
MULTICS TECHNICAL BULLETIN MTB- 416 

To: MTB Distrib~tion 

From: David Spector 

Date: 14 May 1979 

Subject: New Program Coordination Facility 

Motivation 

Most Multics system programmers have wished at times for a 
mechanism to coordinate the changes they make to the system, in 
order to avoid discovering too late that someone else has been 
working on the same programs (or include files, bind files, etc.) 
at the same time. It is appropriate to solve the problem using 
an online procedure since Multics excels at other such 
interactive applications (memos, mail, lister files, etc.). 

Program Opening 

The most natural mechanism to provide the desired 
interprogrammer coordination is the concept of opening and 
closing programs. A program is said to be open to (or by) a 
programmer when the programmer has reserved it with the intention 
of modifying a local copy of the program and later installing the 
program as a standard part of Multics. An open program is closed 
when the programmer frees it so that other programmers can open 
it, usually because it has been submitted for installation. 

Administrative Control 

A facility for supporting opening and closing of programs can 
implement various degrees of administrative control. At one 
extreme is a facility that disallows access to any system program 
source segment except when authorized by its policies for 
contention resolution. At the other extreme is a facility that 
serves an advisory function only, leaving enforcement completely 
up to the individual programmers. Without entering into a 
lengthy discussion of the relative merits of these two extremes, 
it is clear that the second, advisory, facility is by far easier 
and quicker to implement; it is this type of facility that is the 
subjec~ of this MTB. 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 

- , -



1: 

~ i ·, -

~~L::cs TSCHNICAL BUL~ETIN MTB-

Requirements 

A good program coordination facility should support a variety 
of features. It should allow opening and closing of programs as 
described above. It should allow the association of programmers 
~s the maintaine~s (as distinct from changers) of programs, 
~~depend~ntly of whether or not they have the programs open for 
~~3~~e. More than one program~er shoul~ be permitteC tu have a 
~~~eri program open at the same time, providing that each is 
warn~~ cf the fact that othe~ progra~mers have the program open 
a~ ~~~ time they attempt to open it, and providing the other 
~-osr~mm~rs a~e informed :vi~ interactive messages) of the new 
Jce~i~r. Opening a program as metntai~er, on the other hand, 
s~c~ld te all~wed only to 0"€ person at a time; this restriction 
s!mplifies the ~otion of who is responsible for a program. 

'.·r.ieni.:i;::. clo.:;inr.: a'1c ''li::i::_r·tainJ.ng programs sh.ould create database 
ent~ies recording the date and time of the change, the group id 
of the process making the change, and an· optional comment field 
provided by the programmer to describe the_ Changes being made. 
This comment field can include the pathname of the direct6ry in 
which ~ 10cal copy bei~g changed re~ides 1 and can be used to 
fulfil other site or departmental c0nv~ntions and standards. A 
command should be available to·examire the. status of a program 
(or of all programs, alphabetically sorted), without causing the 
p~ogram to be opered 9r closed. Administrative commands should 
be .available to - ccrrect erroneous ent·ries and to control access ~ 
to the database. 

r_1n i ver sal i ty 

By designing a generalized facility, we hopefully have 
produced a product useable in environments considerably different 
from. those found at the Phoenix and Cambridge software 
development· sites. Indeed, there is-no requirement that the 
envtronme~t being coordinated even exist 6n the computer system 

·that implements the facility. Thus a site can coordinate changes 
being made to programs that are stored, edited, and compiled on 
systems other than their Multics system. Multiple databases.can 
be created, if desired, to separate the coordination of programs 
in multiple environmentB. 

In-House Use 

The facility described above has been implemented using MRDS at 
both MlT and Phoenix (System M). The commands and help files 
(info segs) are located in the directory >udd>m>ds>l (1 for 
'library'). They are described below. 

- 2 -



MULTICS TECHNICAL BULLETIN MTB-

04/25/79 open_program 

Syntax: open program program_name {-control_args} 

Function: The open program command reserves a named program to 
the user in order to-coordinate software development activities. 

Arguments: 
program name 

Entrjname of program to be opened. The language suffix must be 
included. 

Control arguments: 
-maintainer, -mn 

User is to be maintainer of the program. This is separate from 
opening the program in order to change it. 

-comment STR, -cm STR 
Associates the string STR with this opening as a comment. 

-long, -lg 
Causes more info to be displayed when other users have already 
opened the specified program. 

Notes: To close programs, use the close program command. To 
display the status of a program, use the status_program command. 

The program name should be the primary source name of the program 
or component (if a bound segment). No checking is done by 
open_program. 

Several people can open a program at the same time but only one 
person can be its maintainer. 

Opening a program already opened or maintained by others causes 
them to be notified via an interactive message. 

Comment strings are 128 chars max. If they contain embedded 
blanks, they must be quoted. 

The database used is open.db in the same directory as the command 
itself. The database is a directory (MRDS database). 

Examples: 
open_program list.pl1 -cm "Adding -special control a~g.'' 

This causes list.pl1 to be opened for changing. 
close program list.pl1 -cm "Source is in >udd>m>ds>list." 

Th1s causes list.pl1 to be closed for changing. 
status program list.pl1 

This displays status of list.pl1. 

- 3 -



MULTICS TECHNICAL BULLETIN MTB-

04/25/79 close_program 

Syntax: close program program_name {-control args} 

Function: The close program command releases a named program 
that was reserved by using the open program command. It is used 
to coordinate software development activities. 

Arguments: 
program name 

Entryname of program to be closed. The language suffix must be 
included. 

Control arguments: 
-maintainer, -mn 

User is currently maintainer of the program. This is separate 
from closing a program that was being changed. 

-comment STR, -cm STR 
Associates the string STR with this closing as a comment. 
This overwrites the comment, if any, associated with the 
opening. 

-long, -lg 
Causes more info to be displayed when other users have the 
program open. 

-delete, -dl 
This control arg allows correction of mistakes by querying and 
allowing deletion of any or all database entries for the named 
program (-mn can be specified). 

Notes: To open programs, use the open program command. To 
display the status of a program, use the status program command. 

The program name should be the primary source name of the program 
or component (if a bound segment). No checking is done by 
close_program. 

Closing a program that is opened or maintained by others causes 
them to be notified via an interactive message. 

Comment strings are 128 chars max. If they contain embedded 
blanks they must be quoted. 

- 4 -



MULTICS TECHNICAL BULLETIN MTB-

,,.. 04/25/79 status_program 

Syntax: status program {program_name} {-control_args} 

Function: The status program command displays the 
open/closed/maintained status of one or more programs. It is used 
to help coordinate software development activities. 

Arguments: 
program name 

Entryname of program to be opened. 
included. A program name is not 
control arguments are given. 

The language suffix must be 
given if the -my or -all 

Control arguments: 
-long, -lg 

Causes more info to be ·displayed, including 
open/close/maintain history of the program(s). 

-my 

entire 

Displays status of all programs opened or maintained by the 
user. 

-all, -a 
Displays status of all known programs. 

Notes: To open programs, use the open program command. To close 
,... programs, use the close_program command. 

The program name should be the primary source name of the program 
or component (if a bound segment). No checking is done by 
status_program. 

- 5 -


