from: Bob May

Date: September 20, 1978

Subject~ GTSS MTb 393

This MTB contains the proposed definition for the GCOS TSS
Environment Simulator. It also contains preliminary
docume~tation for certain tools that are used in the construction
of the simulator.

The GCOS TSS simulator provides a user interface that is
nearly identical in most respects to that of native GCOS TSS.
Its purpose is to provide GCOS users with a means to execute
native GCOS software without ch~nge. GTSS is not intended to
ever be totally identical to native GCOS TSS in either function
or performance. It is intended to provide a reasonably compl~te
subset of functions with reasonable performance.

This document is intended to be something more than an MTB.
It is expected that it will be the basis of MPM1 PLM1 and
Marketing literature. By providing all relevant information in
one place, readers can easily use what they need and ignore what
they don't need.

All comments should be addressed to:

Bob May
May.Multics on System M in Phoenix

or

HVN 341-7295/7466
(602> 249-7295/7466

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

DRAFT: MAY BE CHANGED -1- GTSS MTt3 393

This MTB is intended to fully describe the user interfaces for
the GCUS TSS Environment Simulator, hereafter called GTSS. In
addition, several of the major subroutine descriptions are
included as a means of documenting the internal design of the
simulator.

Additionally, the preliminary descriptions for gcos_debug and
gcos_library_mgr are included. These tools are being used in the
construction of GTSS and will be submitted for installation after
cleanup.

The uTSS facility consists of a
number of supporting subroutines.
the ycos_tss Cytss) command. All
of gtss_.

command interface and a large
The command interface will be

subroutines will have a prefix

The formal name of the facility will be the GCOS TSS Environment
Simulator. The term encapsulation is inappropriate and will not
be used.

The following items are
"marketiny requirements".
from Marketing.

given in an effort to define the
They are in lieu of a formal document

o No formalized, "Complete" List

No list of functions required was generated, other than
"provide what is provided by native GCOS TSS". It is not
sufficient to list all documents related to GCOS TSS as the
definition of GTSS because not all functions are documented
in manuals. ~ee Appendix A for some unofficial requirements
as defined by members of the Bell Canada programming staff.

o As close to "Exactly the Same" as possible

within the constraints of time and resources, GTSS
interfaces wi LL be as c Lose to native GCOS TSS interfaces as
possiule, with a few exceptions. The exceptions will be in
those areas where it is felt that Multics functions are
sufficiently desirable that an incompatibility is justified.

~HAFT: MAY d~ CHANG~D -2- GTSS MTB 393

o 4/J System Release Level

The native GCOS object code and . the executive f~terfaces
prov i de d w i l l . be a s of G C OS Re l e a s e 4 I J - S · < S up P le m ~-n t) •

. .
o Identical execution of sla~e object code, includin~ slave

system software

Within the limits of processor compatibility, native GCOS
slave object code will be executed "as-is" on the·Multics
processor.

o Identical content of user files

0

T h e u s e r f il e s w i l l b e i d e n t i c a l i n f o rm a t t o ,: t h o s e o n
native GCOS. All considerations due to the Multics virtual
memory and segment size~ wiil be transp~rerit to ·the GTSS
user.

Identical user terminal interfaces

Multics t•rminal interfaces are used in GTSS rather than
those of native GCOS. It is felt that· the benefits of using
the Multics interfaces, iuch as full-duplex, tyoe-ahead,
canonicalization, etc., sufficiently compensate~ for the
prob le ms o f i n comp at i bi l i t y • See be low . for ... ·de t a i l e d
descriptions of these diffe~ences. Th~ reader shduld note
that these differences are with re~pect 6nly to the terminal
1/0, and have no relation to the command syntax.

·paper tape
.release. It
needed~

I / O w i l l be prov i de d but n·o t i n t he i n i t i a l
requires furthe~ st~dy to determine ~hat is

o Idenlical Performance

It i~ not a goal of this devel6pment to provide a facility
that is equal in performance. to that of nativ~ Gcbs TSS. A
reasonable effort will , be· made to be as effii:ient as

-possible.

o Support command, user libraries

User command file processing wi LL be supported after the
initial release CMR6.9>.

DRAFT: MAY BE CHANGED -3- GTSS Mll::I 393

0

User libraries will be supported in the initial release.

Utilities for
Multics

file/hierarchy transfer between GCOS and

The ycos_fms command provides a GCOS USER RESTORE facility
for the bulk transfer of files from GCOS to Multics. It is
the subject of another MTB.

The followin~ items define the
uTSS. See Appendix u for a
c0nsidered.

overall design considerations for
discussion of alternative designs

o /\im toward "Identical 8lack Box"

This is the primary requirement. Any site that wants GTSS is
likely the user of native GCOS TSS. It is incumbent on GTSS
to minimize the interface differences between the two
facilities in order to minimize the user training and data
conversion requirements.

o Direct execution of GCOS object code

~ecause the Multic~ CPU is a pure superset of the GCOS CPU,
it is possible to run native GCOS by switch the processor to
GLOS mode. while operatiny in Multics mode, there are a few
functional differences in instruction functions, ie., use of
the BAR mode, and Address Register operation versus Pointer
kegister vDeration. These differences can be hidden from the
GCOS object rro~rams so that slave GCOS object programs need
no alteration. This greatly simplifies, or, more correctly,
makes possible, the development of the GTSS simulator
package.

o Avoid GCOS hardcore, privileged code

The use of hardcore and/or privileged code from native GCOS
was considered and dropped; the task of providing an
environment that would allow these types of modules to run
as-is, or even with modification, is too great at this time.

o Use pri~itives ot ~ultics Operating System for management of
user process

DRAFT: MAY 81: CHANGED -4- GTSS MTB 393

0

Much of the GCOS TSS executive must concern itself with the
management of multiple time-sharing users. The GTSS
facility accommodates one user per process and leaves all
process management to the Multics operating system. This
greatly simplifies the function of GTSS.

This implies a user interface difference, however. Since
the GTSS implementation does not provide any accounting
function of its own, there will be no accounting function
similar to native GCOS TSS. Thus, billing, which on GCOS
includes terminal I/O, will change for the users.

No Conversion of User
Command Files, etc.

Fi les1 Including Programs, Data,

This applies to all user files, whether they are programs or
data. Extreme caution has been taken in the design of GTSS
to ensure proper operation with existing files that may be
brought over from native GCOS. This does not apply for file
data that is dependent on processor timings, accounting
information and similar information that is
machine-dependent.

o GTSS Simulator to. interface at the derail level

The derail instruction and subsequent fault provide a clean
separation between the GCOS slave object programs and the
GTSS executive. Machine conditions are saved and restored,
generally with minor changes, when GTSS return~ control to
the user.

o Write GTSS in Multics PL/I

Since GTSS is only a "black box" interface to the GCOS
object programs, there is no requirement to write any GCOS
code as part of the executive interface.

DRAFT: MAY BE CHANGED -5- GTSS MTB 393

The following figures give the overall structure of GTSS, and
indicate the flow of control between the GCOS objett code and ~
c; rss.

~
~

I) i~ A F T : 1'1 A Y tj E C H A N (:j I: D

8

-6-

8

---~ .

• ..
•

8

GTSS MTB 393

IN\TIALJZE
USER

MVL TIC.S
USE.R
PR Oc..ESS

GTSS

SU\ LD
MOOE

DRAFT: MAY 8E CHANGED -?-

PRo&RAM
DEsc.FU PTO RS,
CoMMltrNO
1-A-N G-u AfrE,
hN D p RlMtnvc.

LI .S i.S l="D R
oesvsreMS

~RlM\TIVE.

INTERPRETER

LO~D G-Cos
TSS
SUBSYSTEM

EXE.cuTE
S UBS\'5TE. M
00JEc.T' coDE

GTSS MTt3 39~

DRL PAOGES'50R

DETERMINE WHlc.H DR L ...___

\V

ROUTINE FOR ORL X

EXE(. UT IN (j- G-cos
TSS SLAVE PAo~RAM

DR L X
A~G-VMENTS
N~xr INSTRVt:.,TIO N

I) RAF T : 1'1 A Y l3 E C rl A ,JG ED
GTSS MTB 393

Tne approach to GCOS TSS simulation involves an interactive user
interface which looks like GCOS timesharing and a simulated
environment which allows a user to execute GCOS TSS subsystems.
This approach is broken down into the following Li st of
functions:

1. Recognition of GCOS command language for each subsystem using
tables from TSSA. Each command recognized has d corresponding
list of primitives to be interpreted.

2. Interpretation of TSS primitives. There are a total of 12
primitives to be interpreted. They provide for stacking thP.
current subsystem and calling a new one, initiating the
Loading and execution of the current subsystem proqram,
initiating the ouilding of input, returning to the subsystem
at the previous level, manipulating bits in the subsystem
switch word, and conditionally executing blocks of primitives
under control of specified bits in the subsystem switch word.

3. Providing the command loader function which allows a us~r
program stored on an H• file to be.loaded and executed. The
command loader is invoked whenever an unrecognized command is
given.

4. Providing a basic line
terminal and merges it
current file.

editor which takes
in line numbered

input from the
sequence with the

5. Providing a static DRL handler similar to the MME handler in
the GCOS batch simulator. This handler uses a transfer
vector to cause the appropriate routine to be executed for
each DRL.

The derail processing functions are
routines so that development of GTSS
among multiple developers.

DRAFT: MAY BE CHANGED -9-

implemented as separate
can be cleanly divided

GTSS MTH 393

The procedure gtss_ios_ supports disk I/O for the batch and
timesharing environment simulators. This procedure simulates
G C 0 S phys i ca l I I 0 and the "i o s" in i t s name refers to the· G cos
lnµut Output ~upervisor.

The main entry point to this routine is gtss_ios_Sio. This
entry point interprets GCOS I/O select sequences to perform the
disk l/O for MME GEINOS for batch simulation and DRL DIO for
timesharing simulation. Refer to DD 19 (General Comprehensive
vperatiny Supervisor) for an explanation of MME GEINOS, DD 17
CTSS System Proyrammer's ~eference Manual> for an explanation of
ORL oro and 08 82 CGCOS I/O Programming) for a general discussion
ot GCOS 1/0. The gtss_ios_$io entry point supports file input and
output and <for batch) file spacing for linked files.

There are fiv.e additional entry points. Accessing and
deaccessing ti Les are accomplished by gtss_ios_Sopen and
ytss_ios_9'close. file size may be changed by
gtss_1os_$change_size. The last two entry points are
specifically for timesharing. The DRL SWITCH which exchanges two
temporary file names is supported by gtss_ios_Sexchange_names.
The OHL flLSP which does file spacing on linked files is
supported by ytss_ios_$position. More information about these
six entry points is given in the subroutine description of
ytss_i~s- which follows later in this document.

The gtss_ios_ module provides the ability to open and close
files and supports all functions that are performed on open
files. This is the rationale behind grouping these functions
into one module.

The data structures necessary for file 1/0 may be classified
as those common to batch and timesharing and those specific to
one of the two simulators. The PL/I {nciude files
gtss_file_attributes and gtss_disk_file_data contain the data
structures which will be common to both simulators <once the
~atch simulator has been updated to use gtss_ios_>. The routine
ytss_ios_ uses only these data structures. The only information
specific to each simulator is the symbolic name by which each
tile is referenced. Time sharing uses an 8 character ASCII name
stored in the AFT <Available File Table.> Batch uses a two
character 8CD file code.

For timesharin~ this information is maintained as a hashed
list of names in a structure described by gtss_aft_.incl.pl1.
This structure called gtss_ext_$aft is maintained by the
gtss_aft_ routine ~hich has entry points for adding, finding, and
deleting names. The corresponding batch structure for storing
~CD tile codes has not yet been defined.

The data structures common to timesharing and batch may, for
permanent tiles, be further broken down into information which is
needed only while the file is open and information which must be

O~AFT: MAY BE CHANGED -10- GTSS MTB 393

··~· .• ~:·- 'l" •••

stored permanently in the file system. Those needs are covPre1
by gtss_file_attributes.incl.pl1 anj
gtss_disk_file_data.incl.pl1, respectively.

We have adopted the goal of storing no Multics control data in
the user's physical file soace. This means that there must be a
place provided for storing permanent file attributes in the
Multics storage system separate from the user's file. It would
be possible to store the attributes for a group of files in a
single segment, but we have initially taken the simpler approach
of using added names to hold the required attribute information.
GCOS file names are restricted to no more than twelve charactPrs
so it will always be possible to add these names. See the
description of gtss_attributes_mgr_ for details of the naming
syntax.

The attributes data has a structure defined by
gtss_file_attributes.incl.pl1. The attributes structure
currently includes the current size of the file, the maximum sizP.
that the file can grow to, one word of user attributes, and a one
word file description as supplied by timesharing's DRL PASDES.
Potentially this data will also include control information for
regulating concurrent file accesses and other attributes as
needed (by IDS for example>.

The structure gtss_ext_$disk_file_data contains information
which must be maintained about each open disk file. This is an
arrayed structure which has entries for 41 files. This
corresponds to a maximum of 40 open files for batch plus one
entry for temporary space used by gtss_ios_$exchange_names.
Under time sharing a maximum of 20 files can be open.

Under timesharing the entry for a particular file is locat~d
in gtss_ext_$disk_file_data by using the index corresponding to
the index of the file name in gtss_ext_$aft. This index is
returned by any of the entry points gtss_aft_$add,
gtss_aft_$f ind, and gtss_aft_$delete. Figure 1 shows an example
of a timesharing file called MYFILE with the file information
being located by using the index corresponding to the position of
the file name in the hash list.

The information maintained in gtss_ext_$disk_file_data
includes a copy of a GCOS PAT <Peripheral Attach Table) body.
This includes a flag which indicates whether the file was opened
in random or linked mode. CA linked file can be opened in random
mode but not the other way around). For linked files the current
Position within the file is maintained.

Other information about the file includes whether it is a
multisegment file CMSF) and the permissions requested when file
is opened. Under this implementation the various possible GCOS
permissions are collapsed to read and read/write.

which
If the file is a

points to an
MSF there is a pointer, msf_array_pointer

array of pointers, msf_components, to each

DRAFT: MAY BE CHANGED -11- GTSS MTS 393

component of the MSF. This possibility is illustrated in Figure
1. The array msf_components is allocated only for multisegment
iiles. The current implementation provides for a maximum of 500
components in an M5F.

rnere is also a pointer, attributes_ptr which points to the
µreviously discussed attributes data for a permanent file. For a
temporary file the same attributes structure must be allocated in
a work area and initialized prior to calling gtss_ios_Sopen.

Finally ther~ is a pointer to an msf_manager file control
olock. The msf_manager is used to obtain pointers to file
components and grow and shrink files as appropriate.

DRAFl: MAY 8t CHANGtD -12- GTSS MTB 393

AFT
lt~ LJ.sr 0 F FILE
Nl\M~

F11-E:. I

'
' '

MY Fl LF-

r.is .. 1

~ -7

. PlS~ FU .. E Mt-A

lkl FolM#\TJ~ f\JouT
cf'SIJ R~eS

·------------
E:AJTA1._FOR FIL-~ I
'f;tJ'TR'I l=oR Plt-.E 2

"'
"' ,,

E AJT R 1< FOR.

~:t+ir~ 1Jvi~-p1 r f'..

ARtA'Y o~ POt MtERS Tb
Ft 1-E COMfiONr:NlS

·~ tn.5-F~ a. (r ytt /-pt V""

Y"\S-f_co~pc~P~"b tf)

rr..sf cc.~p~~P ... i~ (2.) ~
\~-~~~~~~-·~ r---

d

•
0

•

COMPONEJVI 0
OF f'\YFIJ..,e

CoM PO~ ENT I
O ~ ft.A. '(Fl 1-E

-•. ____ ~------------- ----
DRAFT: MAY BE CHANGtD -13-

PA-r Boor

ATTR I 81JTEs STRLJC:'TURE
f=DR. TH I.) PARilt l) t.-f>tA..
rf L-E. < ONTAl#J~ THE
Fo~-.!.f1.u l/..J(r f ef\'l 1 A1J f: ~ 1T
IN Fo~ f·\ ft-TIO//:

!iAX 5t2:£
C URRt:flJT ~I rE
N DltJ- NW.1- f==-t A&
M OIJ~ (i-IN/(EfJ OR.

R PrN 0{)k)

uTSS will use existing Multics terminal interfaces wherever
possible. It is felt that the GCOS TSS interface is too
restrictive (no echoplex, full duplex, canonicalization,
type-ahead, etc.), and that the users will be willing and able to
learn the Multics interfaces in order to get the Multics
functions.

See bPlow for a discussion of
to the GCOS user community.

ter~inal interfaces as they relate

Some extensions to Multics will be required to accommodate
certain GCOS rss requirements. GCOS TSS uses trailing white
sµace (blanks) on input to input a blank line. <There is no null
line concept as in Multics; a null line in GCOS is a line with
surne number ot blanks.)

Additionally, GCOS TSS
requirement for Bell
still under study.

accommodates paper tape 1/0. PPT 1/0 is a
Canada. The mechanism for paper tape is

The following paragraphs describe the steps to be taken by a user
who wants to use GTSS:

o User tirst Leys on to Multics

The user will log into Multics as a normal Multics user. As
such, .the user will be subject to normal Multics Answering
Service controls as applied by the system and project
administrators.

o GTSS is called

To enter the GTSS facility, the user types the gcos_tss
(ytss> command. Options are provided to control certain
Multics-related functions.

When the user types 8YE under gcos_tss, the user will be
returned to c~mmand level. For those individual users who
do not plan to use the Multics command functions, a simple
abbrev/exec_com can be set up to automatically log out the
user after a BYE.

o user ld and password input

There ..iill be no additional password required of the user.
Under certain modes of operation, the user must give the
GCOS TSS-like uSERID. This value is used in the mapping of
~COS pdthnames into Multics pathnames.

DkAFT: MAY Bt CHANGED -14- GTSS MTB 393

o Break key functions normally Cas on native GCOS)

The use of the break key will be processed as on native GCOS
rss, where it causes the currently executing
subsystem/command to be reset. An option is provided for the
gcos_tss to override this and cause the user's process to go
to Multics command level. See the description of the
gcos_tss command for additional details.

o System responds with line feed after each carriage return

0

On native Gcos, the user type a CR to indicate the end of
the input line. GCOS TSS generally prints a New Line and
asterisk to indicate that it is ready to accept the next
input line.

GCOS erase and kill characters provided
command option>

<Multics set_tty

The GCOS TSS erase and kill characters wi LL not be set by
the gcos_tss command. It is felt that the standard Multics
erase and kill characters should be used to facilitate
growth into native Multics. For those users who must have
this, the set_tty command may be used to set these values.
There are no plans to have the system respond with "DEL"
upon receipt of a line delete.

o Terminal input/output like GCOS with few exceptions

If GTSS can provide additional detail for the user when
reporting errors, it wi LL.

DRAFT: MAY BE CHANGED -15- GTSS MTB 393

This section describes the user terminal interface differences
between the Multics GTSS and the native GCOS Time Sharing System.

The sign-on µroceJur~ and system greeting message pertaining to
Multics Loy-in is described in the Multics Introductory User
buide (AL40>.

The GCOS Time Sharing System log-on procedure is described in the
TSS General Information Manual CDD22>.

fhe GCOS Time Sharing System convention to indicate the
completion of the typed input line transmission is by a carriage
return, an ASCII RETURN character Coctal code 015>.

The Multics GTSS convention to indicate the completion of the
typed input Line is either the ASCII LINE FEED character (octal
code u12>, or the Carriage Return <octal 015). The default is the
New Line, but can be changed with the set_tty command to be the
Cdrriaye Return <set_tty -modes lfecho>.

Two eniting editing capabilities on the typed line are available.
They dre:

1. the ability to delete the latest character or characters.
2. the ability to delete the entire line.

Characters or line deletions are effected by means of two special
characters designated as control characters. These two
characters may differ between terminals.

~COS Time Shariny System editing control characters are

~ <commercial at sign) character deletion

CT~L plus X keys line deletion

ORAFT: MAY BE CHANGED -16- GTSS MTB 393

1/4 <or degree symbol> character deletion

± line deletion

NOTE: Line deletion does not occur until a carriage return is
given or ATTN CIBM 2741) or INT (DATEL) is pressed.

The editing rules are as follows:

1. Use of the character-delete control deletes from the line
the character preceding the deletion character: use of o
consecutive deletion characters deletes o preceding
characters <including blanks> up to the beginning of the
line. Although the character delete character is a
printable symbol it does not become part of the line.

For example:

*ABCDF@E would result in ~BCDE being transmitted.

2. Use of the line-delete control deletes the entire line.
The characters DEL are printed to indicate deletion.

For example:

*ABCDEF CTL/X DEL Call characters deleted;
a carriage return is automatically
supplied>

- ready for new inout.

The Multics GTSS character and line deletion control charactPr
conforms to the Multics editing convention. The two editing
control characters for teleprinter, IBM 2741 and DATEL terminals
are:

<number sign) character deletion

@ <commercial at sign) line deletion

The editing rules are as follows:

1. The character delete control symbol deletes from the line
the character typed preceding the deletion character.
Several successive number signs deletes an equal. number of
typed characters preceding the number . sign. When th~

character-delete control is the only symbol in a print
position, it erases itself and the contents of the

DRAFT: MAY BE CHANGED -17- GTSS MTB 393

previous print position. Although the delete character is
a printable symbol it does not become part of the line.

One character-delete symbol typed immediately after "white
space" causes the entire white space to be erased. (White
space is defined as: any combination of spaces and
horizontal tabs>

The oenefits of the white space concept are:

a. Reduces the number of keystrokes necessary to remove
any white space

b. ~liminate the need for a user in remembering how many
spaces or horizontal tabs have been typed on a lirie

For example:

TheSSne##llnext

or

TheST#next

where S is a s~ace and T is a horizontal tab produces:

1 henex t

2. The line delete-control symbol deletes
that line up to and including the line
character.

For example:

This is atektalWhat is this

produces:

What is this

the contents of
delete control

The Multics user terminal interface provides the user with the
ability to define the characteristics and modes of a specific
terminal associated with terminal input/output by using the
set_tty command. with this command the user can set various
modes to effect certain terminal action such as specify the
character-delete &nd line-delete symbols, "echo" a carriage
return and or line feed etc. For detail description of the
set_tty command, refer to the Multics Command and Active Function
Manucd (AG92).

DHAFT: MAY 8~ LHANGED -18- GTSS MTB 393

The Multics GTSS conforms to the established character ~scape
convention of Multics, represented by the left slant (\).
Escape conventions are provided for terminals that do not have
full ASCII character set and are described in the Multics
Programmers' Manual Reference Guide CAG91).

The universal escape conventions are:

1. The string \d1d2d3 represents the octal d1 d2 d3 where di is a
digit from zero to seven. Any arbitrary character can be
represented this way.

2. Local Ci.e. concealed) use of the newline
not go into the computer-stored string on
the computer-stored string on output is
\<newline character>.

character that does
input and is not in
effected by typinq

3. The character \# places the delete control character into the
input string.

4. The character \@ places the line delete control character into
the input string.

S. The character \\ places a left slant character into the input
string.

6. The solid vertical bar C) and the broken vertical bar Cl> arP
equivalent representation of the graphic correspondiny to
ASCII code 174.

The escape conventions described in items 1 through 5 above apply
only if none of the characters involved overstruck.

DRAFT: MAY BE CHANGED -19- GTSS MT8 393

For those derail functions that are implemented, it is the goal
that slave programs will experience the same interface as they
would on native GCUS.

o Proyrdms use normal derail to obtain TSS services

The derail fault will be caught by Multics and passed to
GTSS. The machine conditions are examined to determine the
nature and validity of the fault. Legitimate derail requests
are processed, the IC is adjusted to pass over the derail
calling arguments, and control is returned to the user.

o Privileged code not accommodated

The effort to accommodate privileged code is not justified
at this time.

o Existing user subsystem, linked object files usable as is.

This must be, as part of the "no conversion" requirement.
i.e., recompilation and linking not required

DRAFT: MAY HE CHANGED -20- GTSS MTS 393

Many of the GCOS File System functions can be mapped onto
Multics. These will be done. However, there are many
comprehensive facilities with GCOS for operating system managed
file integrity and concurrent access control. These functions are
not planned at this time.

The GCOS Time Sharing System character set for names may be
composed of alphanumerics,period and minus signs.

A name consisting of zeroes is specifically prohibited. Blank
are not· permitted. It multiple word names are desired then the
words must be separated by periods or minus signs, not blanks.

A maximum of eight characters or less is length is normally used
for file names. Catalog names may be up to 12 characters in
length and composed of the same characters as file names.

To access a file with a name longer than eight
alternate name must be given from one to eight
length. The renaming is local and temporary.

' tharacters, an
characters in

The Multics GTSS character set for names may be composed of at
least one nonblank up to a ~aximum of 32 characters, chosen from
the full ASCII character set.

The greater <>> character is specifically
entrynames, since it is used to form pathnames.
not recommended. for entrynames are:

prohibited in
Other characters

less-than (<), asterisk C•), question mark <?>, percent <%>,
equal sign (:), dollar sign ($), quotation mark ("),
left slant (\), all ASCII control characters Ctab, carriage
return, etc> and parenthesis.

Non ASCII characters are not permitted in entrynames.

Entrynames may consist of uPPercase and lowercase alphabetic
characters,digits, underscores <_>, and periods <.). The
underscore is used to simulate a space f~r readability. The
period is use~ to separate components of an entryname, ~here a
component is a logical part of a name. <i.e. a PL/I source
segment might be named square_root.pl1>.

DRAFT: MAY BE CHANGED -21- GTSS MTB 393

The access modes for segments:

r read

e execute

w write

n nu l l

t he pro c e s s c an
cause data to be
segment.

execute instructions that
fetched <loaded) from the

an executing procedure can transfer to this
segment and words of this segment can then be
interpreted as instructions and executed by a
processor.
the process can execute instructions that
cause data in the segment to be modified.
the process cannot access the segment in any
way.

The access modes for directories are:

s status

m modify

a a pp end

n null

the attributes of segments, directories, and
links contained in the directory and certain
attributes of the directory itself can be
obtained by the process.
the attributes of existing segments,
directories, and links contained in the
directory and certain attributes of the
directory itself can be modified: and
existin~ segments, directories, and links
contained in the directory can be deleted.
new segments, directories, and links can be
created in the di rectory.
the process cannot access the directory in
any way.

DRAFT: MAY UE CHANGED -22- GTSS MTB 393

The access modes for both files and catalogs:

r

w

a
e

rec

p

c

l

m

x

read

write

append
execute

recovery

purge

create

lock

modify

exclude

Allow transfer of information from file to
program but not from program to file.
Allow transfer of information both from file
to program and program to file. Anyone with
write permission, thus, has read permission.
Same as read permission.
Allow run on file only in time sharing mode.
Execute permission is restricted to time
sharing mode.
Allow write when the file is abort locked or
has defective space. Also accept MME or
directive to abort lock the file or to reset
an existing abort lock. Anyone with recovery
permission is also given permission to write
and hence read.

Allow file to be deleted or catalog to be
deleted and all subordinate files to be
deleted. Anyone with purge can also perform
any of the actions permitted by recovery,
including write and hence read.
Allow catalogs and files to be entered as
subordinate to this catalog
Allow MME or directive to security lock the
file or catalog or to remove an existing
security lock. A security lock does not apply
to a user with lock permission.
Allow catalog or file descriptor to be
modified. Allow entries to be made in catalog
for subordinate files or catalogs. Anyone
permitted to modify is allowed to perform any
actions. Hence modify includes create, lock,
and purge, that in turn includes recovery and
hence write and read.
The specified user has no access to the
catalog or file.

DRAFT: MAY BE CHANGED -23- GTSS MTB 393

<create catalog)

r w a e p m l c x

r x x x x x x x x

A x x x x

e x x x x x x x x

s x

B m 1 2 1

a x x

DRAFT: MAY BE CHANGED -24- GTSS MTB 393

Cc re ate f i le s >

r w a e p m l x

----------~------------------------------

r x x x x x)(x

c w x)()(x

e)(x)(x x x x

s

0 m 1 2

a

1 Needed to allow deletion by anyone else. This causes problems
in that someone can also delete other segments as well.

2 Modify necessary to allow the
permissions. However, this
segments under the directory.

changing of the
allows deletion of

A Permissions set on initial acls on segments

S Acls set on the created directory

C Acls set on the segment created

D Acls which must hav~ been set on the superior directory.

file's
a l l

Permissions are carried only to next level and are not
propagated down through the subtree, as in GCOS.

DRAFT: MAY BE CHANGED -25- GTSS MT8 393

An interim mechanism is used for the processing of GCOS file
attributes. GCOS file attributes are required because GCOS TSS
allows the user to specify that default modes of processing are
to be applied. File attributes include the sequential/random
creation mode and the maximum file size <as opposed to current
file size>. Files larger than 256K are not uncommon on GCOS.

The appropriate place to store information of this nature is
the branch oroperty list, proposed in MT8 210; since this
facility is not available and cannot be developed within the time
constraints of GTSS delivery, a simpler, user-ring facility is
provided.

The attribute data required by gcos_tss will be converted to
ASCII representation and saved as added names on the branch. The
yeneral form of the attribute name is

<entryname>.<attributename>.<attributevalue>

There is no problem with overlength names: GCOS file names
are limited to 12 characters in length. The added name
manipulation functions are isolated in one subroutine,
gtss_attributes_mgr_, for easy conversion at a later date.

An exec_com will be provided to allow GCOS-oriented users to
manipulate these added names.

See the uescription of gtss_attributes_mgr_ for details of
the interface.

DRAFT: MAY tiE CHANGED -26- GTSS MTB 393

The following discussion aPPlies to both the batch and the
time-sharing simulatorsi although the interfaces are slightly
different, the functions are the same. References that are
simulator-specific are given as such.

The GCOS file system is not simulated. Instead, retPrences
to permanent files from$ PRMFL or $ SELECT control cards or from
MME GEFSY~ are mapped by the batch Simulator into references to
files in the Multics file system.

The Multics file system has several similarities to the GCOS
file system. Multics files are identified by pathnames, which
are analogo.us to the GCOS file string. They comprise a series of
directory names, which are analogous to GCOS catalog ~ames,
followed by an entry name, which is analogous to a GCOS file
name. Passwords are not included in a Multics pathname.

Multics literature uses the term "segment" when referring to
items contained in the Multics file system. The term "file" is
used in the special case of a segment that is being accessed by
explicitly programmed I/O rather than via the normal Multics
method of direct-segment addressing.

References to permanent files can be made from the Simulator•
via a Multics pathname or via a GCOS file string. The Multics
pathname can be used in place of the 6COS file string on the
~PRMFL card.

Each file has associated with it an access control list
CACL), which is set by the owner of the file. The ACL can
specify combinations of read, write, and execute permissions to
individual users or to all users in a specific group.

Access to permanent files from the Simulator is determined
only by Multics access control and is based on:

1 • The person.project of the process in which the
Simulator is running.

2. The access granted to that person.project by the ACL's
of the files being referenced.

DRAFT: MAY BE CHANGED -27- GTSS MTB 393

when the Simulator is running in an interactive user
process, access privileges to any permanent files are the
accesses granted to that person.project via the ACL's of the
referenced files. The presence or absence of a$ USERID control
card has no effect on this access. (The S USERID card is ignored
by the Simulator.)

When the Simulator is running jobs submitted by the GCOS
daemon, there is a security problem. Normally, access to a
Multics process <and the file access privileges that it has) is
Vdliaated by a password typed by the user at login time.
However, a GLOS password is contained on a $ USERID card and,
therefore, is much more susceptible to theft. Thus, in addition
to the normal ~ultics file access controls, some additional
restrictions are placed on jobs submitted by the daemon to
protect the security of the Multics file system <see
''Restrictions on Daemon Jobs" for descriptions>.

dccause the structure of the Multics file system is
different from that of the GCOS file system, the appropriate
method of mapping a GCOS file string into a Multics pathname is
not an obvious one. The default method used allows many GCOS
Jobs to run immediately and requires that some initialization be
performed in the Multics file system before othe~ jobs can run.
Other methods can be specified that provide more flexibility and
completeness.

Both the GCOS and Multics file systems are organized in
tree-structured hierarchies. However, while the GCOS file system
holds only user files, the Multics file system holds the entire
Multics systeM; user files are held in a subdirectory of the
total hierarchy.

The user file subdirectory contains project directories and
eoch ot these contains individual user directories. The user
file subdirectory is analogous to the system master catalog <SMC>
of the GCOS file system. However, the project directories that
it contains are not analo~ous to the user master catalogs CUMC>
in the GCOS file system, since Multics users are not normally
permitted to create or modify files in the project directories.

User directories are more nearly analogous to the GCOS
UMC's, but they differ in that they have two-component names,
while UMC's have only one-component names. This makes it
impossible to map UMC names directly into user directory names
~ithout obtaining additional information from some source or
mdkin~ certdin assumptions. """'

OKAFT: MAY BE CHANGED -28- GTSS MTB 393

The following discussion describes in detail how each
mapping method works.

A user directory, which is contained in a project di rectory,
is known as a home directory or a default working directory in
Multics terminology. The form of a home directory pathname is:

>udd>project>person

The greater-than sign C>> is used to separate components of
a Multics pathname <instead of the slash (/) that is used in GCOS
file strings>. The leading> indicates the pathname is relative
to the root of the hierarchy rather than relative to the working
directory. The directory udd Cuser_directory_directory) contains
all project directories. Every user's home directory is
contained in some project directory. For example, the home
directory pathname of the user Smith.Applications is:

>udd>Applications>Smith

User files can be placed in the home directory. Users also
can create subdirectories in the home directory and can place
files in them to organize and/or restrict access to groups of
files. Multics does not associate passwords with individual
directories or files; access is controlled only by the ACL of the
directory or file in question.

Each process has a working directory. Initially, this
directory is the home directory of the user. However, it can be
changed by the user.

With Multics conventions, files can be referenced by an
absolute pathname or by a relative pathname. An absolute
pathname begins with a ~reater-than sign C>> and contains the
names of all the directories superior to the file in the
hierarchy. for example:

>udd>Applications>Smith>data_file

A relative pathname does not begin with a greater-than C>>
sign and the complete pathname is assumed to begin with the
pathname of the working directory. The simplest example of a
relative pathname is an entry name <analogous to a GCOS fil~
name>:

data_file

DRAFT: MAY BE CHANGED -29- GTSS MTB 39~

This identifies the same file as the previous example,
provided the working directory is:

>udd>Applications>Smith

Similarly, a
UMC name 'can be
file or catalog
considered to be

GCOS catalog/file string that uses a leading
considered to be an "absolute pathname" and a

string that does not have a leading UMC name is
a "relative pathname".

Multics absolute or relative pathnames can be used on
$ PR~FL and i SELECT cards. They are interpreted as previously
described. If a GCOS file string is used on one of these cards
or in a MME GtFSYE, it is mapped into a Multics pathname.

Rules common to all mappings from GCOS to Multics follow:

1. All passwords, along with the dollar signs that precede
them, are removed from the string and ignored.

2. All slashes <I> are changed to greater-than signs (>).

~- It no catalog string precedes the final string, the
final string is appended to the pathname for the user's
current working directory.

The first catalog
replaced by the home
directory ~athname).

name in the string {that of the UMC) is
directory pathname <not the working

Therefore, the file string

~MITH/JONESCAT/YDOE

is transformed to the pathname

>udd>Applications>Smith>jones>y

tor the user Smith.Applications. Note that the retained portion
of the file string is indicated in lower case letters, while the
ori~inal file string is indicated in all capital letters. This
illustrates a common situation in which a file string is
encountered on a ~CD card that was used as input via the GCOS
daemon. (Alphabetic BCD characters are translated into lower
case ASCII characters for internal processing by the Simulator.>
However, if the input is a Multics ASCII file, thP. original
characters Cupper or lower case> in pathnames and file strings

DRAFT: MAY BE CHANGED -30- GTSS MTB 393

are preserved. A complete description of the use of the ASCII
and BCD characters sets is included in Section II.

Similarly, if the file string were just

yyy

and the user's current working directory were
>udd>Applications>Smith>smith, the resulting
>udd>Applications>Smith>smith>yyy.

pathname would be

Problems that arise
pathnames (while accessing
solved in two ways:

while mapping file
the files of another

1. Repunch the cards using Multics pathnames.

strings into
user) can be

2. Place links in the home directory, which points to the
files of interest in the other user's directory. (See
the MPM manuals for information on this.>

For upward compatibility, the home_dir mode is the default
mode for both batch and time sharing simulators.

This mode is nearly identical to the home dir mode. The
first catalog name in the strihg <that of the UMc> is replaced by
the the working directory pathname.

If the user's working directory i s
>udd>Applications>Smith>temp_dir, then the file string

SMITH/JONESCAT/YDOE

is transformed to the pathname

>udd>Applications>Smith>temp_dir>jones>y

This mode of pathname mapping converts the leading UMC name
in the GCOS catalog/file string into the string
">udd>umc_name>umc_name". The purpose of this mode is to allow
direct mapping of pathnames in either direction with no explicit
action on the part of the individual user. This mode is used for
the loading of GCOS user SAVE tapes onto Multics.

DRAFT: MAY BE CHANGED -31- GTSS MTS 393

lt does require that the Multics System Administrator add
the lower-casP version of the UMC name to the project directory
under >udd. The Project Administrator must create a directory by
the same name directly below the project directory. This second
directory is the equivalent to the catalog for the given UMC on
native GCOS.

Example:

A project on GCOS has the UMC name of DEBUG. This project is
dlso registered on Multics, but with the name GDEBUG. The
following steps must be taken to use the UMC_dir_ mode of
pathname mapping:

1 • add_narue >udd>GDEBUG de buy

2. create_dir >udd>debug>debug

3. set_acl >udd>debug>debug sma •.GDEBUG

4. set_iacl_seg >udd>debug>debug rw •.GDEBUG

With this mode, the GCOS catalog/file string of
SMITH/JONESCAT/YDOE would be mapped to:

>udu>smith>smith>jones>y.

This mode of pathname mapping sets a directory pathname
5pecified by the user to be the SMC for all subsequent mappings.
All UMC's will be looked for or created directly under the SMC
directory. Thus, the user has complete control over the mapoing
of GCUS catalog/file strings to their targets on Multics.
Typically, the user will create links with the names of UMCs that
point to the corresponding directories containing the desired
subcatalogs and files.

Example:

"-set_smc_dir_mode >udd>GDEBUG" in a
gcos_tss. With this mode, the GCOS

The user has specified
command invocation of
catalog/file string of
>udd>GDE~UG>smith>jones>y.

SMITH/JONESCAT/Y00E is mapped to

ORAFT: MAY BE CHANGED -32- GTSS MTB 393

The following paragraphs describe the various files and data
bases maintained by GTSS. Some of these are also directly
addressable by user software; for example, the system builds the
SY** file from the user's terminal input and then passes it to
the BSED subsystem for merging into •SRC.

o bound_gcos_tss_ gcos_tss, gtss

This module contains all executable modules. There are no
other bound modules for GTSS.

o gtss_ext_

This module contains gtss per-process control information.
The gtss data base ~tss_ext_ is a Multics object containing
entries (external variables> used to communicate information
from one gtss module to another. These variables arP only
relevant to the GTSS implementation and would not be known
to a user of gtss.

The include file gtss_ext_.incl.pl1 provides the centralized
declaration CPL/I) for these variables. There are a number
of structures ($flags, $statistics, Saft, $fast_lib)
relating to particular GTSS functions. The remaining are
scalar variables used to regulate unrelated functions.
There is comment information in the include filf> to
designate particular usage.

o gtss_tfa_ext_

The file gtss_tfa_ext_.incl.pl1 contains the declaration of
the data structure, gtss_tfa_ext_, to provide an array of
file attri::>ute structures. A row is provided for each of
the potential 20 files GCOS time-sharing allows. Each
structure Crow> provides a set of values that designate the
"attributes" of the corresponding file in the AFT.

The attributes <see gtss_file_attributes.incl.pl1> provide
information about a fi Le's size, type of device, blocking,
whether random or sequential Clinked), whether it is a
permanent file or temporary, and "user" attributes provided
by the user of the file.

o gtss_install_values_

This separate segment contains those runtime values used by

D~AFf: MAY 8E CHANGED -33- GTSS MTu 393

GTSS that may be changed by a site administrator.
Primarily, this data is used to find the GCOS system
software. See uelow for a description of the maintenance of
this data.

o ytss_prgdes_ext_

Tile ytss_prgdes_ext_ data structure contains information
which is automatically extracted from the TSSA module of
native GCOS timP.sharing by the use of editor macros. The
intormation consists of the program descriptors for
timesharing subsystems, the command language lists for these
subsystems, and the lists of primitives to be interpreted
for each timesharing command. This information is used
primarily by the gtss_interp_prim_ module of gtss. Section
IV of the TSS System Programmer's Reference Manual, DD 17C,
REV 0 describes the functions of the program descriptors,
command language and primitives.

Data in gtss_prgdes_ext_ is logically equivalent to the
corresponding data structures in TSSA but the exact storage
layout has not been maintained. For example, the program
descriptors have been expanded from 9 words to 12 although
the first 9 .rnrds still contain the information thl! usl!r
would expect to obtain with a DRL PRGDES. This extension in
format is transparent to the user.

o ytss_ust_ext_

The gtss_ust_ext_ data structure represents the user status
table <VST) as maintained by native GCOS timesharing. All
of the same fields are defined as provided by native GCOS
and values are stored in the user status table in imitation
of native GCOS timesharing. The user status table is
documented in Section II of the TSS Program Logic Manual
OU84A, Rev O.

o sy••, •src, tap•

GCOS ,.tllows the use of the asterisk in file names. Because
this conflicts with the Multics star convention usage,
asterisks are converted to the plus character (+) when
generating Multics entrynames.

These fi Les are user-visible system files. They are fully
described in the GCOS TSS System Programmers' Manual, DD17.
uriefly, the sy** file is the collector filei it collects
the user's raw terminal input at system level. The •src
file is the user's current file. It contains the old current
file data, merged with any new inputs. The tap* file is
used to collect bulk input from paper tape. Bulk input

DRAFT: MAY BE CHANGED -34- GTSS MTB 393

refers to the reading of multiple line
breaks, with a s;nyle read request.

o Command, subroutine libraries

input without line

This category refers to files supplied by the user in
addition to the system supplied procedures.

The user can specify that a certain command library be
searched with specific command syntax. In addition, GTSS
will search the file gcos_second_software_ if the -userlib
control arg is given in the gcos_tss command line.

o gcos_system_software_
gcos_library_subroutines_

These are the system supplied procedures. The files of
gcos_system_software_ are pre-linked slave programs such as
the FORTRAN compiler, the abacus subsystem, etc. The files
of gcos_library_subroutines~ are the run-time support
library routines. These two files are also used by the batch
simulator and are taken from the GCOS release system tapes.

o gtss_slave_area_seg_ <1-4)

This segment
are actually
three-level
accomplishes

contains the executable GCOS object code. There
four different segments used to implement the
subsystem push/pop facility. This effectively
the GCOS TSS swap-out/swap-in mechanism.

DRAFT: MAY BE CHANGED -35- GTSS MTB 393

U.SfB-E.U.f.S

All files, including user files, are stored within the Multics All\
virtual memory storage system. Since GCOS users can only access
their files by doing "physical I/O" into their buffer space, the
simulator can make the physical differences in the two file
systems transparent to the user.

o Normal GLOS "AFT" reference to files

0

GCOS TSS users must first <implicitly or explicitly> access
the files to be used and place the necessary control
information in the available. file table CAFT> on a per-user
basis. The AFT is contained strictly within the GCOS TSS
executive's privileged space; users cannot directly address
this information with their programs.

The GTSS interface is identical to that
provided that the permissions requested
write, execute, and append. The other
provided by native GCQS, such as conflict
recovery, are not provided.

of native GCOS
are only read,

forms of access
control and file

Catalog designation mapped to Multics pathname.

See below for a comprehensive description of the pathname
mapping facilities.

o GTSS files are identical in content to those on GCOS

As mentioned earlier, it is a primary goal to store the GCOS
file content in a format completely identical to that of
native GCOS. This eliminates all possibility that the data
read and written will not conform to what is intended. This
caution is based on the fact that any file, regardless of
how it is created and filled with data, can be accessed
randomly, in 1/0 records of any length. The initial word
address being mod 64 is incidental.

o GTSS files can be referenced by user Multics software

It is planned to provide an 1/0 module interface so that
Multics programs can easily access GCOS-format data bases.
It is easy to write procedures that process these files; the
gcos_card_utility command already does this.

D~AFT: MAY tlE CHANGED -36- GTSS MTB 393

There are three levels of error processing that should be
addressed: it is planned to take advantage of the Multics system
features to make error reporting more comprehensive than is
available on native GCOS.

o Errors found by slave object code

These errors are detected only by GCOS software and thus
must be reported as-is. Error messages that are specified by
number to the executive are identical to that produced on
native GCOS.

o Errors found by GTSS simulator

Since the simulator performs services on behalf of the GCOS
object programs, errors detected can be reported to the
interactive user before returning to the GCOS procedures.
This provides the user with the opportunity to correct the
situation and continue execution rather than aborting the
function.

o Errors found by Multics

Errors first detected by the Multics
be reported back to GTSS. GTSS can
of the situation as before.

DRAFT: MAY SE CHANGED -37-

operating system will
then attempt correction

GTSS MTB 393

rhis section attempts to provide a preliminary insight of GTSS
performance. There has been no exhaustive analysis prior to the
start of implementation to determine what the GTSS performance
would bei however, past experience can give some justification to
this insight.

The reader is reminded that GTSS is not intended to be equal in
performance to native GCOS TSS. The implementation as a user-ring
facility, subject to all the normal user interfaces, preclud~s
total optimization of the interfaces. Within these constraints,
however, every effort will be made to be as ~fficient as is
reasonably possible.

o Direct execution of user and slave system software

Since the Multics CPU is essentially a superset of the GCOS
CPU, even when running in Multics mode, direct ex~cution of
the bCUS object code is used. Thus, only the additional
address formation time for the virtual memory need be
considered. Multics derives some benefit from a more
selective cache control.

o Similar processing of derail "faults" by the operating
systems

uoth systems intercept faults in the same manner; Multics is
required to store and restore certain additional register
information.

o Efficient file, terminal I/O

The batch simulator uses 50-100% more CPU time in the
servicing of user I/O requests than native GCOS. For this
reason, an new 1/0 m.echanism is used, tailored to the
interfaces of the batch MME GEINOS and TSS ORL DIO. This
new mechanism uses a subroutine interface rather than a
Multics 1/0 module interface, and is expected to give a
considerable improvement in performance over the old
mechanism.

o Optimized PL/I very efficient

The entire simulator is written in PL/I, with the exception
of a very few lines of ALM code for BCD/ASCII translation

~RAFT: MAY BE CHANGED -38- GTSS MTB 393

and the transferring of CPU control to the GCOS object
programs (Transfer and Set Slave>. This provides for easily
optimized code, both in the optimize feature of the comoiler
and the profile monitoring facilities.

o Simultaneous, multi-processor execution of GTSS

Since GTSS runs in a normal user process, it can be run on
any and all processors simultaneously. Multics provides
somewhat better processor utilization than Gcos; one reason
is that any Multics CPU can answer any interrupt.

o Virtual memory file processing

Since only the busy pages stay ;n core, there will be some
efficiency in main-memory utilization. If programs are
written to run on GCOS but only the simulator on Multics,
more efficiencies can be gained by assuming program sizes up
to 255K Cless the space for the loaders) do not require
overlay processing. This has been used to advantage in the
batch simulator by programs that use the free space provided
to the program with the $LIMITS card.

o Terminal tYpe-ahead

This Multics feature is usable under GTSS. As with normal
Multics users, this feature is most useful with full duplex
terminals.

o Extensive metering and tuning facilities

GTSS can take advantage of all Multics tools for performance
measurement and enhancement.

o System Scheduler

The Multics system scheduler can be used to provide
guarenteed and controlled responses to individual users or
groups of users.

o Paging Consideration

It is possible that certain I/O on native GCOS that is

DRAFT: MAY BE CHANGED -39- GTSS MTB 393

overlapped with program execution <asynchronous 1/0) may be
done in a synchronous mode on Multics. This is necessary to
ensure that the page containing the physical I/0 buffer is
in main memory.

DRAFT: MAY BE CHANGED -40- GTSS MTB 393

In addition to the gcos_tss command itself, other commands are
provided to facilitate the movement of programs and data between
GCOS and Multics.

The batch simulator complements GTSS in its functions. Most slave
user functions are available. The current MME and control card
level of the batch simulator is 2/H. An upgrade to 3/1 and then
4/J is in process.

Files not created by GTss, but intended for use by GTSS, must
have their file attributes defined with added names on the
branch. An exec_com is provided for the user to manually set
these attributes until all GCOS tools provide this function.

Many additional tools already exist in Multics that can assist in
GCOS and GCOS TSS program development. The GCOS-related tools
are listed immediately below.

1) g cos_ card_ u ti l i t y

2) gcos_pull_tapefi le

3) gtss_library_mgr Cglom>

4) gcos_fms Save/Restore Utility

5l 110 modules for direct access of GCOS files and tapes by
Multics Programs Cin planning>

DRAFT: MAY BE CHANGED -41- GTSS MTB 393

The following pages describe the various commands related to the
GCOS TSS Simulator and some of the more definitive subroutines.
The following modules are included:

ycos_tss
gcos_debu~

gcos_fms (described in a separate MTB>
gcos_library_mgr Cglom>

gtss_attributes_mgr_
gtss_expand_pathname_

DRAFT: MAY BE CHANbED -42- GTSS MTB 393

gcos_tss

~am~: gcos_tss, gtss

The gcos_tss
simulator to run a
user ' s process.

command
single

gcos_tss {-control_args}

invokes
GCOS TSS

gcos_tss

the GCOS TSS environment
user, immediately, in the

where control_args can be selected from the following:

-gtss_umc umc_name
set an internal parameter for UMC name to umc_name.
This value is required for certain imolicit GCOS TSS
functions.

If this option and its argument are not given when
either the -set_smc_dir_mode or -set_umc_dir_~ode
control arguments are given, gcos_tss will request
the umc_name before continuing.

-set_multics_break_mode, -smbm
sets a mode in gcos_tss to cause the user's process
to go the Multics command level whenever the user
hits the break/interrupt key on the terminal. The
user can then type any number of Multics commands for
immediate execution. Execution of gcos_tss can be
resumed by typing "start".

If the user types "program_interrupt" ("pi") after
quitting GTSS, gcos_tss will reset ex~cution of the
current TSS command/subsystem as in native GCOS TSS.

Control arguments specifying the
the simulator:

disposition of output from

-list, -ls
convert APRINT and BPRINT print files (both are
SYSOUT) from GCOS ASCII and BCD, respectively, to
Multics ASCII and delete the intermediate copy but do
not submit the dprint request for these files. <This
conversion is performed by a call to the
gcos_sysprint command for each file.>

-dprint_options "options", -dpo "options"
queue the converted print file~
printing by the 1/0 daemon, but use the

for
dprint

DRAFT: MAY Be CHANGED 43 09/20/78 GTSS MTB 393

ycos_tss

-raw

gcos_tss

control ar~uments supplied in the options string
instead of the default of -delete. The options must
be enclosed in quotation marks if they contain blanks
or other deliffliter characters recognized by the
command processor. The dprint command is called via
cu_$cp so that a user-defined abbreviation for dprint
<that supplies default heading and destination
arguments, for example) would be used in this call.
Use of this control_arg overrides the use of the
-list and -hold control_args.

convert ~PUNCH punch files from BCD to an internal
format suitable tor punching by the Multics I/O
daemon in raw mode (960 bits per card image) and
delete the BCD copy, but do not submit the dpunch
request for these files. <This conversion is
performed by a call to the gcos_syspunch command for
each file.)

-dpunch_options "options", -dpno "options"
queue the converted punch files for
punching by the I/O daemon, but use the dpunch
control arguments supplied in the options string.
The -raw argument is always used for dpunch, since
the conve~ted punch fil~s are not suitabl~ for
Punching in any other mode. The explanations under
-dprint_options above, regarding quotation marks and
abbreviations, apply to this argument as well. Use
of this control_arg overrides the use of the -raw and
-hold control_args.

-hold, -hd
do not perform the default conversion and daemon
output of print and punch files. The default is:

-dpo "-dl" -dpno "-dl -raw"

Since the default for each file type (print or punch)
is overridden when any of the above arguments are
specified for the given file type, the -hold argument
is only required when one of the file types is to be
left in GCOS standard system format, with no
conversion or daemon output being performed.

Control arguments governing the creation of files by the
simulator:

D~AFT: MAY ~E CHANGED 44 09/20/78 GTSS MTB 393

gcos_tss gcos_tss

-temp_dir path, -td path
use the pathname of a directory specified by path for
temporary GCOS TSS files. By default, the process
directory is used.

•syot_dir path, -sd path
use the pathname of a directory specified by path for
the GCOS TSS format copies of print, punch, and
sysout files. By default, the working directory is
used. <The converted copies of these files are
always placed in the working directory.)

-set_smc_dir_mode path, -ssdm path
-set_umc_dir_mode, -sudm
-set_working_dir_mode, -swdm
-set_home_dir_mode, -shdm
-reset_dir_mode, -rsdm

Refer to "Mapping of Fi le Strings
Section I for a description of
arguments.

Other control arguments:

-user lib

to Pathnames" in
these control

enable the use of GCOS slave software libraries
supplied by the user instead of, or in addition to,
the copies of the libraries installed in the system.
The use of this argument is described in Section II
under "DATA BASES".

-debug, -db
-probe, -pb

inform the simulator that: 1) it is being run
interactively; 2> by a user who is familiar with the
Multics debug or probe command, respectively, and
other Multics error recovery facilities: and 3> the
user wishes to be given the opportunity to use the
facilities to determine the cause of, and possibly
correct, any error that would otherwise cause the
simulation of the job to be aborted.

-trace args
trace the events specified by args, where args can be
one or more of the following:

derail, drl1 causes the derail name and its
location in the execution program to be written
to the user-output switch.

DRAFT: MAY BE CHANGED 45 09/20/78 GTSS MTB 393

ricos_tss

subsystem,
suosystem
switch.

gcos_tss

ss, causes the name of the called
to be written to the user_output

-ycos_debuy, -gdb path
where pathname specifies the Multics segment to be
used for the gcos_debug command data base. If the
entryname of path does not have the suffix gdb, it
will be appended.

See the description of the gcos_debug command earlier
in this manual for a definition of the gcos_debug
control syntax and functions.

DHAFT: MAY BE CHANGED 46 09/20/78 GTSS MTB 393

gcos_library_mgr gcos_library_mgr

~~m~: gcos_library_mgr, glm

The glom command "obtains" modules from a GCOS library segment
(commonally a multi-segment file>. Modules may be extracted from
the library to form a fast search library and Cor) a segment
containing information about the location of GCOS objects on the
library, or the library extracted onto1 Cin terms of Multics msf
component numbers and segment off sets> can be obtained.

Syntax: glom in_lib {-nm module_name ••• > {-ol out_lib}
<-cf names_seg> <-no_cat} {-pr_cat}
<-olli olli_path} {-brief}

Arguments:

in_lib
This file
might be
produced
to begin
given.

Name of segment or multi-segment file input library.
can be copied from a GCOS total system tape, or it

a simulator format library commencing with a catalog as
by the gcos_build_library Cgcbl> com~and. It is assumed
with a catalog unless the -no_cat control argument is

Control Arguments:

-nm module_name is an library object name C<= 6 characters>
specifying the modules to be obtained. This list of names is
catenated with names supplied in the names_seg <see -cf control
a~gument). If no names are supplied by either option then all
modules on the library is implied.

-ol out_lib designates that the modules are to be catenated
to the named segment or multi-segment file. If this file does
not exist it will be created. out_lib can be a full pathname.

-cf name_seg is a Multics segment containing a list of
module names (Note: module_name option above>. This segment must
Conly> contain one na~e on each line, no white space and no ~mpty
lines. This segment can be formed by executing
gcos_library_summary <~els> or glom {itself) under the
fi le_output Cfo> command and editing the report produced.

-no_ cat Designates that the input library does not commence
with a catalog.

-pr_cat Print input library catalog information <names and
locations>. No catalog will be printed if the caller specifies
both -pr_cat and -no_cat. If -brief is specified along with

DRAFT: MAY BE CHANGED 47 09/20/78 GTSS MTB 393

gcos_Library_mgr gcos_Library_mgr

-ur_cat and there is no output Library nor and module names
specified <either in the command line or in any -cf file>
printing the catalog will be the only activity of glom.

-olli olli_path is the name of the file that the output
Library List of information is put into. This file will be
overwritten if it dlready exists. This fil~ is printable
information designdting each module placed on the output library,
in which multi-segment component it was placed, the offset to the
object and information provided for the gtss fast library Loading
process.

-brief, -bf Do not report each module moved to any output library
Con error_output).

Notes: The glom command incorporates funitions of the
ycos_Library_summary and gcos_extract_module commands. The glom
command uses the msf_manager_ subroutine to manage its files
rather than ios_ used by the latter two.

U~AFT: MAY ~~ CHANGED 48 09/20/78 GTSS MTB 393

gcos_debug gcos_debug

~am~: gcos_debug, gdb

This Multics command provides for a debugger to be used
in conjunction with the GCOS simulator <See: help
gcos>.

Introduction: "gdb" is an online debugger to work specifically
for callers of the Multics GCOS simulator
The gcos simulator, i.e., the "gcos" command,
calls upon gdb when failure occurs. The user then
types in a series of instructions to direct the
debugging activity. Upon termination (the gdb "quit"
command) the simulator concludes its execution. gdh
"knows" the segment used by the simulator to simulate
gees memory. In addition gdb "knows" how file control
blocks and (GCOS Version 1) Pl/I automatic stack frames are
linked together in the simulated memory.

Calling gdb: The Multics "gcos" command provides for the
"-debug" Cor "-db") control argument. When the GCOS
simulator, i.e., the "gcos" command, is called using
this argument ANO there is failure in execution the
simulator calls the procedure "db". Normally calling a
procedure "db" w ou l d re s u l t i n the . Mu l t i c s · "deb u q"
being called. Anticipating this circumstance the gees
debugger, "gdo" (also with entry "db") can be called
instead.

To provide for calling gdb the following steps should
be taken: BEFORE calling "gees" (and providing that it
is called with the "-debug" or "-db" option), terminate
any reference to "db":

t mr db

then initiate the gcos debugger:

initiate >udd>Gcos>gdb>db

then execute "gcos •••• -debug ••• ". Note th.~t the
terminate, "tmr", is only required if a reference to
"db" has been set previous to the gcos debugger being
called. The initiation of "db" in gdb is only needed
once during each Multics "process", i.e., once "db" is
initiated "gcos" can be called many times.

DRAFT: MAY BE CHANGED 49 09/20/78 GTSS MTB 393

ycos_debuy gcos_debug

The caller of "gcos" is signalled that the debugger is
about to be called by the sequence:

CALLING DEBUG:

output on the terminal. At this point the gcos
debugger awaits the user typing instructions to be
carried out. Typing "?" wi LL cause a "help" session.

It is also possible to call gdb directly as a Multics
command Cat either its "gdb" or "db" entry, they are
the same>. In this case the process directory segment
used to simulate gcos memory must be "viable", i.e.,
the simulator must be in the process of execution.
This will be the case if the execution of "gco~" is
interrupted or if it does not conclude normally and NO
"new_proc" has been executed.

u~ing gdb: Once gdb <entry db> has been called by the gcos
simulator (as described above), gdb expects the user to
supµly instructions to be done. The user types the
instructions at his terminal. The instructions are
typed in a free format. They are separated from each
o t her by semi co l on s < "; ") or new l i n es C" return" key) •
Each instruction is in one of three forms:

ll RAF T :

1. an address followed by a command,
2. just a command, or
3. just an address.
In case 2 the command either requires no address or
utilizes the last address specified. Case 3, just an
address defaults the command to being the octal dump.
Commands fall <loosely> into three categories:
1. requests for information about the current state of

the execution of the gcos simulator, i.e.,
information about the user's programs under
simulation,

2. requests for information about the stat~ of the gcos
·debuyger, and

3. escaµing to call upon facilities outside of the
debugger (escape to Multics command level> without
exiting from the debugger <or the simulator>.

It commands are typed that are unknown to gdb (spelling
mistakes, whatever> the user is requested to supply a
substitute word. In addition the caller can always
interrupt grlb (depress the "interrupt" or "break" key)
and then type "pi" ("program_interrupt">. These two
steps will place the caller back in gdb ready for
another instruction.

Iii A Y ti E C H A N G E D 50 09/20/78 GTSS MTB 393

gcos_debug gcos_debug

To provide assurance that the GCOS debugger is in use
when an input line contains only a back-slash question
mark ("\?")) the message "gcos_debugger" is printed.

Addresses: For various gdb commands the user
what series of gcos memory words
applied, e.g.,

must indicate to
they are to be

Commands:

0,100 bed

designates displayin~ memory locations from octal 0
through octal 100 as bed character values.

Addresses are in one of 3 formats:
1. first address followed by a comma followed by a l~st

address,
2. first address followed by a colon followed

number pf words, and
3. just a first address.
In the last case C3.> the first and last address
the same. The first and/or last address are in
form of optionally signed "expressions". In case
the number of words is an unsigned expression.
simplest form of expression is a numeric constant.

the

are
th~

2.,
The

I f
the number ends with a period(".") a decimal number is
specified, otherwise the number is an octal number.

An expression can be a single "value" or a series of
"values" operated upon by the operators: +, -, •
<multiply), I (divide), or I <modulo>. A "value" can
also be parenthesized expression. As was staterl the
simplest form of "value" is a decim.il or octal number
constant. A "value" can also be whatever is contained
in a specified register, e.g., x3 as a "value" implies
using the contents of index register "x3". The "a"
and/or "q" register can be specified or the contents of
either of these two register's upper or lower half,
e.g., a u implies use the upper Cleft) half of the
contents of the "a" register as a value.

The address expression value is always biased by (added
to> a current "offset" value. The offset is initially
zero and it can be set by the "offset" command.

The following is a
any command may be
cases, e.g., the
information is not

description by command. Note that
preceded by an "address". In some

escape command, the addr~ss

used, though it does reset the

DRAFT: MAY BE CHANGED 51 09120178 GTSS MTB 393

.3cos_debug

a sci i:

() c d:

decimal:

t c b :

float:

huh:

gco s_debu g

current default address values. No comment is made if
the address was not required. The command keywords
usually have 3 forms:
1. a sin9le letter,
2. a 3 character mnemonic and
3. a "lon~" form, e.g., "d", "dee" and "decimal".
The "? commands" prints a table of commands.

Ce I esc I escape) Followed by one or more spaces Cor
tabs) results in the remainder of the line being sent
to the ~ultics command processor (through the
abbreviations>.

Case I ascii) Print selected memory words as 4 ascii
characters apiece.

Cb I bed) Print selected memory words as 6 "bed"
characters apiece.

Cd I dee I decimal)
decimal numbers.

Print selected memory words as

Cfcb) Print memory selected by the first address as a
file control block (at its zero-th entry).

(f I flt float) Print selected memory words as
floating point numbers.

Chuh) Display various debu~ger control values, e.g.,
current first and last address values.

instruction: < i ins instruction) [NOT IMPLEMENTED]
locations in assembly language Print selected memory

mnemonics.

List file control blocks: Clfs I list_fcbs) Starting from
memory location <octal> 17 trace the linked list of
current file control blocks.

uRAFT: MAY BE CHANGED 52 09/20/78 GTSS MTB 393

gcos_debug gcos_rlebug

list PL/1 stack frames: <lss I list_stacks> Starting from

lower:

memory location <octal> 37 trace the Linked List of
PL/1 (automatic storage) stack frames. Note: gdb is
currently oriented only to the Toshiba PL/1 compilers
implementation of stack frames, this is not compatible
with the GCOS PL/2 utilization.

CL I Low I Lower> Qualify that the "Lower" (right 18
bits) part of the "a" or "q" register contents are to
be used.

no operation: Cn I nop) "Do nothing" debugger command.

octal:

offset:

pointer:

prefix:

quit:

Provides for resetting the current address values
without designating any overt action.

<o I oct I octal) Print selected memory words in octal
(12 octal digits apiece>. Note that octal is the
default command.

<off I offset> Reset the address offset to the value of
the first address.

(p I ptr I pointer) Print selected memory ~ords as PL/1
"pointer" values.

(pre I pref ix> Print information from the SSA prefix.

(qit l quit) Exit (return) from the gcos debugger.
After this command is executed the remainder of the
GCOS simulator execution will proceed.

registers: <reg I regs I registers) Print the contents

stack:

upper:

<in octal) of all register contents.

Cstk I stack) Print memory selected by the
address as a PL/1 (Toshiba) stack frame.

f i rs t

<u I upr I upper) Qualify that the upper half Cleft 18
bits> of the "a" or "q" register contents is to be used
as the value.

DRAFT: MAY BE CHANGED 53 09/20/78 GTSS MTB 393

9cos_debug gcos_debug

---------- ----------

help: C?> Typing a question mark as a command C"?"> calls the
Nultics· "help" command with the info file for gdb. If
the question mark is followed by one or more space
delimited keywords then the help is called for those
specific entries. Responding with "quit" or "no" to a
help request returns you to the debugger. Remember,
that if in doubt you can always interrupt and type "pi"
to return to debugger command level.

URAFT: MAY BE CHANGED 54 09/20/78 GTSS MTB 393

gtss_attributes_mgr_ gtss_attribut~s_mgr_

liam~: gtss_attributes_mgr_

This subroutine is used to maintain a subset of the GCOS
file attributes for files used by the GCOS environment
simulators. It does this by using added names on the branch entry
to save each of the required attributes. See below for a list of
the attributes accommodated and the specific formats involved.

~ct~~= gtss_attributes_mgr_$set

This entrypoint is uSed to set initial attribute values and
also modify existing attributes.

dcl gtss_attributes_mgr_$set entry Cptr, fixed bin C35));

call gtss_attributes_mgr_$set Cattrib_struc_ptr, code);

where:

1 •

2.

attrib_struc_ptr (Input>

code

points to the control
setting and resetting the
the structure declaration.

(Output>

structure to
attributes.

be used for
See below for

is a standard status return or a gcos_et_ error
return.

None.

~Ot£x: gtss_attributes_mgr_$get

This entrypoint· is called to obtain existing GCOS attribut~
information about a file.

DRAFT: MAY BE CHANGED 55 09/20/78 GTSS MT~ 393

gtss_attributes_mgr_ gtss_attributes_mgr_

dcl gtss_attributes_mgr_$get entry Cptr, fixed bin C35));

call ytss_attributes_mgr_Sget Cattrib_struc_ptr, code);

where:

1. attrib_struc_ptr (Input)

2. code

None.

is as described abov@.

(Output)
is as described above.

I• ~E6IN INCLUDE FILE gtss_f ile_values.incl.pl1
(Wardd Multics> 08/30/78 1208.1 mst Wed •/

I• The gtss_file_values structure provides parameters to the
gtss_attributes_myr_ subroutine.

The caller must provide space for this structure, fill in
the version with 1, the dname and ename with the file directory
and entry name, and for calls to gtss_attributes_mgr_Sset,
fill in values to be reset and set the corresponding set_switch
to "1"b.

dcl attr_name <O:S> char<4> static int
options<constant>
init("mode","maxl","curl","busy","attr","null");

cJr.;l 1 gtss_file_values aligned basedCfile_vatues_ptr>
fixed binC17> , .S version

I• Current version is 1. •/
, 3 dname charC168>

I• Directory name.•/
, 3 ename char(32>

I• Entry name. •/
, 3 set_switch

/* "1"b => Set corresponding value. •/
, 4 set_ranseq bit(1>unal

I• O. Set the random/sequentialClinked) field. •/

DRAFT: MAY ~E CHAN~ED 56 09/20/78 GTSS MTB 393

gtss_attributes_mgr_ gtss_attributes_mgr_

,
,

,
,

,

,

,
,

,

,

,
,
,

,
,
,
,

;

4 set_max bit< 1>unal
I* 1. Set max size value. •/
4 set_current bit< 1>unal
I• 2. Set current size value. •/
4 set_busy bit(1)unal
I• 3. Set file as busy. •/
4 set_attr bit(1>unal
I* 4. Set user
4 set_null

attributes value. •/

I• s. Set null file
bit(1>unal

value. •/
bitC30>unal 4 not_in_use

I• The above set_ variables should be declared in an order
corresponding to the value in the attr_name array. •I

3 data_ flags
4 mode _random bit (1>unal
I* "1 "b => random. •I
4 busy b; t (1> un al
I* "1 "b => f i le i s busy. •I
4 not_nul l_ file bi t (1> un al
/* "1"b => f i le NOT null. */
4 not_in_use2 bitC33>unal

3 data_ fields
4 curl l fixed binC35)
I• Current length in U inks C>=O>. *I
4 maxll fixed binC35>
/* Maximum length in LL inks C>=O>. •I

3 attributes
4 not_in_use3 bi t { 1>unal
4 attr bitC3S>unal
I* User specified f i le attribute value. •I

I• ENO INCLUDE FILE gtss_file_values.incl.pl1 */

DRAFT: MAY BE CHANGED 57 09/20/78 GTSS MTt3 393

gtss_expand_pathname_ gtss_expand_pathname_

~am~: ytss_expand_pathname_

This subroutine is used to map GCOS-format catalog/file
strinys into their corresponding Multics pathnames. Various
al~orithms are used, depending on the current mode setting. The
default mode is the home_dir mode. The default ~ode may be
restored with the reset_mode entrypoint.

dcl gtss_expand_pathname_ entry (ptr, fixed bin, char (•),
char (*), fixed bin <35));

call gtss_expand_pathname_$gtss_expand_pathname_
<ascii_name_struc_ptr, name_count, dname, ename, code);

where:

1. ascii_ndme_struc_ptr (Input>
is a pointer to the structure that CQntains the eight
ASlll character strings that specify the GCOS
catalog/file path to be mapped into the corresponding
Multics pathname.

L. name_count
is the number of names in the structure that are
actually used.

3. dname (Output)
is the directory portion of the resulting Multics
pathname.

4. ename <Output)

~ . code

is the entryname portion of the resulting Multics
pathname.

(Output)
is a standar~ status return or a gcos_et_ status
return.

The Multics pathname generated from the
striny is dependent on the current mode

GCOS catalog/file
setting for the

procedure. See below for a discussion

OMAFT: MAY ~E CHANGED 58 09/20/78 GTSS MTB 393

gtss_expand_pathname_ gtss_expand_pathname_

~OtLx: gtss_expand_pathname_Sset_home_dir_mode

This entrypoint sets the home_dir mode. A GCOS catalog/file
string that does not begin with a UMC name will be mapped to the
user's current working directory. A catalog/file string that
does begin with a UMC name will be mapped to a Multics pathname
where the UMC name is replaced by >udd>Project_id>Person_id,
where Project_id and Person_id are the user's login Person_id and
Project_ id.

dcl gtss_expand_pathname_$set_home_dir_mode entry
(fixed bin (35>>;

call gtss_expand_pathname_Sset_home_dir_mode <code>:

where:

code (Output)
is the same as above.

See the table below for examples of pathname mappings using
the various modes.

S01Lx: gtss_expand_pathname_$set_working_dir_mode

This entrypoint sets the working_dir mode. A GCOS
catalog/file string that does not begin with a UMC name will be
maPPed to the user's current working directory. A catalog/file
string that does begin with a UMC name will be mapped to a
Multics pathname where the UMC name is replaced by the path for
the user's current working directory.

dcl gtss_expand_pathname_$set_working_dir_mode entry
(fixed bin (35)};

call gtss_expand_pathname_$set_working_dir_mode (code>;

where:

DRAFT: MAY 8t CHANGtD 59 09/20/78 GTSS MTB 393

gtss_expand_pathname_ gtss_expand_pathname_

code (Output>
is the same as above.

See the table below for examples of pathname mappings using
the various modes.

~Dttx: gtss_expand_pathname_$set_smc_dir_mode

This entrypoint sets the smc_dir mode. A GCOS catalog/file
string that does not begin with a UMC name will be mapped to the
user's current working directory. A catalog/file string that
does be~in with a UMC name will be mapped to a Multics pathname
where the S~C directory path is prepended to the catalog/file
string, including the UMC name.

dcl gtss_expand_pathname_$set_smc_dir_mode entry (char (*),
fixed bin <35));

call ytss_expand_pathname_$set_smc_dir_mode Csmc_Path,
code);

where:

1. smc_path Clnput)

2 • code

is the Multics directory pathname to be used as the
SMC (root> catalog.

(Output>
is the same as above.

See the table below for examples of pathname mappings using
the various modes.

u~AFT: MAY HE CHANGED 60 09/20/78 GTSS MTB 393

gtss_expand_pathname_ gtss_expand_pathnamP_

sett~= gtss_expand_pathname_$set_umc_dir_mode

This entrypoint sets the umc_dir mode. A GCOS catalog/file
string that does not begin with a UMC name will be mapped to the
user's current working directory. A catalog/file string that
does begin with a UMC name will be mapped to a Multics pathname
where the UMC name is replaced by >udd>umc_name>umc_name. The
umc_name is in lowercase.

dcl gtss_expand_pathname_$set_umc_dir_mode entry
(fixed bin C35));

call gtss_expand_pathname_$set_umc_dir_mode <code);

where:

code (Output)
is the same as above.

See the table below for examples of pathname mappings using
the various modes.

gtss_expand_pathname_$reset_mode

This entrypoint causes the mapping mode to be reset to the
default mode. The default mode is the home_dir mode.

dcl gtss_expand_pathname_$reset_mode entry
(fixed bin C3S));

call gtss_expand_pathname_$reset_mode <code);

where:

code (Out PU t)
is the same as above.

DRAFT: MAY BE CHANGED 61 09/20/78 GTSS MTB 393

The gcos_tss (gtss> facility provides a data base of values
sensitive to each installation of gtss. These values are kept in
the Multics object segment "gtss_install_values_" (referenced as
unbound external variables, gtss_install_values_Svarb>. This
ob1ect is created by calling the Multics command
create_data_segment Ccds>. The source gtss_install_values.cds is
provided for this call. The include file,
~tss_install_values_.incl.pl1, contains a data structure
declaration whose initialization values designate the current set
of installation values. To provide a change in these values the
following steps are taken:

1. Change any existing initialization values appropriate in the
segment
gtss_install_values_.incl.pl1.

2> Execute the Multics command:
create_ddta_segment gtss_install_values_ -list

Note that new variables can not be introduced into the
gtss_install_values_ structure (this implies new facilities
must be coded into gtss), nor can the attributes be changed.
order of the level 2 variables can be changed.

the
that

The

Tne GTSS implementation utilizes the declarations in the segment
gtss_install_values_.incl.pll for access to the actual external
variables in the object at runtime.

The ObJect produced from the create_data_segment .execution must
oe "found" when gtss is executed Ci .e., it is not bound into
ytss>. This is usually accomplished by ensuring the object
segment is in the same directory as gtss. With
gtss_install_values_ not bound into gtss, there is the
opportunity for many versions to be available. The version
desired can be initiated before gtss is called and terminated
with the corresponding Multics commands.

ThP eds execution will produce the segment
gtss_install_values_.list, reflecting the eds execution. This
segment can be dprinted to provide a record of the alteration of
the installation values. The execution will reflect if the data
structure for ytss_install_values_ is acceptable. Either PL/I
syntax errors will be reflected Con the error_output switch) or a
message indicating the number of words in the object data
structure Con the user_output switch).

uRAFT: MAY BE CHANGED 62 09/20/78 GTSS MTB 393

,..

APPENDIX A

BELL CANADA SPECIFIC REQUIREMENTS

The following <edited> text is from Sandy Bartlett of Bell
Canada. It is not an official memorandum but it does contain
certain requirements as seen by one of the system programmers at
~ell. It is included here to indicate the level of compatibility
that is desired by at least some of the users of native GCOS TSS.

Note that the MTS states that item one is not planned. Also, GTSS
will always return to Multics command level when the user types
BYE.

1 •

2.

The GCOS erase k; l l proposed w i l l not meet our needs. In
fact we feel i t would cause confusion as the line k i l l
character ; s a non-printable character whereas on Multics
you can see i t ! We feel that i f this approach were used ; t

would be better to use standard Multics erase kill.

For this reason we will require the standard GCOS erase
character "@" to erase only the preceding character and the
standard GCOS kill line ctrl'x' to be treated as a carriage
return and followed by a "DEL carriage return-line feed".

We feel that the erase could probably be fairly easily
handled in a tty_ module and the kill should not be
difficult to implement in the fnp <maybe as an extra option
to set_tty such as delecho>. Even with these changes
type-ahead will probably still be possible.

Pape~tape should be simple to implement.
modes of papertape input, file and command.

There are two

To input a papertape file the user types TAPE and the system
responds with READY followed by "carriage-return, line-feed,
x-on". The user's tape will then start and continue until
it transmits "x-off" which will terminate the file input
mode. The actual input will consist of lines of data
terminated by "carriage-return line-feed". Data lines will
possibly be preceded by rubouts which are ignored.

DRAFT: MAY BE CHANGED A-1 09/20/78 GTSS MT13 393

To input commands from papertape the system must have "x-on"
as the last prompt character CGCOS prompts with
"carriage-return, line-feed, asterisk, x-on">. This could
be done simply with the general_ready command for command
mode. ORL KOUTN could add "x-on" to the output text so
programs could receive their input from papertape also.
Each line of the user's tape would consist of data followed
by "carriage-return x-off" possibly followed by rubouts
which are ignored.

3. File system permissions required are read, execute, and
write for files as append is not implemented under GCOS.
bCOS catalo~ permissions CREATE, PURGE, and MODIFY should
map to Multics append, modify-append, and
status-modify-append, respectively.

we use all access permissions except TEST and RECOVERY
(APPEND results in RW>. We do not use GCOS permissions
R~COVERY or LOCK and we do not allow DEVICE specification.
We do not use ABORT, VERIFY, AUDIT, INCRSAVE, PAGESize,
~DtR~, and ACCtSS/RWW/ or ACCESS/MONITOR/.

We allow ACCtSS/CONCURRENT/ which is really only a flag
indicating that the file can be opened with multiple writers
and readers. Concurrent access is handled entirely by the
program. The file is created with this attribute and is
handled normally except when accessed wfth CHANGING
µ~rmission in which case multiple writers and readers are
allowed. A tile accessed with WRITE permission MUST NOT be
available to anyone else Ci.e. a file can have many readers
and no writers or only one writer and no readers [excluding
the writer] unless CONCURRENT and CHANGING are used).

4. We will require the full CARDIN system but on a lower
priority than FORT~AN and BASIC. We will not require system
ALGOL, JOVIAL, or OATAdASIC as we do not use them. We also
do not use any database managers (e.g. IDSQ).

). A separate GTSS logon would not be required if all users of
GTSS were logged on the same project. For this purpose
Multics logon would suffice. All Person_ids registered on
this common project would be synonymous with the GCOS user
master catalog CUMC>. The GCOS simulator should be changed
to reflect the GTSS file mapping.

we feel that a 6TSS logon facility would be useful for an
inentical TSS. This could be done by having the initializer
recognize a special logon command such as "gtss". In this
manner the initial_command in CMF would be "gtss" and the
user who did "logout -hd" would enter "gtss" instead of
"login". This "gtss" command would only be recognized by
the initializer and would cause a gtss process to be created

UHAFT: MAY BE CHANGED A-2 09/20/78 GTSS MTB 393

which would perform the GCOS TSS logon sequence. A set of
lines could be assigned to the GTSS process so that a u~er
who dialed one of these special numbers was logged directly
on to GTSS. From the user's point of view it would look as
if he logged on to GCOS TSS.

A feature that would be useful in GTSS would be the ability
to return to Multics. This could be done with a command
such as "Multics" which would be synonymous with ''logout
-hd".

DRAFT: MAY BE CHANGED A-3 09/20/78 GTSS MT~ 39~

